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THE ALEKSEEVSKII CONJECTURE IN LOW DIMENSIONS

ROMINA M. ARROYO AND RAMIRO A. LAFUENTE

Abstract. The long-standing Alekseevskii conjecture states that a connected homogeneous
Einstein space G/K of negative scalar curvature must be diffeomorphic to Rn. This was known
to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we
prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary
G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.

1. Introduction

A Riemannian manifold (Mn, g) is called Einstein if its Ricci tensor satisfies Ric(g) = c g, for
some c ∈ R. This is a very subtle condition, since it is too strong to allow general existence
results, and at the same time too weak for obtaining obstructions in dimensions above 4. It
is therefore natural to consider the Einstein equation for a special class of metrics such as
Kähler, Sasakian, with special holonomy, or with some symmetry assumption, among others
(see [LW99, Lau09, Spa11, Wan12] for further details and examples).

We study this equation on homogeneous manifolds. The classification of homogeneous Ein-
stein spaces is naturally divided into cases according to the sign of the scalar curvature. Ricci-flat
homogeneous manifolds are flat by [AK75]. If the scalar curvature is positive, the manifold must
be compact by Bonet-Myers’ theorem, while a theorem of Bochner [Boc48] implies that if it is
negative, the manifold is non-compact. In the latter case, the following fundamental problem
remains unsolved

Alekseevskii’s conjecture. [Bes87, 7.57] Any connected homogeneous Einstein space of neg-
ative scalar curvature is diffeomorphic to a Euclidean space.

The purpose of the present article is to investigate this conjecture in low-dimensional spaces.
Recall that in dimensions 2 and 3, Einstein metrics have constant sectional curvature. Simply-
connected homogeneous Einstein 4-manifolds were classified by G. Jensen in his thesis [Jen69],
and they are all isometric to symmetric spaces. In dimension 5, non-compact homogeneous
Einstein spaces G/K were studied in [Nik05], where it was shown that if G 6= SL2(C) then they
are isometric to simply-connected Einstein solvmanifolds, and in particular diffeomorphic to R5.
In the recent work [AL15] the authors proved that the conjecture holds in dimension 6, provided
there exists a non-semisimple transitive group of isometries (a shorter proof of this fact was
recently obtained in [JP14]). Our first main result is the following

Theorem A. Let (M6, g) be a 6-dimensional connected homogeneous Einstein space of negative

scalar curvature, on which neither SL2(C) nor S̃L2(R)× S̃L2(R) acts transitively by isometries.
Then, M6 is diffeomorphic to R6.

Remarkably, the question of whether the 6-dimensional simple Lie groups SL2(C) and S̃L2(R)×

S̃L2(R) admit a left-invariant Einstein metric is still open. This is however not surprising if
one recalls that the total number of homogeneous Einstein metrics on its compact counterpart
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S3×S3 is still unknown, even though the compact case has been much more investigated in the
literature.

Our second main result confirms the conjecture in dimension 7.

Theorem B. Any 7-dimensional connected homogeneous Einstein space of negative scalar cur-
vature is diffeomorphic to R7.

Besides the case of left-invariant metrics on two simple Lie groups and one very special
homogeneous space, we show that the conjecture also holds in dimension 8.

Theorem C. Let (M8, g) be an 8-dimensional connected homogeneous Einstein space of negative
scalar curvature which is de Rham irreducible. Assume that (M8, g) is not an invariant metric

on the simply connected homogeneous space (SL2(R)× SL2(C)) /∆U(1), and that neither S̃L3(R)

nor ˜SU(2, 1) acts transitively by isometries. Then, M8 is diffeomorphic to R8.

