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1 Introduction and statement of the results

We first briefly recall the basic properties of the general theory of spaces of homogeneous type. Assume

that X is a set, a nonnegative symmetric function d on X ×X is called a quasi-distance if there exists a

constant K such that

d(x, y) 6 K[d(x, z) + d(z, y)], (1.1)

for every x, y, z ∈ X , and d(x, y) = 0 if and only if x = y.

We shall say that (X, d, µ) is a space of homogeneous type if d is a quasi-distance on X , µ is a positive

Borel measure defined on a σ-algebra of subsets of X which contains the balls, and there exists a constant

A such that

0 < µ(B(x, 2r)) 6 Aµ(B(x, r)) <∞

holds for every x ∈ X and every r > 0.

In [10] the authors prove that each quasi-metric space is metrizable and that d is equivalent to ρβ,

where ρ is a distance on X and β > 1. So that we shall assume along this paper that d is actually a

distance on X , in other words that K = 1 in (1.1).

In order to be able to apply Lebesgue differentiation theorem we shall also assume that continuous

functions are dense in L1(X,µ).
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Along this paper we shall deal with three at first different descriptions of α-regularity of real functions

defined on X . The regularity parameter α shall always be positive.

In [10], Maćıas and Segovia introduce, in the setting of space of homogeneous type, the Campanato

type functions given in [6] for the Euclidean case. They prove that under the condition of normality on

the homogeneous space, these classes are exactly the standard Lipschitz spaces. Let us introduce these

two classes of Lipschitz functions.

We define the Lipschitz spaces of order α, Lip(α), as the space of functions f defined on X such that

there exists a constant C > 0 such that

|f(x)− f(y)| 6 Cd(x, y)α

for every x, y ∈ X . We shall denote by ‖f‖Lip(α) the infimun of all such constants C.

For 1 6 q < ∞ a real function f in Lq
loc(X,µ) is said to belong to Lip(α, q) if there exists a positive

and finite constant C such that the inequality

(

1

µ(B)

∫

B

|f(x)−mB(f)|
qdµ(x)

)1/q

6 Cr(B)α (1.2)

holds for every d-ball B in X , where r(B) is the radius of B and mB(f) =
1

µ(B)

∫

B fdµ. With ‖f‖Lip(α,q)
we denote the infimun of those constants C.

Let us point out that our definition of Lip(α, q) coincides with the class Lip(α, q) in [10] only when

(X, d, µ) is normal in the sense that the measure of any d-ball is comparable to its radius. In fact,

in [10] the authors define the element in the class Lip(α, q) as those function in Lq
loc(X,µ) such that the

inequality (1.2) holds with µ(B) instead r(B). It is easy to see that Lip(α) implies Lip(α, q). Actually,

one of the main results in [10] is the converse. We shall show that both Lip(α) and Lip(α, q) have the

same description in terms of Haar wavelets built on some wide classes of dyadic families. The following

result is the first step in this direction.

Theorem 1.1. Let (X, d, µ) be a space of homogeneous type and f ∈ Lip(α, 2). Then the inequality

|〈f, h〉| =

∣

∣

∣

∣

∫

X

fhdµ

∣

∣

∣

∣

6 ‖f‖Lip(α,2) r(B)α µ(B)1/2,

holds for every function h and every ball B = B(z, r(B)) such that

(i)
∫

X hdµ = 0;

(ii)
∫

X |h|2dµ = 1;

(iii) {x ∈ X : h(x) 6= 0} ⊆ B.

Proof. Let f ∈ Lip(α, 2) and h a function that satisfies (i) to (iii). From (i) and (iii) we have that

∫

X

f(x)h(x)dµ(x) =

∫

B

(f(x)−mB(f))h(x)dµ(x).

From the Hölder’s inequality, (ii) and the fact that f ∈ Lip(α, 2) we obtain that

∣

∣

∣

∣

∫

X

f(x)h(x)dµ(x)

∣

∣

∣

∣

6

∫

B

|f(x)−mB(f)| |h(x)| dµ(x)

6

(
∫

B

|f(x)−mB(f)|
2
dµ(x)

)1/2

6 µ(B)1/2
(

1

µ(B)

∫

B

|f(x)−mB(f)|
2
dµ(x)

)1/2

6 ‖f‖Lip(α,2)µ(B)1/2r(B)α.

