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The design and optimization of hybrid electric vehicle powertrains can take a great benefit

from mathematical models which include auxiliary management and control strategies of

the energy fluxes: the use of virtual platforms reduces the expensive and time-consuming

experimental activity. In this work the authors developed an online Energy Management

System (EMS) controller for a FCHEV, designed to employ the same energy management

over a wide range of driving style types. The controller was designed by using neural

networks (NN), which were trained with the optimal power flux distribution between a fuel

cell system and a battery system that minimizes the overall equivalent energy consump-

tion. The optimal solution was obtained by carrying out a gradient-based method mini-

mization over eight different driving cycles, and using a dynamic lumped parameter

mathematical model of a FCHEV fed by hydrogen and Li-ion batteries. A quantitative and

qualitative analysis was made showing the networks performances over different type of

cycles. Through this analysis, a suitable classification into two cycle categories is provided,

covering most of the possible driving styles with two of the developed controllers.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Currently, new and rapidly emerging hydrogen based tech-

nologies are being extensively used for propulsion systems of

hybrid electric vehicles. Fuel Cell System (FCS) could become

the main power source of electric vehicles in the forthcoming

decades, not only in terrestrial systems but also in air and
com (G. Correa).

ons LLC. Published by Els
naval systems [1,2]. There are several potential advantages for

using such a power source ranging from environmental to

performance and operability aspects.

Among the various types of fuel cells currently available,

due to their performance characteristics, Proton Exchange

Membrane Fuel Cells (PEMFC), which work around 70 �C and

with pressures close to atmospheric pressure, are at present

the most suitable for use in transportation systems. Because
evier Ltd. All rights reserved.
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the FCS dynamic response is relatively low, PEMFC-powered

vehicles could be unstable at the sudden load change [3]. For

vehicular use, these systems should be complemented by

electrochemical energy storage devices, such as advanced

rechargeable batteries, to guarantee the immediate delivery of

the necessary power for the propulsion at any moment when

required.

There are many motivations for introducing the hybridi-

zation in FCS for vehicular applications: decouple the fuel cell

from the current demanded by the tractionmotor to allow the

FCS to be used as close as possible to its optimum operating

range. Energy recovery by decelerating and braking through

regenerative brakes. Reduce FCS size and save the overall

weight of the system. The transient FCS response observed in

dynamic analysis is not instantaneous and typical transient

phenomena such as overshoot effects can be visualized, that

can be solved with the use of a complementary battery [4,5].

But the benefits are not limited to it, the use of a second source

of energy could even work as an emergency power source, in

the case of the failure of the fuel cell. On the other hand, the

extra degree of freedomoffered by the hybrid topology and the

complex power flow, introduces the need for an energy

management control strategy [6]. The Fuel Cell Hybrid Electric

Vehicle (FCHEV) needs an Energy Management systems to

distribute electrical power among the load and distinct power

sources. The strategy must satisfy powertrain component

constraints while trying to achieve some system-level per-

formance objective such as maximizing fuel economy or

maintaining the battery state-of-discharge (SoD).

In the specific literature, there are mainly two types of

control approaches: rule-based and optimization-based [7].

Several studies have been performed on this technology, with

the aim to attain improved performance and the contributions

from the literature on FCHEV control techniques are

numerous [8e16]. In the study done by Simmons [17], an on-

board EMS with an optimal control based on Pontryagins

Minimum Principle (PMP) is implemented to find the global

optimal solution which minimizes fuel consumption. They

developed a practical controller suitable for on-board imple-

mentation, in the form of an Auto-Regressive Moving Average

(ARMA) regulator. Cipollone et al. [18] have proposed amethod

that considers a propulsion strategy where the fuel cell can be

completely switched on or off, in order to achieve the best fuel

cell efficiency. Many power management algorithms were

designed by rule-based or heuristic methods. Those rule-

based methods are simple and easy to understand because

they come from engineering intuition [19,20]. However, they

often lack optimality or cycle-beating. Ideally, fuel consump-

tion minimization of hybrid vehicles can be achieved only

when the driving scenario is known a priori. For instance,

many authors implement online control through the Pon-

tryagins Minimum Principle, but this method ensures opti-

mality only when the driving cycle is known a priori. In

particular, once the vehicle characteristics are defined, the

optimal solution strictly depends on the speed trace and the

total traveled distance [21e25]. Delprat and Bernard [26,27]

develop the global optimization algorithm where the driving

cycle needs to be a priori known.

In the present work, a full hybrid structure for a FCS/bat-

tery electric vehicle, with a lithium ion battery pack as
secondary source is proposed. The FCS was selected as the

main power supplier to minimize the usage of the battery.