It is important to remark that in Theorems A, B and C we actually obtain a stronger conclu-
sion, namely that the spaces admit a simply-transitive solvable group of isometries (i.e. they are
isometric to a solvmanifold). We mention here that there is a stronger version of the conjecture,
which is obtained by replacing the conclusion “diffeomorphic to a Euclidean space” by “isomet-
ric to a simply-connected solvmanifold” (this is commonly referred to as the strong Alekseevskii
conjecture in the literature, see [JP14]). Both statements turn out to be equivalent when the
isometry group is linear, and in fact at the present time all known-examples of homogeneous
Einstein spaces with negative scalar curvature are isometric to simply-connected solvmanifolds.

Finally, we focus on the case where the presentation group is not semisimple. Our main result
in this direction is the following

Theorem D. Let (Mn, g) be a simply-connected non-compact homogeneous Einstein space of
dimension less than or equal to 10, which is de Rham irreducible. If (Mn, g) admits a non-
semisimple transitive group of isometries, then Mn is diffeomorphic to Rn.

Using a close link relating non-compact homogeneous Einstein spaces and expanding homo-
geneous Ricci solitons (cf. [HPW14, LL14] and [Jab14]), Theorem D immediately implies the
following result.

Corollary 1.1. Let (Mn, g) be a simply-connected expanding homogeneous Ricci soliton which
is not Einstein, of dimension less than or equal to 9, and which is de Rham irreducible. Then,
Mn is diffeomorphic to Rn.

With regards to other previous known results on low-dimensional homogeneous Einstein
spaces, we mention that the classification of simply-connected compact homogeneous Einstein
manifolds was obtained in [ADF96] in dimension 5, and in [Nik04] in dimension 7. Partial results
in dimension 6 may be found in [NR03]. In [BK06] it was proved that all simply-connected com-
pact homogeneous spaces of dimension less than 12 admit a homogeneous Einstein metric. In
the non-compact case, the classification of Einstein solvmanifolds in low dimensions was studied
in [Lau02, Wil03, NN06, FC14].

The starting point for the proof of our main results are the structural results for non-compact
homogeneous Einstein spaces given in [LL14], and specially its more recent refinements proved
in [JP14]. Roughly speaking, these results state that the simply-connected cover of such a space
admits a very special presentation of the form G/K, where G = (G1A) ⋉ N is a semi-direct
product of a nilpotent normal Lie subgroup N and a reductive Lie subgroup U = G1A, with
center A and whose semisimple part G1 = [U,U ] has no compact simple factors and contains
the isotropy K. Moreover, the orbits of U and N are orthogonal at eK, the induced metric
on N is a homogeneous Ricci soliton, and the induced metric on U/K satisfies an Einstein-like
condition in which the action of U on N comes into play (see (1) below). In the present article
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we further improve those results by showing that the orbits of A and G1 are also orthogonal
at eK (Theorem 2.4). This allows us to reduce the problem to solving the generalized Einstein
equation (1) on G1/K, which turns out to be a homogeneous space of dimension at most 7
with semisimple transitive group. Moreover, as an application of our new structure refinements
we present a short proof of a result of Jablonski [Jab14] which states that homogeneous Ricci
solitons are algebraic (Corollary 2.7).

The reduction to the simply-connected case is possible in dimensions 8 and lower because we
show that those spaces are isometric to solvmanifolds, thus allowing us to apply the results in
[Jab15b].

In order to study the Einstein equation (and its generalized version) in the semisimple case, we
give in Table 1 a complete classification of non-compact homogeneous spaces with a semisimple
transitive group without compact simple factors, in dimensions up to 8. The classification is
based on that of the compact case, mainly given in [BK06], and a duality procedure [Nik05]. It
includes some infinite families, such as the non-compact analogs of the Aloff-Wallach spaces, and
some other examples in dimension 8. To solve the Einstein equation for homogeneous metrics
on these spaces we proceed case by case, studying the isotropy representations, and in many
cases the results from [Nik00] can be applied to conclude that there is no solution. However,
in some cases –mostly in higher dimensions– this is not enough, and a very detailed analysis
of the Ricci curvature is carried out. As a by-product of this analysis, a general non-existence
result for some cases where SL2(R) is one of the simple factors of the transitive group is given
in Proposition 3.6.