Notice that in the Euclidean context, any localized wavelet satisfies properties (i) to (iii). On an

abstract metric space (X, d), for which no smoothness better than Lipschitz continuity makes sense, the
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first basic prototype of localized wavelet is the Haar wavelet. We are interested in a reciprocal of the

previous theorem in terms of Haar type functions.

In order to state the main result of this note we shall refer here to Sections 2 and 3 below, for the

precise meaning of a dyadic family D in D(δ) on (X, d, µ), of a Haar system associated to D and for the

notion of separating classes of dyadic families.

In the Euclidean case Rn, the class of all arbitrary translations of the usual dyadic cubes Qj
~k
=

∏n
i=1 I

j
ki
,

with ~k = (k1, . . . , kn) ∈ Z
n, j ∈ Z and Ijki

= [ki2
−j , (ki + 1)2−j), has an important property which we

shall call separating. In fact, it is easy to see that given two different points x and y in R
n, then there

exists z ∈ R
n, j ∈ Z and ~k ∈ Z

n such that, both x and y belong to two different subcubes z +Qj+1
~l

and

z +Qj+1
~m of z +Qj

~k
and 2−j is comparable to the Euclidean distance between x and y.

The precise definition of separating classes is given in Section 2 where we shall also prove their existence

in our general setting of space of homogeneous type.

Let S be a given class of dyadic families D in D(δ). Let us write H to denote the set of all Haar

functions h that belong to some Haar system HD associated to some D ∈ S. Let us define our third class

of Lipschitz type functions. A function f ∈ L1
loc(X, d, µ) is said to belong to the Carlesson class C(α, S)

if there exists a positive constant C such that

|〈f, h〉| 6 C diam(Qh)
α µ(Qh)

1/2, (1.3)

holds for every h ∈H, where Qh is the smallest dyadic cube containing the set {x ∈ X : h(x) 6= 0} and

diam(E) = sup{d(x, y) : x ∈ E, y ∈ E}.

Our main results are contained in the next two statements.

Theorem 1.2. Let (X, d, µ) be a space of homogeneous type. There exist separating classes in D (δ)

for some δ > 0.

Theorem 1.3. Let (X, d, µ) be a space of homogeneous type. Let S be a separating class of dyadic

families on X. Then C(α, S)⊆ Lip(α) in the sense that in the Lebesgue class of each function in C(α,S)

there is a Lip(α) function.

Collecting the results contained in Theorems 1.1–1.3 we have the next statement which contains Theo-

rem 5 in [10].

Theorem 1.4. Let (X, d, µ) be a space of homogeneous type.

Lip(α) = Lip(α, q) = C(α,S)

for every 1 6 q <∞ and every separating family S.

With almost the same proofs, the above results extend to moduli of continuity ϕ(t) more general than

tα (see [2]). With the obvious definitions, regarding Lip (α) as Lip(ϕ) with ϕ(t) = tα, we now have

Lip(ϕ) ⊆ Lip(ϕ, q) ⊆ C(ψ,S) ⊆ Lip(ψ),

where ψ(t) =
∫ 1

0
ϕ(s)
s ds, provided that ϕ : R

+ → R
+ is a non-decreasing function and such that

∫ 1

0
ϕ(t)
t dt <∞. All these classes are the same when ψ(t) 6 Cϕ(t) for some constant C.

We would like to point out that in order to prove that f ∈ Lip(α) in Theorem 1.3 we actually only use

(1.3) for a class of test function of Haar type much smaller than H.

2 Separating classes of dyadic families

The construction of dyadic type families of subsets in metric or quasi-metric spaces with some inner and

outer metric control of the sizes of the dyadic sets is given in [7]. These families satisfy all the relevant

properties of the usual dyadic cubes in R
n and are the basic tool to build wavelets on a metric space of

homogeneous type (see [1] or [3]). The notion of dyadic families that we will consider here is contained

in the following definition (see [5]).
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Definition 2.1 (The class D(δ) of all dyadic families). Let (X, d, µ) be a metric space of homogeneous

type. We say that D = ∪j∈ZDj is a dyadic family on X with parameter δ ∈ (0, 1), briefly that D belong