The dynamic behavior of a PEMFC system is a crucial factor to

ensure the safe and effective operation of FCHEV [28]. Because

water and thermal management are critical to stabilize the

performance of the PEMFC during severe load changes, the

model used in this work will include the fulfilled lumped

capacitance model of the thermal management subsystem.

This was developed to describe the temperature dynamics of

the system based on the system inputs (power required and

ambient temperature) [29]. Although in the FC the dynamic

behavior of the Temperature is much slower than most of the

electrochemical processes that take place inside the FC, the

difference of H2 consumptions between a stack model

coupled to an accurate thermal model and a Model of FC

without thermal is about 4%. The great majority of the

research published on the subject carry out optimizations

adopting static models that use polarization curves and effi-

ciency tables [30,31]. As the performance of the hybrid vehi-

cles (e.g., FCHEV) vary dramatically from driving patterns [32],

in this work eight light duty vehicle driving cycles for urban,

suburban and highway settings were considered: UDDS,

LA92, NYCC, NEDC, HWFET, WLTP and CADC in its urban and

rural road variants [33]. As the optimization process of the

complex dynamic model requires a significant computational

effort, simplified models were used to carry out the optimi-

zation process of each cycle, as shown in Fig. 1. A gradient-

based method was employed to obtain the optimal energy

management strategies, instead of methods such as PMP or

DP, which cannot be used here because of the nature of the

models.

These optimal strategies were used to train a particular NN

for each cycle. Additionally, every NN was run over the rest of

the cycles, showing different performances.

The aim of this paper is the development of an EMS capable

of supervising the power flux from the fuel cell, obtaining a

solution that minimizes the equivalent energy consumption

of an a priori unknown cycle.

This work is organized as follows: in Section Vehicle

model specifications and powertrain description a compre-

hensive description of the used vehicle parameters and the

mathematical models of the vehicle, battery and the PEMFC

systems is done. Also, a simplified model of the PEMFC is

introduced to reduce the computational cost on the optimi-

zation stage. In Section Optimization method a minimization

of the hydrogen consumption was carried out by the

gradient-based method over the different driving cycles. Both

the used algorithm and numerical results are also included in

this section, showing the reliability of the obtained solutions.

Section Neural network EMS describes the on-line control

strategy based on neural networks as well as its training,

using the ideal fuel cell power of Section Optimization

method. Finally in Section Results, a quantitative and quali-

tative analysis of the behavior of the networks over the

different types of cycles was made, classifying the adminis-

tration strategies into two categories. Finally, it is shown the

degree in which EMS improves the performance in terms of

equivalent consumption by contrasting both the on-line

neural network strategy and the ideal a priori known cycle

optimization with the baseline case.
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Fig. 1 e Work methods scheme.
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Vehicle model specifications and powertrain
description

The FCHEV powertrain architecture has a FCS with a battery

functioning primarily as an auxiliary power unit. The battery

and fuel cell supply electrical power to the electric traction

motors through an electric bus balanced with two DC/DC

converters. A schematic of the powertrain components spec-

ified is shown in Fig. 2.

Electronic and mechanical components efficiencies are

assumed to be 0.97 and 0.85, respectively. Electric motor effi-

ciency is given by the manufacturer as an efficiency map,

which was integrated into the model. The vehicle dynamic

model takes into account the gravitational forces, the aero-

dynamic drag, the rolling force and the acceleration forces. Eq.

(1) shows how the requested electrical power is computed.

Preq ¼
��

dV
dt þ

�
f0 þ KV2

�
cosðaÞ þ g sinðaÞ�mþ 1

2CDArV2
�
V

helechEChmec

(1)

Table 1 shows the vehicle specifications. Electricmotor and

the PEMFC stack maximum powers are 75 kW and 25 kW

respectively. Capacity and initial value of SoD are 5 Ah and

30%, respectively.
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Fig. 2 e Schematic of the po
Due to the electrochemical and thermal dynamic behavior

of the FC, the power output differs significantly from that of

the command signal. To ensure that the power delivered by

the FC and the batterymatches the electrical power requested

by the driving cycle, the battery power request is defined as

shown in Eq. (2).

PBAT ¼ Preq � PFCout (2)

Fuel cell model

For this study, a PEMFC stack dynamic model derived from a

past study [34,35] is used. This models take into account the

FCS main electrochemical, fluid-dynamic and thermal

properties in order to predict the power output with Matlab

Simulink. The code is based on a FC stack dynamic model

coupled with the model of the balance of plant, which in-

cludes compressor, cooling devices, and water management

system. In order to obtain the cell voltage, the reactant

pressures at the catalyst layer and the concentration as a

function of the cells operating condition need to be calcu-

lated. Moreover, since the stack power output depends on

the thermal systems, the temperature of the whole system

needs to be computed (stack FC and water management
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Table 1 e Key parameters FCHEV.