One of the reasons why we are not able to extend Theorem D to dimensions 11 and higher
is that already in dimension 11, examples such as (SL2(C) · R)⋉ R4 appear, with N = R4 and
SL2(C) acting non-trivially on it. The homogeneous Einstein equation for such a space reduces
to an equation for left-invariant metrics on SL2(C) which is even more general than the Einstein
equation.

The article is organized as follows. In Section 2 we state the structure theorems for non-
compact homogeneous Einstein spaces, since they will be repeatedly used along the paper, and
prove the new refinements metioned above. In Section 3 we prove Theorem 3.1, which deals with
the semisimple case, and in order to do that we give the classification of non-compact semisimple
homogeneous spaces up to dimension 8. This, together with previously known results, already
implies Theorem A. In Section 4 we prove Theorem D, and then in Section 5 we focus on the
strong Alekseevskii conjecture and complete the proofs of Theorems B and C.

Acknowledgements. It is our pleasure to thank Jorge Lauret for fruitful discussions, and Christoph
Böhm for providing useful comments on a draft version of this article.

Part of this research was carried out while the first author was a visitor at McMaster Univer-
sity. She is very grateful to the Department of Mathematics, the Geometry and Topology group
and especially to McKenzie Wang for his kindness and hospitality.

2. Structure of non-compact homogeneous Einstein spaces

In this section we review the most important known facts about the algebraic structure of non-
compact homogeneous Einstein spaces, since they will be crucial in the proof of our main results.
Here and throughout the rest of the article, all manifolds under consideration are connected and
all homogeneous spaces are almost-effective, unless otherwise stated.

Theorem 2.1 ([LL14, JP14]). Let (M,g) be a simply-connected homogeneous Einstein space
with negative scalar curvature. Then, there exists a transitive Lie group of isometries G whose
isotropy at some point p ∈ M is K, with the following properties:
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(i) G = (G1A) ⋉ N , where N is a nilpotent normal Lie subgroup, U = G1A is a reductive
Lie group with center A = Z(U), and G1 = [U,U ] is semisimple without any compact
simple factors and contains the isotropy K.

(ii) The orbits of U and N are orthogonal at p.
(iii) The induced left-invariant metric gN on N is a Ricci soliton (i.e. (N, gN ) is a nilsoliton).
(iv) The Ricci curvature of the induced U -invariant metric gU/K on U/K is given by

(1) RicU/K(Y, Y ) = c · gU/K(Y, Y ) + tr
(
S (θ(Y ))2

)
,

for some c < 0, where θ : u → Der(n) is the corresponding infinitesimal action (u =
Lie(U), n = Lie(N)), S(A) = 1

2

(
A+At

)
, and the transpose is taken relative to the

nilsoliton inner product on n.
(v) The infinitesimal action θ and the nilsoliton metric satisfy the following compatibility

condition:

(2)
∑

i

[θ(Yi), θ(Yi)
t] = 0,

where the sum is taken over an orthonormal basis for u1. Moreover, θ(Y ) = θ(Y )t for
every Y ∈ z(u).

Conversely, if a simply-connected homogeneous manifold admits a transitive group of isometries
G satisfying (i)− (v), then it is Einstein, with negative scalar curvature.

Remark 2.2. (a) Conditions (i) and (ii) may also be interpreted at the infinitesimal level, as
follows: Let g, u, n, k be the Lie algebras of the groups G,U,N,K, respectively. We have that
g = u ⋉θ n, with u a reductive subalgebra and n the nilradical of g (the maximal nilpotent
ideal). Consider the reductive decomposition g = k⊕ p for G/K, where p is the orthogonal
complement of k relative to the Killing form of g. This induces a reductive decomposition
u = k ⊕ h for the homogeneous space U/K, by letting h := p ∩ u. The G-invariant metric
g on G/K is thus identified with an Ad(K)-invariant inner product 〈·, ·〉 on p, and one has
that

〈h, n〉 = 0.