D(δ), if each Dj is a family of Borel subsets Q of X , such that

(d.1) for every j ∈ Z the cubes in Dj are pairwise disjoint;

(d.2) for every j ∈ Z the family Dj almost covers X in the sense that µ(X \ ∪Q∈DjQ) = 0;

(d.3) if Q ∈ Dj and i < j, then there exists a unique Q̃ ∈ Di such that Q ⊆ Q̃;

(d.4) if Q ∈ Dj and Q̃ ∈ Di with i 6 j, then either Q ⊆ Q̃ or Q ∩ Q̃ = ∅;

(d.5) there exist two constants a1 and a2 such that for each Q ∈ Dj there exists a point x ∈ Q that

satisfies B(x, a1δ
j) ⊆ Q ⊆ B(x, a2δ

j).

The following properties that can easily be deduced from (d.1) to (d.5) are going to be frequently used

in the sequel:

(d.6) there exists a positive integer N depending on ai, i = 1, 2 in (d.5) and on the doubling constant

A such that for every j ∈ Z and all Q ∈ Dj the inequalities 1 6 #(L(Q)) 6 N hold, where L(Q) = {Q′ ∈

Dj+1 : Q′ ⊆ Q};

(d.7) the families D̃j = {Q ∈ Dj : #(L(Q)) > 1}, j ∈ Z are pairwise disjoints;

(d.8) we have a well-defined function J : D̃ = ∪j∈ZD̃
j → Z given by Q 7→ J (Q) if Q ∈ D̃J (Q);

(d.9) there exists a positive constant c such that µ(Q) 6 cµ(Q′) for all Q ∈ D̃ and every Q′ ∈ L(Q).

Any Q in some dyadic family D shall be called cube or dyadic cube. Results like the one we propose in

this paper are valid for continuous wavelet transforms on the Euclidean context (see [2, 8, 9, 11]). In our

general setting we have no algebraic structure that allows us to speak of continuous translations. The

following definition is designed to replace this limitation.

Definition 2.2 (Separating classes in D(δ)). We shall say that a class of dyadic families S ⊆D(δ)

separates points of X if there exist two positive constant c1 6 c2 < ∞ such that for every x and y in X

with x 6= y there exists D ∈ S such that

(s1) there is a dyadic cube Q ∈ D such that x and y belong to Q;

(s2) there exist two different dyadic cubes Qx and Qy in L(Q) such that x ∈ Qx and y ∈ Qy;

(s3) c1δ
J (Q) 6 d(x, y) 6 c2δ

J (Q).

In order to prove Theorem 1.2 we shall use the basic construction given by Christ in [7] which we

proceed to recall. We shall say that, for ε > 0, Nε is an ε-net in X if Nε is a maximal ε-disperse subset

of X . That is, d(x, x′) > ε for every x, x′ ∈ N with x 6= x′ and if E is any other subset of X strictly

containing Nε then there exists y, y′ ∈ E with y 6= y′ such that d(y, y′) < ε. It is easy to show that

since (X, d) supports the doubling measure µ, then any ε-disperse subset Nε of X is countable. Moreover

Nε is finite if and only if X is bounded. In the sequel we shall use the notation Nε = {xk : k ∈ K(ε)}

to denote the elements of the ε-net Nε, where K(ε) is an initial interval of positive integers, which

could be the whole set Z
+ of positive integers. For a fixed positive δ, the above considerations with

ε = δj , j ∈ Z, gives rise to a sequence of δj-nets Nj = {xjk : k ∈ Kj}, where Kj = K(δj). On the set

A = {(j, k) : j ∈ Z and k ∈ Kj}, Christ introduce a tree structure that is closely related to the metric

structure on X (see [7] for details). Let us remark here that for the construction given in [7] we do not

need any nesting property of the sequence Nj of δj-nets. The partial order � on A defined in [7] which

gives the tree structure on A satisfies the two following basic properties:

(a) if d(xjk, x
j−1
l ) < δj−1

2 , then (j, k) � (j − 1, l);

(b) if (j, k) � (j − 1, l), then d(xjk, x
j−1
l ) < δj−1.

For a given sequence of δj-nets, Nj , δ > 0, we shall say that such order belongs to the class Oδ, briefly,

� ∈ Oδ.