Description Parameter

Vehicle parameters

Frontal area 1.9403 m2

Coeff. rolling friction 0.013

K 6.51�10�6 s2/m2

Drag coefficient 0.35

Ambient temperature 298.15 K

Empty weight 754.4 kg

Total vehicle mass 1083 kg

PEMFC systems parameters

Rated power 25 kW

Nº of cells 336

Purge hydrogen 1.2

Active area 200 cm2

H2 pressure 350 bar

H2 storage weight 62.8 kg

FCS weight 103 kg

Electric motor parameters

Continuous power 45

Continuous generator power 41

Peak torque 240 Nm

Peak power 75 kW

Battery parameters

Rated capacity 5 Ah

Max. discharge current 150 A

Max. charge current 10 A

Nominal voltage 3.7 V

Cutoff voltage 2.7 V

Nº of cells 56

DOD 70

SoDt¼0 30%

Batteries weight 13 kg
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system). The changes in temperature come from the pro-

duction of heat by the exothermic chemical reaction, from

internal heat dissipation, and from heat transfer with the

cooling circuit.

The Nernst equation that gives the equilibrium voltage E0

for a given reaction as a function of the temperature and the

reactant pressures can be expressed as:

E0 ¼ �Dg
�
T;p0

�
2F

þ RTst

2F
ln

PH2
P0:5
O2

PH2O
(3)

As soon as a net current is produced by the fuel cell, the

activation overvoltage ðhactÞ, the concentration overvoltage

ðhconcÞ and the ohmic overvoltage ðhohmÞ take place in the cell. In

Eq. (4), the actual cell voltage ðVFCÞ is obtained as the sum of

the ideal Nernsts voltage (E) obtained from Eq. (3) and the

overvoltages sum ðPhÞ.

Vcell ¼ E0 � hact � hconc � hohm (4)

Given that the PEMFC is the primary source of energy, the

aim of the EMS is to minimize the total hydrogen consump-

tion, which is given by Eq. (5)

mH2
¼
Ztf
t0

MH2

NC
2FðIFC þ IauxÞðtÞdt; (5)

where IFC is the stack current, Iaux is the auxiliaries current, NC

is the number of cells in the stack and F is the Faraday
constant (96485 C/mol). The model was validated on the basis

of a through demonstration session performed in the frame-

work of the ENFICA-FC project [36]. The validation of the

model through experimental data is reported in Ref. [37]. Key

equations of electrochemical, mass balance and thermal

models are summarized in Table 2.

Battery model

The battery model is semi-empiric and quasi-static and takes

into account the temperature effect as a variation in the bat-

tery voltage ðDVÞ at a given temperature. It requires the charge

and discharge curves of the battery voltage vs. SoD at different

currents and the charge (Eq. (6)), as well as the discharge

voltage change vs SoD curves at different temperatures (Eq.

(7)). As functions of time, both, ambient temperature Tamb and

the power required from the battery (Eq. (2)) are inputs to the

model. The initial values of SoD and battery temperature are

also required. The model parameters are given in Table 1.

The voltage and the current are obtained iteratively using

the surface defined by the battery data (represented in Eq. (8)),

in order to satisfy the condition that the voltage times the

current is equal to the requested power. The iteration stops

when the current reaches the limits defined by the manu-

facturer or the change in the current is less than 0.1 mA. If the

voltage drops under the cut off voltage, the code stops and

displays an error message. Once the working voltage and

current are obtained, the temperature is defined by Eq. (9) and

the SoD by Eq. (10). The battery losses are calculated as in Eq.

(12) using the battery open circuit voltage (OCV) of Eq. (11)

(obtained from the work [43]).

V@25+CðtÞ ¼ f1ðSoDðtÞ; IðtÞÞ (6)

DVTðtÞ ¼ f2ðSoDðtÞ;TbatðtÞÞ (7)

VðtÞ ¼ V@25+CðtÞ þ DVTðtÞ (8)

mbat$Cp
dTðtÞ
dt

¼ IðtÞ$R� hc$AðTbatðtÞ � TambðtÞÞ (9)

SoDðIðtÞ; tÞ ¼ SoDinit þ 1
Cap

Z t

0

IðtÞdt (10)

VOCðtÞ ¼ f1ðSoDðtÞ;0Þ (11)

Ploss ¼ ðVðtÞ � VOCðtÞÞ$IðtÞ (12)

Fuel cell model simplification

The use of a complex dynamic model naturally requires a

significant computational effort. Consequently, a simplified

model is proposed in order to carry out the optimization

process of each of cycle. It is important to note that every

analyzed cycle takes over 1200 s to be solved using Simulink.