For technical reasons, it is sometimes convenient to extend this inner product to an inner
product on g, which we will also denote 〈·, ·〉, by letting k ⊥ p and choosing on k some Ad(K)-
invariant inner product. By doing so, we clearly obtain 〈u, n〉 = 0. In fact, in condition (v),
by an orthonormal basis of u we mean that it is orthonormal with respect to the inner
product extended as explained above.

(b) θ : u → Der(n) is nothing but the adjoint representation of g co-restricted to act on the
nilradical, that is,

θ(Y )X = [Y,X] ∈ n, X ∈ n, Y ∈ u.

It was noticed by J. Lauret that condition (2) is equivalent to θ being a zero of the mo-
ment map associated with the natural GL(n)-action on the vector space End(u,End(n)) (see
[AL15, Appendix] and [JP14, §2.1] for more details on this fact).

(c) The Einstein constant of (G/K, g) and the cosmological constant of the nilsoliton (N, gN )
both coincide with the scalar c < 0 in condition (iv).

(d) According to the construction procedure for expanding algebraic solitons described in [LL14,
§5], it is easy to see that given any non-compact Einstein homogeneous space G/K, we can
always build another one with the same U/K but with abelian nilradical.

1See Remark 2.2, (a) below.
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(e) The simply-connected hypothesis is not necessary for obtaining the results at the infinites-
imal level. However, it turns out to be necessary for the converse assertion to hold. In
particular, one question which still remains unanswered is whether any homogeneous Ein-
stein space with negative scalar curvature is simply connected. This is known to be true
when the universal cover is a solvmanifold, by the results in [AC99, Jab15b].

(f) If G is a unimodular Lie group, then by [DM88, Theorem 2] it must in fact be semisimple,
and hence it equals G1. In this case, the only information that Theorem 2.1 provides is that
G1 has no compact simple factors.

(g) On the other hand, if (M,g) admits a non-semisimple transitive group of isometries, it follows
from [LL14, JP14] that the group G in Theorem 2.1 may be chosen to be non-unimodular.
In this case, the so called “mean curvature vector” H, implicitly defined by

〈H,X〉 = tr (adX) , ∀X ∈ g,

is non-zero.

By using that under the hypothesis of Theorem 2.1, G/K is diffeomorphic to the product
manifold G1/K × AN , with S = AN a simply-connected solvable Lie group, one obtains the
following

Corollary 2.3. Let (M,g) be a simply-connected homogeneous Einstein space with negative
scalar curvature, and let G/K be the presentation given in Theorem 2.1. Then, M is diffeomor-
phic to a Euclidean space if and only if G1/K is so.

It is important to notice that Theorem 2.1 does not state that the orbits of Z(U) and G1 are
orthogonal at p. In other words, it is not known whether z(u) ⊥ g1 (where g1 = Lie(G1) = [u, u]).
This would be the most natural result to expect, since it would imply that there is a Levi
decomposition G = G1 ⋉ S which is adapted to the geometry of (Mn, g), in the sense that the
orbits of G1 and S at p are orthogonal. In what follows we prove that in fact one always has
this nicer structure.

Theorem 2.4. Let (M,g) be a simply-connected homogeneous Einstein space of negative scalar
curvature, and consider for it the presentation G/K given in Theorem 2.1. Then, z(u) is or-
thogonal to g1.

Remark 2.5. If furthermore one has that θ|g1 = 0, then G/K is isometric to a Riemannian
product G1/K × S of Einstein homogeneous spaces of negative scalar curvature. Notice that
condition θ|g1 = 0 is trivially satisfied when dimn = 1.

Proof. Following the notation from Remark 2.2, (a), equation (1) may be rewritten as an equa-
tion for endomorphisms of h ≃ TeKU/K as

(3) RicU/K = c · I +Cθ.

Here, RicU/K ∈ End(h) denotes the Ricci operator of the homogeneous space (U/K, gU/K ), and
Cθ ∈ End(h) is the symmetric endomorphism given by

〈CθX,Y 〉 = trS(θ(X))S(θ(Y )), X, Y ∈ h.