The Christ dyadic cube at the level j located at k ∈ Kj is defined by

Qj
k =

⋃

(i,l)�(j,k)

B(xil , aδ
i). (2.1)

The family of all these cubes Qj
k satisfy Definition 2.1 for small values of the positive constants δ and a,

where in (d.5) we can choose x = xjk.
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The set Qj
k shall be called the dyadic cube associated to xjk ∈ Nj . The family D� of all those Qj

k shall

be called the Christ cubes associated to the family {Nj : j ∈ Z} of δj-nets Nj , j ∈ Z and the order �.

Notice that from (2.1) we have that

if (i, l) � (j, k) then Qi
l ⊆ Qj

k. (2.2)

The following lemmas will be our key tools to prove Theorem 1.2.

Lemma 2.3. Let Nj, j ∈ Z be a sequence of δj-nets in X with δ < 1/2 and let D� the Christ’s cubes

associated to family {Nj : j ∈ Z} and to order � in Oδ. Assume that for some j0 ∈ Z, k ∈ Kj0−1 and

k′ ∈ Kj0+1 we have that xj0−1
k = xj0+1

k′ ∈ Nj0−1 ∩ Nj0+1. Then there exists s ∈ Kj0 such that

(j0 + 1, k′) � (j0, s) � (j0 − 1, k).

Proof. Let � a order on A = {(j, k) : j ∈ Z, k ∈ Kj} in Oδ. Let (j0, s) the only element in A for which

(j0 + 1, k′) � (j0, s). To obtain the lemma all we need is to show that necessarily (j0, s) � (j0 − 1, k). In

fact, from (b) we have

d(xj0+1
k′ , xj0s ) < δj0 <

δj0−1

2
.

Since the left-hand side is also d(xj0s , x
j0−1
k ), (a) shows that (j0, s) � (j0 − 1, k).

Since, as we have already observed, for the construction of Christ no nesting property of the nets Nj is

need. This fact allows us to construct a particular sequence N of δj-nets associated to two given different

points x and y in X . Set N to denote any sequence (Nj : j ∈ Z) of δj-nets with x = xj1 ∈ Nj if j is odd

and y = xj1 ∈ Nj if j is even.

Lemma 2.4. Let x and y be two points in X with x 6= y and let 0 < δ < 1/2 be given. Let � be an

order in Oδ induced by the sequence N defined above. Then there exists i ∈ Z such that the dyadic family

D� satisfies

(1) Qi+1
1 ⊆ Qi

1;

(2) there exists s ∈ Ki+1, s 6= 1, such that Qi+2
1 ⊆ Qi+1

s ⊆ Qi
1;

(3) aδi+1 6 d(x, y) 6 a2δ
i, where a is the constant in (2.1) and a2 is the constant in (d.5).

Proof. Let x and y be two points in X with x 6= y. Let j0 ∈ Z be such that

δj0+1 6 2d(x, y) < δj0 . (2.3)

Let � in Oδ be an order associated to N .

Let

i =

{

j0 + 1, if Qj0+2
1 ⊆ Qj0+1

1 ,

j0, if Qj0+2
1 6⊆ Qj0+1

1 .

Let us check that this value of i satisfies (1), (2) and (3). Let us start by checking (1). If i = j0 + 1, this

is the case when Qj0+2
1 ⊆ Qj0+1

1 , there is nothing to prove since Qi+1
1 = Qj0+2

1 and Qi
1 = Qj0+1

1 . On the

other hand, if i = j0, from (2.3) and (a) we have that (j0 + 1, 1) � (j0, 1), hence from (2.2) we get that

Qi+1
1 = Qj0+1

1 ⊆ Qj0
1 = Qi

1.