In addition, the optimization process requires approximately

100 iterations until its convergence. That is why a method

requiring low computational effort is proposed. As shown in

Fig. 1, a simplified model of the FCS was made and the cycle

https://doi.org/10.1016/j.ijhydene.2017.09.169
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Table 2 e Key equations of electrochemical, mass balance and thermal model.

Description Equation Ref

Key equations of electrochemical model

Activation loss at the electrodes
hactcat þ hactan ¼ hact ¼ RTst

2F sinh�1
�

i
2i0;an

�
þ RTst

0:5F sinh�1
�

i
2i0;ca

�
[38]

Cathode exchange current density i0;ca ¼ T2ð552� 10�9Þ þ Tstð�321� 10�6Þ þ 0:04674 [34]

Ionic resistance rion ¼ rm ¼ tm

ð5:139�10�9lm�3:26�10�3Þexp
�
2416

�
1

273� 1
Tst

		 [39]

Key equations of thermal model

Change of energy rate
mCst

dTst
dt ¼P

i
±Gi$hph;i �






Famb
conv






�





FWC

conv






þ Fsource

Heat convection to ambient



Famb

conv




 ¼ Aamb
st $hcell�amb

conv ðTst � TambÞ [35]

Heat generation in the stack
Fsource ¼ nc$i$Acell

0@�Tst△s
2F þP

j
hj

1A
Heat flux rate transfer to WC




FWC
conv




 ¼ AWC
st $hWC�amb

conv ðTst � TWCÞ
Key equations of mass balance model

Hydrogen effective partial pressure
p�H2

¼ 0:5psatH2O

24 1

xchannelH2O
exp

�
RT

pan2F
Ist lca

DH2O;H2

	35 [40]

[41]

[42]

Oxygen effective partial pressure
p�O2

¼ psatH2O

 
1�x�N2
x�
H2O

� 1

!

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 2 ( 2 0 1 7 ) 2 8 9 3 2e2 8 9 4 428936
HWFET has been used as the test case for the autoregressive

with exogenous terms (ARX) model validation with its Simu-

link model simulation.

AðqÞyðtÞ ¼
Xnu
i¼1

BiðqÞuiðt� nkiÞ þ eðtÞ (13)

In Eq. (13), q is the forward shift operator, A and Bi are

matrix valued polynomials in q (with orders na and nb,

respectively) that contain every model parameters identified

so far. The model includes a process dead-time of nk time-

steps. For the present work, na ¼ 3, nb ¼ 3 and nk ¼ 0, obtain-

ing the following discrete-time ARX-model

AðzÞyðtÞ ¼ BðzÞuðtÞ þ eðtÞ;

AðzÞ ¼ 1� 1:971z�1 þ 1:023z�2 � 0:05225z�3;
Fig. 3 e ARX mod
BðzÞ ¼ 6:973e�6 þ 4:462e�7z�1 þ 6:26e�6z�2:

which was quadratically fitted.

In Fig. 3 is shown the outputs from the simplified and

Simulink models.
Optimization method

In order to perform the minimization of the total energy

consumption of the driving cycles described in the above

section, some conditions shall be considered. First, a weighted

function should be considered in order to achieve a low

hydrogen consumption. Secondly, the state of discharge at the

end of the cycle should be the same that at the beginning of

the cycle, i.e., SoDðt0Þ ¼ SoDðtf Þ. Finally, SoD must oscillate
el validation.
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between 10 and 80 along the cycle. Then, taking PFCðtÞ as a

variable, the cost function

mH2
þ r0W0 þ r1W1 þ r2W2 (14)

is minimized over all PFC with 0 � PFCðtÞ � 25 kW for all t with

t0 � t � tf , where

W0 ¼
Ztf
t0

maxf0;PBATðtÞgdt

is the energy discharged by the battery,

W1 ¼
�
SoD

�
tf
�� SoDðt0Þ

�2
;

W2 ¼
Ztf
t0

ðSoDðtÞ �maxf10;minfSoDðtÞ;80ggÞ2dt

are the quadratic penalization for the violation of the SoD re-

strictions, and r0 > 0, r1 >0, r2 >0 are properly chosen.

Method description

The models (simplified and Simulink) provides the mH2 value

and the SoDðtÞ curve for a given power curve PFCðtÞ with

t0 � t � tf . Thus, the exact derivative of the cost function (Eq.