Since θ is defined on u and not just on h, we may of course extend Cθ to a symmetric endo-
morphism of u, where Cθ(k) = 0 (recall that the action of the isotropy is by skew-symmetric
operators).

We have θ : u → End(n), and by Theorem 2.1 S(θ(z(u))) is a family of pairwise commuting,
symmetric operators in End(n), which commute also with all of θ(u) (recall that θ is a Lie
algebra representation). We may thus consider an orthogonal decomposition of n into common
eigenspaces for the family S(θ(z(u))) (i.e. a weight-space decomposition):

(4) n = n1 ⊕ . . . ⊕ nl,
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with α1, . . . , αl ∈ z(u)∗ the corresponding weights. The restricted representation θg1 = θ|g1 :
g1 → End(n) must preserve this weight-space decomposition. For each k = 1, . . . , l we have a
co-restricted representation of the semisimple Lie algbera g1, given by

θkg1 := πk ◦ θ|g1 : g1 → End(nk),

where πk : n → nk is the orthogonal projection. Observe that, in particular, θkg1(Y ) is traceless
for each Y ∈ g1 and k = 1, . . . , l.

Now we claim that for Y ∈ g1, X ∈ z(u) one has that 〈CθX,Y 〉 = 0. Indeed, using the
orthogonality of the decomposition (4), and the fact that it is preserved by θ(u), we obtain

〈Cθ Y,X〉 =

l∑

k=1

tr
(
S
(
θkg1(Y )

)
(αk(X) · I)

)
=

l∑

k=1

αk(X) tr θkg1(Y ) = 0.

Consider in U/K the reductive decomposition u = k⊕h. We may also assume that g1 = k⊕h1
is a reductive decomposition for G1/K, where h1 ⊆ h. Let q be the orthogonal complement of
h1 in h, and let us show that q = z(u). To that end, take Y ∈ q and write it as Y = Y1 + Yz,
where Y1 ∈ h1, Yz ∈ z(u). We now look at the Ricci curvature in the directions Y1, Yz. First,
by (3) and the above claim we obtain

RicU/K(Y1, Yz) = c 〈Y1, Yz〉 = c 〈Y1, Y − Y1〉 = −c ‖Y1‖
2 ≥ 0,

since c < 0. On the other hand, we use that Yz ∈ z(u), Y ⊥ [u, u], and the explicit formula for
the Ricci curvature in the unimodular case (see [Bes87, 7.38]), to get

RicU/K(Y1, Yz) =− 1
2

∑

i,j

〈[Y1,Xi]h,Xj〉〈[Yz,Xi]h,Xj〉

+ 1
4

∑

i,j

〈[Xi,Xj ]h, Y1〉〈[Xi,Xj ]h, Yz〉 −
1
2 tr adu Y1 adu Yz

= 1
4

∑

i,j

〈[Xi,Xj ]h, Y1〉〈[Xi,Xj ]h, Y − Y1〉

=− 1
4

∑

i,j

〈[Xi,Xj ]h, Y1〉
2 ≤ 0,

where {Xi} is an orthonormal basis for h. Hence, we must have equality, and Y1 = 0. Therefore,
q = z(u), and the proof is finished. �

Remark 2.6. The previous theorem holds more generally for expanding homogeneous Ricci soli-
tons. More precisely, if (Mn, g) is an expanding (i.e. c < 0) homogeneous Ricci soliton, and G
is the full isometry group, then by [Jab15a] the soliton is semi-algebraic. Therefore by [LL14]
the homogeneous space G/K satisfies all the nice properties stated in Theorem 2.1, but possibly
without the additional conditions proven in [JP14] for Einstein spaces (namely, G1 might have
compact simple factors, and the action of z(u) on n might not be by symmetric endomorphisms).
Nevertheless, Lemma 3.5 from [JP14] still assures that by the compatibility condition (2) one has
that the family θ(z(u)) ⊂ End(n) consists of normal operators, whose transposes commute with
all of θ(u). Thus, one can also consider the decomposition (4) as in the proof of Theorem 2.4,
and proceed in exactly the same way to conclude that z(u) ⊥ g1.