Since xi1 = xi+2
1 ∈ Ni ∩Ni+2, applying Lemma 2.3 we get that there exists s ∈ Ki+1 such that

(i + 2, 1) � (i+ 1, s) � (i, 1). (2.4)

Then, from (2.2) we have that Qi+2
1 ⊆ Qi+1

s ⊆ Qi
1. So that in order to check (2) we only need to show

that s 6= 1. If i = j0 then Qi+2
1 6⊆ Qi+1

1 , so that s 6= 1 in this case. On the other hand, notice that

since δ < 1/2 we have that δj0+2 < δj0+1/2 6 d(x, y) = d(xj0+3
1 , xj0+2

1 ). Then, from (b) we get that

(j0 + 3, 1) 6� (j0 + 2, 1), that is, (i+ 2, 1) 6� (i + 1, 1) when i = j0 + 1. Now from (2.4) we get that s 6= 1

also in the case i = j0 + 1.
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Finally we shall see that (3) holds. Notice that from (1), (d.5) and (2.1) we have that xi+1
1 ∈ B(xi1, a2δ

i).

Thus, d(x, y) = d(xi+1
1 , xi1) < a2δ

i. On one hand, we have that xi+1
1 ∈ Qi+1

1 and xi1 = xi+2
1 ∈ Qi+1

s where

s 6= 1 is the integer in (2). On the other hand, from (d.1), we have that Qi+1
1 ∩ Qi+1

s = ∅. Therefore,

d(x, y) = d(xi+1
1 , xi1) > aδi+1.

Proof of Theorem 1.2. We shall prove that for every couple of points x and y in X with x 6= y there

exists a dyadic family D(x,y) = D� for some order � associated to N that such (s1) to (s3) hold. Thus,

taking S = {D(x,y) : x, y ∈ X, x 6= y} we shall obtain the result.

Let x and y be are two points in X with x 6= y and let i and s be the integers provided by Lemma 2.4

associated to the family N of δj-nets. Assume that i = 2u for some u ∈ Z. Consider the dyadic cubes

Qy = Qi+1
1 , Qx = Qi+1

s and Q = Qi
1. From (1) and (2) in Lemma 2.4, the definition of dyadic cubes

given by (2.1) and (d.1), we obtain (s1) and (s2). Finally from (3) in Lemma 2.4 we get that d(x, y) is

comparable with δJ (Q) which is (s3). The case of i is odd we can proceed in similar way.

3 Proof of Theorems 1.3 and 1.4

Let us first define what we mean by a Haar system associated to a dyadic family.

Definition 3.1. Let D be a dyadic family on (X, d, µ) such that D ∈ D(δ). A system HD of simple

Borel measurable real functions h on X is a Haar system associated to D if it satisfies

(h.1) for each h ∈ HD there exists a unique j ∈ Z and a cube Q = Qh ∈ D̃j such that {x ∈ X : h(x) 6=

0} ⊆ Q, and this property does not hold for any cube in Dj+1;

(h.2) for every Q ∈ D̃ there exist exactly MQ = #(L(Q)) − 1 > 1 functions h ∈ HD such that (h.1)

holds; we shall write HQ to denote the set of all these functions h;

(h.3) for each h ∈ HD we have that
∫

X
hdµ = 0;

(h.4) for each Q ∈ D̃ let VQ denote the vector space of all functions on Q which are constant on each

Q′ ∈ L(Q). Then the system {
χ
Q

(µ(Q))1/2
} ∪ HQ is an orthonormal basis for VQ.

It is easy to show, following the proof in [1] (see also [3]), that given D in D(δ) it is allways possible

to construct Haar systems supported on the elements Q of D̃. This means that there exist systems HD

of functions h on X satisfying (h.1) to (h.4) for all D in D(δ). Observe also that from (d.9) we get that

there exists a positive constant C such that

‖h‖∞ 6 Cµ(Qh)
−1/2, (3.1)

for all h ∈ HD. Here, as ussual, ‖f‖∞ is the L∞-norm of the function f which is defined as the µ-essential

least upper bound of f .

We define H as the set of all Haar functions h that belong to some Haar system HD associated to some

dyadic family D ∈ S for some separating class S. As already mentioned in the introduction, the proof of

Theorem 1.3 requires the condition (1.3) only for a much smaller class of test functions than H. In fact,

given D in D (δ), Q ∈ D̃ and Q′ ∈ L(Q), the function

hQ,Q′ =

(

µ(Q \Q′)

µ(Q)µ(Q′)

)1/2

χ
Q′ −

(

µ(Q′)

µ(Q)µ(Q \Q′)

)1/2

χ
Q\Q′ (3.2)

is said to belong to TD. Let us point out that when the standard Grahm-Schmidt orthonormalization

algorithm is applied to the indicator functions of Q and #L(Q) − 1 cubes Q′′ in L(Q), the first element

in HQ (see (h.4)) belongs to TD. Hence, for each separating class S we have that

⋃

D∈S

TD ⊆ H.