(14)) is not available. The Matlab built-in function fmincon and

theDerivativeFreeMethodBOBYQA[44] (using theNLopt library

in Matlab) perform little progress on each iteration. This might

be related to the low variation of the cost function. Hence, it is

proposed to incorporate information of the curvature byusing a

quasi-Newton method. To be more specific, given a fixed time

discretization t0 < t1 <…< tf , the values PFCðtjÞ are obtained by

minimizing at each iteration a quadratic approximation of the

cost function subject to a box constraint. For the quadratic

model, the gradient vector is computed with finite differences

and the Hessian matrix is obtained by using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) update with a Powell's
correction, in order to guarantee a positive definite quadratic

model (see Refs. [45,46]). For completeness, the method is

described as follows. Let g!� be the column vector with compo-

nents PFCðtjÞ and g!k an approximation generated by the k-th

iteration of the method. Let 4ðg!Þ be the value of the cost func-

tion (14) calculated using the components of g!. In addition, let

n!k be the column vector of variations of the cost function at

each component of g!k. Hence, the following derivative-free

box-constrained quasi-Newtonmethod was used.

Choose s2ð0;1Þ, k2ð0; 1Þ, g!0 and amatrixH0. Compute n!0.

Set k ¼ 0.

1. Compute z
!

k, solution of

minimize
z
!

ð n!kÞT z!þ 1
2
z
!T

Hk z
!

subject to 0 � � g!k þ z
!�

j
� 25; j ¼ 0;…; f :
2. Perform a backtracking to find ak2ð0;1� satisfying the

Armijo condition

4
�
g!k þ ak z

!
k

� � 4ð g!kÞ þ sakð n!kÞTzk
3. Set g!kþ1 ¼ g!k þ ak z
!

k and compute n!kþ1.

4. If k g!kþ1 �maxf0;minf g!kþ1 � n!kþ1;25ggk< tol, STOP.

5. Set d
!¼ g!kþ1 � g!k, m!¼ n!kþ1 � n!k and t ¼ ð d!ÞTHk d

!
.

If ð d!ÞT m!< kt, set m!¼ q m!þ ð1� qÞHk d
!

for

q ¼ ð1� kÞ t

t�ð d
!

ÞT m!
.

Define

Hkþ1 ¼ Hk �
Hk d

!�
Hk d

!�T
t

þ m!ð m!ÞT�
d
!�T

m!

6. Set k ¼ kþ 1 and go to Step 1.

The vector g!� was set as the approximate vector satisfying

the condition in Step 4. This algorithm was implemented in

Matlab and, in this work, the weights for the cost function (14)

were r0 ¼ 1=3600 and r1 ¼ r2 ¼ 1, and the algorithmic param-

eters values were s ¼ 10�4 and k ¼ 0:2. Since each evaluation

of the cost function requires the execution of the models, the

calculation of finite differences in Step 3 is a time-consuming

operation. Nevertheless, this algorithm was able to solve the

problem unlike fmincon or BOBYQA. In order to solve the

time-consumption of the Simulink model, the simplified

models explained in Subsection Fuel cell model simplification

were used.

Optimization results

The optimization procedure was performed over the 8 cycles.

Those results are shown in Fig. 4 by drawing the frequency of

the power delivered by each power source. Table 3 shows the

result and analysis of the energy consumed, produced and

exchanged between the sources. The cycle energy required

refers to the electrical energy requested by the car to the

power sources. FCS energy supplied to the system is the net

energy output of the FCS, which includes the FCS energy

supplied to the battery. Battery energy supplied to the system

is the net energy output of the battery. Available break energy

is the energy that the generator is able to harvest from

breaking after electronic losses. Due to power peaks, not all of

this energy is delivered to the battery, thus the net break en-

ergy is the break energy that is actually used to charge the

battery after battery charging losses. The battery energy loss

includes losses due to charge and discharge processes. Finally,

the net energy delivered to the battery is the sum of the en-

ergies delivered by the FCS and the generator to the battery.

In Fig. 5 a comparison between the value of the cost func-

tion at the optimal strategy (red bars) and at a baseline case

(blue bars) is shown. The baseline case used is the trivial en-

ergy management where the fuel cell power is selected as the

primary source and therefore always works to provide the

required power, when the FC can not provide the necessary

power the battery delivers the rest of the power required. It

can be seen that in almost all of the cycles, the cost function

value decreases substantially obtaining decreases up to 2% of

the baseline cost in the CADC cycles, except in the cycle NEDC

where the optimal cost is 96% of the baseline cost. In this

cycle, the baseline case is very close to the optimum case.
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Fig. 4 e Optimal case power frequencies.

1 Nonlinear autoregressive exogenous model.
2
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Neural network EMS

This section will show how to approximate the global opti-

mized PFCðtÞ of the last section via a real-time management

energy algorithm based on Neural Networks.
Every cycle is associated to a particular NARX1 neural

network consisting in 2 layers2 of 10 neurons and 7 backward
One of them is hidden.
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Table 3 e Optimal energy management data summary.