As a quick application we get an alternative proof of the following result of Jablonski [Jab14].

Corollary 2.7. Homogeneous Ricci solitons are algebraic.

Proof. As is well-known, the only non-trivial examples (that is, not locally isometric to the
product of an Einstein homogeneous space and a flat factor Rk) occur in the expanding case
(see the discussion in [Lau11, §2] and the references therein for more details). Let (M,g) be an
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expanding homogeneous Ricci soliton. For the presentation G/K, where G is the full isometry
group, we have by Theorem 2.4 and Remark 2.6 that z(u) ⊥ g1. Now recall that the mean
curvature vector H ∈ h ⊂ u is always orthogonal to g1 = [u, u], since any representation of a
semi-simple Lie algebra consists of traceless endomorphisms. Thus, H ∈ z(u), and in particular

S(adH|h) = 0.

By applying Proposition 4.14 from [LL14] we conclude that the soliton is indeed algebraic. �

Another application of our new structural results is the reduction of the classification problem
(in the non-unimodular case) to the so called “rank one” case (cf. [Heb98, Theorem D]).

Corollary 2.8. Let (Mn, g), G/K be as in Theorem 2.4, with G non-unimodular. Consider U0,
G0 the connected Lie subgroups of U , G with Lie algebras u0 := [u, u] ⊕ RH ⊂ u, g0 := u0 ⊕ n,
respectively. Then, there is a diffeomorphism

Mn ≃ Ra ×G0/K, a = dimZ(U)− 1,

and the induced G0-invariant metric on G0/K is Einstein with the same Einstein constant c < 0
as g.

Proof. Recall the following formula for the Ricci curvature of a homogeneous space, whose proof
follows immediately from the proof of Proposition 6.1 in [LL14].

Lemma 2.9. Let (G/K, g) be a Riemannian homogeneous space with reductive decomposition
g = k ⊕ p, and assume there exists X ∈ p such that [H,X] = 0, and the subspace g̃ := {X}⊥

is a codimension-one ideal of g that contains H and k. Let G̃ be the connected Lie subgroup of

G with Lie algebra g̃, and consider the induced metric on the orbit G̃ · (eK) ≃ G̃/K. Then, the
corresponding Ricci operators satisfy

RicG/K | p̃ = Ric
G̃/K

+1
2

[
A,At

]
,

where p̃ = p ∩ g̃ and A := adX|p̃ ∈ End(p).

Theorem 2.4 implies that H ∈ z(u), and that any X ∈ z(u) with X ⊥ H satisfies the
conditions of the above lemma. Moreover, the corresponding endomorphism A is symmetric by
Theorem 2.1, (v), thus the term 1

2 [A,A
t] in the formula vanishes. By applying the lemma to any

such X we obtain a codimension-one submanifold G̃/K in G/K which with the induced metric
is Einstein, with the same Einstein constant as G/K. Since the spaces are simply-connected, as

differentiable manifolds we have that G/K ≃ R× G̃/K. After applying this procedure a times,
where a = dimZ(U)− 1, the corollary follows. �

To conclude this section we prove the following simple but useful formula for the Ricci cur-
vature of a homogeneous space, which is in some way a generalization of [Mil76, Lemma 2.3].