The following statement collects the main tools that we shall use in the proof of Theorem 1.3.

Proposition 3.2. Let f be a locally integrable function on X and let D be a dyadic family in D(δ).

Then
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(1) for all Q ∈ D and every Q′ ∈ L(Q) we have

|mQ(f)−mQ′(f)| =
µ(Q \Q′)

µ(Q)
|mQ′(f)−mQ\Q′ (f)|;

(2) for all Q ∈ D̃ and every hQ,Q′ ∈ TD, we have

|〈f, hQ,Q′〉| =

(

µ(Q′)µ(Q \Q′)

µ(Q)

)1/2

|mQ′(f)−mQ\Q′(f)|.

Proof. Notice that if Q = Q′ then the equality in (1) is trivial. On the other hand, since for Q ∈ D̃ we

have ( 1
µ(Q′) −

1
µ(Q) )µ(Q

′) = µ(Q\Q′)
µ(Q) , we get

|mQ′(f)−mQ(f)| =

∣

∣

∣

∣

1

µ(Q′)

∫

Q′

f(z)dµ(z)−
1

µ(Q)

∫

Q′∪(Q\Q′)

f(z)dµ(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1

µ(Q′)
−

1

µ(Q)

)

µ(Q′)mQ′(f)−
µ(Q \Q′)

µ(Q)
mQ\Q′(f)

∣

∣

∣

∣

=
µ(Q \Q′)

µ(Q)
|mQ′(f)−mQ\Q′(f)|,

and (1) hold.

The proof of (2) is a consequence of (3.2).

Proof of Theorem 1.3. The proof of this theorem follows the lines of the case in the real line given

in [2]. The key tools are the Lebesgue differentiation theorem and Proposition 3.2. Let S be a separating

class in D(δ) and let f be a function in C(α, S). We shall prove that f equals, with the possible exception

of a set of measure zero, a function in Lip(α). Let x and y be two points in X such that x 6= y and both

are Lebesgue points of f . Since S is a separating class in D(δ), there exist D ∈ S, Q ∈ D and Qx, Qy in

L(Q) such that (s1) to (s3) in Definition 2.2 hold.

Now, we consider the two sequences (Qn : n ∈ Z
+
0 ) and (Rn : n ∈ Z

+
0 ) of dyadic cubes defined as

follows. Here Z
+
0 denotes the set of all nonnegative integers. For n = 0 we define Q0 = Q. For n = 1 we

define Q1 = Qx. In general, for each integer n > 2, we take Qn ∈ L(Qn−1) such that x ∈ Qn where Qn

is the closure of Qn. Notice that from (d.2) the dyadic cube Qn is well defined for each n. Analogously

we define R0 = Q, R1 = Qy, and in general, for each integer n > 2, Rn ∈ L(Rn−1) such that y ∈ Rn.

It is important to observe that, from the construction of these sequences and since Q1 ∩ R1 = ∅, then

Qn ∩Rn = ∅ for all positive integer n.

Associated to the sequences (Qn : n ∈ Z
+
0 ) and (Rn : n ∈ Z

+
0 ) we consider the two following sequences

(hn : n ∈ Z
+
0 ) and (h̃n : n ∈ Z

+
0 ) of test functions of Haar type in TD. For each n ∈ Z

+
0 we take

hn = hQn,Qn+1
and h̃n = hRn,Rn+1

as in (3.2). Thus,

|f(x)− f(y)| 6 |f(x)−mQk
(f)− f(y) +mRk

(f)|+ |mQ0
(f)−mR0

(f)|

+
k
∑

i=1

|mQi(f)−mQi−1
(f)|+

k−1
∑

i=0

|mRi(f)−mRi+1
(f)|

= I + II + III + IV.

Since Q0 = R0 = Q, we have that II = 0. For I, since both x and y are differentiation points for f , we

can choose k large enough in order to get that I 6 d(x, y)α. Here we have used Lebesgue differentiation

through dyadic sets which can be applied from (d.5) (see also [4]).