NEDC HWEFT UDDS LA92 WLTP CADCu CADCr NYCC

Cycle required energy [kWh] 1.71 2.59 1.83 3.05 4.19 0.96 2.81 0.37

FCS energy supplied to system [kWh] 1.63 2.57 1.71 2.95 3.99 0.88 2.76 0.36

FC energy supplied to battery [kWh] 0.02 0.00 0.01 0.06 0.25 0.00 0.16 0.14

Battery energy supplied to system [kWh] 0.10 0.03 0.15 0.21 0.47 0.12 0.26 0.17

Available break energy [kWh] 0.15 0.07 0.25 0.43 0.33 0.21 0.28 0.08

Net break energy [kWh] 0.09 0.03 0.14 0.16 0.12 0.12 0.13 0.05

Battery energy loss [kWh] 0.01 0.00 0.01 0.02 0.06 0.01 0.04 0.02

Net energy delivered to battery [kWh] 0.11 0.03 0.15 0.22 0.37 0.12 0.29 0.19

FCS energy delivered to system 94% 99% 92% 93% 89% 88% 91% 67%

Battery energy delivered to system 6% 1% 8% 7% 11% 12% 9% 33%

Brake energy delivered to battery 61% 44% 56% 37% 36% 56% 46% 64%

Brake energy loss 39% 56% 44% 63% 64% 44% 54% 36%

Battery charge from braking 85% 97% 94% 73% 32% 98% 45% 26%

Battery charge from FCS 15% 3% 6% 27% 68% 2% 55% 74%

Fig. 5 e Cost function result.

Fig. 6 e Neural Network control block diagram.
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time steps [47]. The neural network of the cycle is trained in

order to predict the fuel cell power PFCðtÞ from

PFCðt� DtÞ;…; PFCðt� 7DtÞ (15)

and the electrical required total power

P
!

req ¼
�
PreqðtÞ;Preqðt� DtÞ;…;Preqðt� 6DtÞ�: (16)

Note that the advanced in time PreqðtÞ is considered avail-

able, as usual. Additionally, the wheel brake power ðPwbÞ

P
!

wb ¼ ðPwbðtÞ;Pwbðt� DtÞ;…; Pwbðt� 6DtÞÞ (17)

and the integrals

Z t

P
!

reqdt and
Z t

P
!

wbdt (18)

were also incorporated as inputs.

Once the neural network is trained, the control strategy

(see Fig. 6) consists in computing an approximation bPFCðtÞ of
PFCðtÞ that will be the network output, taking as past values of

the fuel cell power
bPFCðt� DtÞ;…; bPFCðt� 7DtÞ;
in place of Eq. (15). This way, bPFCðtÞ is calculated from its 7

recently computed last values, which is always mathemati-

cally possible if rest initial conditions are assumed. Matlab

neural networks toolbox was used for the training, by using a

Levenberg-Marquardt method to compute the weights and

biases, and hyperbolic tangent type sigmoid and linear func-

tions for the transfer function of the hidden and output layers,

respectively (see Supplementary material).
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The introduction of P
!

wb and the integrals of Eq. (18) as

inputs played a very important role here. Actually, not only

this substantially reduced the prediction error, but also made

some cycles networks to be capable to predict the fuel cell

power of other different cycles. Once the eight neural strategies

were computed, they were subsequently also tested at every

cycle, besides their particular ones, in order to study the per-

formance of every network vs cycle possible combination.

Obviously, the required electrical power will in general

have a strong dependence of the driving cycle (Fig. 4) and

consequently, any kind of general control strategy is in prin-

ciple hard to be imagined. Nevertheless, the mere existence of

groups of cycles having at glance similar features in principle

suggests that there could be just a few of common neural

control strategies, able to predict thewhole set of cycles power

requirements. This is exactly what is studied in detail in the

following section.
Results

In order to study the performance of the EMS, the equivalent

consumption (19) will be used.

Y ¼


SoDf � SoD0



BSE
hFC100

þmH2
LHV (19)

This index measures the energy in kWh consumed by the

model. The second term of Eq. (19) is clearly related with the

H2 consumed from the tank. The term of the absolute differ-

ence between the initial and final SoDs may be interpreted as

a kind of deviation from the most idealistic case, in which

there is neither useless savings ðSoDf > SoD0Þ nor need of

recharging ðSoDf <SoD0Þ of energy, in what respects to the

battery usage. Eq. (20) gives the relative error of the equivalent

consumption of the j-th cycle obtained with the i-th neural

strategy ðbYijÞ, and the optimal equivalent consumption of the

j-th cycle ðYjÞ.