Lemma 2.10. Let (U/K, g) be a Riemannian homogeneous space with U a unimodular Lie
group, and consider a reductive decomposition u = k ⊕ m. If X,Y ∈ m are such that [k,X] =
[k, Y ] = 0, then

Ric(X,Y ) = 1
4

∑

i,j

〈[Xi,Xj ]m,X〉〈[Xi,Xj ]m, Y 〉 − trS(admX)S(adm Y ),

where {Xi} is any orthonormal basis for m (here, admX ∈ End(m) stands for the restriction
of adX to m, projected onto m). Moreover, if Y is orthogonal to the commutator ideal [u, u]
(i.e. to its projection onto m), then

Ric(X,Y ) = − trS(admX)S(adm Y ), ∀X ∈ m such that [k,X] = 0.
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Proof. From the formula [Bes87, 7.38] for the Ricci curvature of a homogeneous space, and using
that u is unimodular, we see that

Ric(X,Y ) =− 1
2

∑

i,j

〈[X,Xi]m,Xj〉〈[Y,Xi]m,Xj〉

+ 1
4

∑

i,j

〈[Xi,Xj ]m,X〉〈[Xi,Xj ]m, Y 〉 − 1
2B(X,Y )

=− 1
2 tr (adm X) (adm Y )t − 1

2 tr(adX)(ad Y )

+ 1
4

∑

i,j

〈[Xi,Xj ]m,X〉〈[Xi,Xj ]m, Y 〉,

where {Xi} is an orthonormal basis for m. Notice that conditions [k,X] = 0 and [k, Y ] = 0
imply that tr(adX)(ad Y ) = tr(adm X)(adm Y ). Then, the first formula follows. If moreover
Y ⊥ [u, u]m, then it is easy to see that [k, Y ] = 0, so the first formula applies, and the sum term
in it disappears. �

3. Semisimple transitive group

The main purpose of this section is to prove the following

Theorem 3.1. Let G be a semisimple Lie group and consider a homogeneous Einstein space
(G/H, g) which is de Rham irreducible. Assume that dimG/H ≤ 8, dimH ≥ 1 and that G/H 6=
(SL2(R)×SL2(C))/∆U(1). Then, (G/H, g) is an irreducible symmetric space of the non-compact
type.

The proof will follow from a case-by-case analysis. We warn the reader that, in contrast with
the rest of the article, throughout this section the group G will always be a semisimple Lie
group.

Definition 3.2. We call a homogeneous space G/H semisimple of the non-compact type if G is
a semisimple Lie group without compact simple factors.

In view of Theorem 2.1, we are reduced to studying the cases where G/H is semisimple of the
non-compact type. Moreover, we may restrict ourselves to the simply-connected case. Indeed,
the universal cover of an Einstein manifold is still Einstein, and it is a classical result that sym-
metric spaces of the non-compact type do not admit non-trivial homogeneous quotients [Car27].

Following [Ale12, Nik05], we use the duality between compact and non-compact symmetric
spaces to obtain the classification of semisimple homogeneous spaces of the non-compact type
from the classification of compact homogeneous spaces in low dimensions ([BK]), as follows:

Given G/H a semisimple homogeneous space of the non-compact type, let g = g1 ⊕ . . . ⊕ gs
be the decomposition of g into simple ideals –which are all of the non-compact type– let k ⊆ g

be a maximal compactly embedded subalgebra such that h ⊆ k, and for each i = 1, . . . , s let
ki = gi ∩ k, which is a maximal compactly embedded subalgebra of gi. The pairs (gi, ki) are
symmetric pairs of the non-compact type (at the Lie algebra level), and its corresponding dual

symmetric pairs (ĝi, k̂i) are of the compact type. If ĝ := ĝ1 ⊕ . . . ⊕ ĝs, k̂ := k̂1 ⊕ . . . ⊕ k̂s, then

k̂ and k are isomorphic Lie algebras, and via this isomorphism we can consider the subalgebra
ĥ ⊆ k̂ corresponding to h ⊆ k. The effective homogeneous space Ĝ/Ĥ associated with ĝ, ĥ is
compact.

Therefore, in order to obtain all possible spaces G/H as above one can argue as follows:

• Classify all compact homogeneous spaces in “canonical presentation” (in the sense of
[BK06]).
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• For each compact homogeneous space (Ĝ/Ĥ) in the previous classification, consider all

possible compact symmetric pairs (ĝ, k̂) with ĥ ⊆ k̂, where Lie(Ĝ) = ĝ, Lie(Ĥ) = ĥ (there
may be none at all).