Since III and IV are similar we shall only deal with III. If Qi−1 = Qi then we have that |mQi(f) −

mQi−1
(f)| = 0. Set I1 = {i ∈ Z

+ : Qi−1 ∈ D̃}. Then,

III =
∑

i∈I1

|mQi(f)−mQi−1
(f)|.
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From Proposition 3.2 and (d.9) we have that

|mQi(f)−mQi−1
(f)| =

µ(Qi−1 \Qi)

µ(Qi−1)
|mQi(f)−mQi−1\Qi

(f)|

=

(

µ(Qi−1 \Qi)

µ(Qi)µ(Qi−1)

)1/2∣
∣

∣

∣

∫

X

f(z)hi−1(z)dµ(z)

∣

∣

∣

∣

6 Cµ(Qi)
−1/2

∣

∣

∣

∣

∫

X

f(z)hi−1(z)dµ(z)

∣

∣

∣

∣

,

for all i ∈ I1. Then, from (1.3) and (d.9) we obtain that

|mQi(f)−mQi−1
(f)| 6 Cµ(Qi)

−1/2 diam(Qi−1)
αµ(Qi−1)

1/2 6 C diam(Qi−1)
α,

for all i ∈ I1.

Notice that, since Q ∈ DJ (Q), we have that Qn belong to DJ (Q)+n for each n ∈ Z
+
0 . Thus, from (d.5)

we have that diam(Qn) is bounded by a2δ
J (Q)+n, for each n ∈ Z

+
0 . Now, since 0 < δ < 1 and α > 0 we

have that

III 6 C
∑

i∈I1

diam(Qi−1)
α

6 (a2)
αC

∑

i∈I1

(δJ (Q)+i−1)α

6 (a2)
αC(δJ (Q))α

∑

i∈Z+

(δi−1)α

6 (a2)
αC(δJ (Q))α.

On the other hand, since the dyadic family D belongs to the separating class S in D(δ), from (s3) we

have that (δJ (Q))α 6 Cd(x, y)α. Similarly, using h̃n, we obtain that

IV 6 Cd(x, y)α.

Hence

|f(x)− f(y)| 6 Cd(x, y)α,

for almost every x and y in X . Thus, redefining the function f on a set of null measure, we have that

f ∈ Lip(α). �

Proof of Theorem 1.4. First notice that for every ball B in X and all x in B we have that the inequality

(
∫

B

|f(z)−mB(f)|
q
dµ(z)

)1/q

6 2

(
∫

B

|f(z)− f(x)|q dµ(z)

)1/q

, (3.3)

holds for each 1 6 q <∞.

Thus, if f ∈ Lip(α) we have that

(
∫

B

|f(z)−mB(f)|
qdµ(z)

)1/q

6 2

(
∫

B

d(z, x)αdµ(z)

)1/q

6 2 diam(B)α µ(B)1/q ,

for all ball B in X and therefore f ∈ Lip(α, q), 1 6 q < ∞. Now, we shall prove that Lip(α, q), 1 6

q < ∞ implies C(α, S) for all separating class S in D(δ). It is easy to see, from Hölder inequality, that

Lip(α, q), 1 6 q < ∞ implies Lip(α, 1). Therefore we only have to prove that Lip(α, 1) implies C(α, S).

Notice that if f ∈ Lip(α, 1) then the inequality

1

µ(Q)

∫

Q

|f(x) −mQ(f)|dµ(x) 6 C diam(Q)α (3.4)
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holds for every dyadic cube Q in D and all dyadic family D in D(δ). Let S be a separating class in D(δ)

and h ∈ TD, from (h.1), (h.3), (3.1) and the inequality (3.4) we have that

|〈f, h〉| =

∣

∣

∣

∣

∫

Qh

(f(z)−mQh
(f))h(z)dµ(z)

∣

∣

∣

∣

6

∫

Qh

|f(z)−mQh
(f)| |h(z)| dµ(z)

6 Cµ(Qh)
−1/2

∫

Qh

|f(z)−mQh
(f)| dµ(z)

6 C diam(Qh)
α µ(Qh)

1/2,

which implies that f ∈ C(α, S). Finally, from Theorem 1.3 we have the inclusion C(α, S) ⊆ Lip(α) and

we are done.
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