Mij ¼


bYij � Yj




Yj

(20)

The index was used to assess the performances of the 64

possible combination of EMS and cycles and the results are

shown in Fig. 7. The cells of the table are colored in a linear

gradient according with the values, green being the best

valuation, red the worst, and yellow the middle point. The

white blocks represent the cases in which the EMS leads to the

battery depletion and the cycle was not finished.
Fig. 7 e Relative error of the equivalent consumption between th

to indicate the energy management strategy used for each cycl
Cycles driving classification

From Fig. 7 one can infer the existence of a partial crossing

cycle prediction capability. Hence, it is proposed to classify the

driving cycles into only two categories, mainly urban group

and mainly interurban and highway group. As shown in Fig. 7,

HWFET neural strategy run over HWFET turns out to have the

minimum relative error 0.25%. On the other hand, the

maximum relative error was obtained when CADC road was

run over NYCC 104.65%. However, without taking into account

NYCC (since the cycle optimum is difficult to be reproduced by

the proposed EMS), the maximum relative error was obtained

when CADC road was run over CADC urban (73.33%), followed

by HWFET run over CADC urban (71.04%). The mean relative

error of every neural strategy applied to the other cycles was

20.44%, and without taking into account NYCC, it was 15%.

According to these results, neural strategies trained with

aggressive cycles (e.g., CADCurban) should in generalwork for

every cycle. In contrast, soft cycles neural strategies (e.g.,

HWFET or NEDC) may not work with aggressive cycles. While

the choice of driving cycles always has an impact on the

performance of vehicles, certain types of driving cycles

amplify this impact in hybrid and electric vehicle powertrains.

While hybrid and plug-in vehicles offer little economy con-

sumption benefit at higher costs for highway driving (HWFET),

they can offer dramatic fuel reductions and costs savings in

aggressive driving with frequent stops and idling [32]. As can

be seen in Fig. 7 the neural strategy trained with the CADC

urban shows the best performance when used with unknown

driving cycles. In contrast, the neural strategy trainedwith the

NYCC can only be used in the NYCC. This behavior can be

explained looking at Fig. 4 and Table 3, where the battery is

frequently charged (negative power) by both the regenerative

brake (26%) and the fuel cell (74%). The EMS provided by this

cycle, where the battery energy supply is the largest, may

explainwhy this strategy depletes the battery in the rest of the

cycles. On the other hand, one can see on Fig. 7 that the neural

strategy trained by the highway driving cycle HWFET has its

worst performance when applied to the strongly urban cycles

NYCC, CADC urban, LA92 andUDDS. The EMS trainedwith the

CADC urban cycle achieves the lowest mean error, for urban

cycles UDDS, LA92, CADC urban and NYCC and getting worse

for highway cycles (e.g. HWFET). Besides, the EMS trainedwith

the HWFET shows good results for interurban cycles such us

NEDC, HWFET, WLTP, and CADC road. From this analysis, it is

clear that a natural cycle classification into two groups can be

made: urban cycles that includes UDDS, LA92, CADC urban

and NYCC cycles, and interurban and highway cycles that
e optimal case and the EMS response. The bold font is used

e.
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includes NEDC, HWFET, WLTP, and CADC road cycles. As it

can be seen in Fig. 8, good results can be obtained with the

EMS trained with the CADC urban applied to the urban cycles

and the EMS trained with the HWFET cycle applied to the

interurban and highway cycles.

Comparative results

In order to visualize in a more quantitative and qualitative

way the above results, it is convenient to show more specif-

ically in which degree EMS improves the performance in
Table 4 e H2 consumed - SOD for baseline case, Optimal case a

NEDC HWEFT UD

Baseline case

H2 consumed [kg] 0.084 0.132 0.09

Final SoD 29.681 27.883 20.4

Equivalent consumption [g/km] 0.254 0.270 0.27

Optimal case

H2 consumed [kg] 0.084 0.131 0.08

Final SoD 30.009 30.009 30.0

Equivalent consumption savings [%] 0.52 2.05 12.8

Estrategy based on NN

H2 consumed [kg] 0.083 0.131 0.08

Final SoD 30.754 29.769 29.5

Equivalent consumption savings [%] �0.84 1.80 11.0

Fig. 8 e Hydrogen flow (g/s) and SoD for the op
terms of equivalent consumption (see (20)), for instance by

contrasting both the on-line neural network strategy and the

ideal a priori known cycle optimizationwith the baseline case.

This is summarized in Table 4 and Fig. 9.

In Fig. 9 the equivalent consumption per km (in g$km�1) for

the baseline case is represented by the blue bars. The yellow

bars corresponds to the case of the control designed with the

neural networks of Section Neural network EMS, and the red

bars shows the results of the equivalent consumption given by

Section Optimization method, in which the optimization is

done in the most idealistic case when the cycles are known a
nd Estrategy based on NN.

DS LA92 WLTP CADCu CADCr NYCC

2 0.147 0.192 0.050 0.133 0.019

11 34.746 57.320 21.563 45.359 26.355

7 0.318 0.307 0.387 0.279 0.390

7 0.150 0.203 0.045 0.141 0.018

09 30.009 43.876 30.009 30.010 29.997

0 0.69 0.05 19.79 2.27 17.76

7 0.150 0.202 0.046 0.142 0.021

34 29.519 46.252 29.471 30.538 27.335

7 �4.07 0.57 18.03 �1.12 10.85

timal case and EMS energy management.
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Fig. 9 e Comparison of equivalent consumption per km (g/km) and percentage difference with respect to the baseline.
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priori. The equivalent consumption percentage difference

against the baseline case is shown on top of each bar.

In most of the cycles, the NN strategy either reduces the

consumption with respect to the baseline case or produces an

overall result that is close to the optimal performance. For the

cycles in which the optimal and baseline strategies are

approximately comparable, the NN strategy in general pro-

duces similar results (e.g. NEDC, LA92 and CADC road),

improving in some cases the performance (e.g. HWEFT,

WLTP). For the cycles UDDS, CADC urban and NYCC, in which

the optimal consumption is clearly lower than the baseline

case, the NN strategy also reduces the consumption, being

sometimes very close to the optimal scenario (e.g. UDDS,

CADC urban). The urban EMS applied to the urban cycles ob-

tains an overall improvement close to 10%: 12% in the UDDS,

18% in the CADC urban and 11% in the NYCC. On the other

hand, when applied to the LA92, the urban EMS shows no

improvement, which can be explained due to the fact that the

optimal case is very close to the baseline case. For the intercity

and highway EMS the later observation applies, obtaining

improvements of 1.8% for the HWFET and 0.6% for the WLTP.
Conclusion

In this work, a new online EMS controller that manages the

power fluxes of a FCHEV power sources was introduced using

dynamical models and neural networks. The dynamic models

of the vehicle with its particular power sources ensure an

improved EMS design because they take into account several

factors that cannot be included by the use of staticmodels (e.g.

the maximum current of battery charge, working tempera-

ture, etc.). Eight neural networks were created and trained

with inputs provided by optimizing simplified models, which

have been used in order to reduce the highly computational

cost of the optimization with Simulink models. The use of

neural networks provides a real-time EMS. The robustness of

this method was provided by running each neural strategy

over the rest of the cycles, increasing the reliability to predict
unknown cycles. With this methodology, a quantitative and

qualitative analysis was made, showing the behavior of the

networks over different type of cycles. From this analysis the

administration strategies can be classified into two categories

that cover most of the possible driving styles types: urban and

interurban and highway. The results show that using the pro-

posed methodology it is possible to obtain this two suitable

EMS to be implemented in a real-time vehicle controller. For a

highway and intercity driving style the NN trained with the

HWFET cycle has the best performance showing energy

equivalent savings up to 2% whereas the NN trained with the

CADC urban cycle achieves the lowest mean error for urban

cycles obtain the energy equivalent savings up to 18%.
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Symbols
Latin symbols

A Area [m2]

Acell Cell active surface [cm2]

E0 Open Circuit Voltage [V]

F Faraday number [C/mol]

g Gibbs free energy [W]

G Mass flow rate [kg/s]
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h Mass specific enthalpy of the mass flow [J/kg]

i Current density [A/cm2]

I Current [A]

m Mass [kg]

Nc Number of cells in series in the PEMFC stack

p Pressure [bar]

P Power [kW]

r Resistance [U m2]

R Universal gas constant [J/(mol K)]

tm Membrane thickness [cm]

T Temperature [K]

Greek symbols

F Heat transfer [W]

h over-voltage [V]

r Air density [kg/m3]

dm Membrane average water content

Ds Molar entropy of the reaction [J/molK]

Abbreviations and acronyms

act Activation

amb Ambient

an Anode

ca Cathode

Mem Membrane

ohm Ohmic

st Stack

ADS Average driving speed

BSE Battery system energy

DOD Depth of discharge

DP Dynamic programming

EMS Energy management system

FC Fuel cell

FCHEV Fuel Cell Hybrid Electric Vehicle

FCS Fuel Cell System

PEMFC Proton Exchange Membrane Fuel Cells

PKE Positive kinetic energy
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