• For each such pair, let (g, k) be its dual, obtained by dualizing each simple factor to its

non-compact counterpart. The isomorphism k ≃ k̂ defines a subalgebra h ⊆ k isomorphic
to ĥ, and from g, h one obtains a non-compact homogeneous space G/H as desired.

We note that if a non-compact G/H is obtained from a compact Ĝ/Ĥ , then the Lie groups

H and Ĥ are isomorphic, and moreover the isotropy representations are equivalent.

Remark 3.3. To obtain the classification of all non-compact homogeneous spaces with semisimple
transitive group (i.e. taking into account that G may have compact simple factors), the duality
procedure works in the very same way. One only needs to dualize the symmetric pairs which
are of the non-compact type.

We give in Table 1 the classification of simply-connected, semisimple homogeneous spaces of
the non-compact type (cf. Definition 3.2), together with its corresponding compact duals, the
compact symmetric space used in each case for the dualization procedure, and the decomposi-
tion of the isotropy representation into irreducible summands. Notice also that, for notational
purposes, some of the non-compact spaces in the table are not simply connected, but still they
are to be read as their universal covers. Symmetric spaces are not included, since a list of all
irreducible symmetric spaces can be found for instance in [Bes87, p. 200]. We also do not in-
clude cases which are product of lower dimensional homogeneous spaces, unless the space admits
non-product invariant metrics (see Proposition 3.4 below). Our notation follows that of [Bes87],
with the only exception of SU(1, 1), which we call SL2(R).

Regarding the list of compact homogeneous spaces in canonical presentation, we refer the
reader to [BK06]. All the embedings of the isotropy subgroup are clear once the corresponding
compact symmetric space used for the dualization is taken into account. The precise meaning of
the parameters corresponding to abelian subgroups in the isotropy may be found in [Nik04, §1].

The information on the isotropy representation is to be understood as follows: for a space
G/H, consider h ⊆ k ⊆ g as above, where k is a maximal compactly embedded subalgebra with
corresponding connected subgroup K. Take the corresponding Cartan decomposition g = k⊕ p

(cf. [Hel78, pp. 182]), and let q be an Ad(K)-invariant complement for h in k. Setting m = q⊕p,
we obtain a reductive decomposition g = h⊕m for the homogeneous space G/H. Whenever we

write
∑

i q
(ai)
i ⊕

∑
j p

(bj )
j we mean that

q =
∑

i

q
(ai)
i , p =

∑

j

p
(bj )
j , dim q

(ai)
i = ai, dim p

(bj )
j = bj ,

and for i, j 6= 0, each summand q
(ai)
i , p

(bj )
j is an irreducible Ad(H)-module, where any two such

modules are inequivalent unless otherwise stated. The 0 sub-index stands for trivial modules

(i.e. [h, q
(a0)
0 ] = [h, p

(b0)
0 ] = 0).

Notes on Table 1:
(a) p, q ∈ Z, 0 ≤ p ≤ q, gcd(p, q) = 1. See [Wan82].
(b) p, q ∈ Z− {0}, p ≤ q, gcd(p, q) = 1.
(c) These compact spaces are isotropy irreducible but non-symmetric (see [Bes87, pp. 203]).

Clearly, they do not admit any non-compact counterpart.
(d) a1, a2, a3 ∈ Z − {0}, a1 ≤ a2 ≤ a3, gcd(a1, a2, a3) = 1 (the order may be assumed up

to equivariant diffeomorphism, by using outer automorphisms given by the Weyl group;
the parameters are all nonzero since otherwise the space splits as a product, and this are
considered as a separate case). The space (SL2(R) × SL2(C))/∆p,qU(1) is obtained only
when a2 = a3. For convenience, we have renamed the parameters as p = a1, q = a2 = a3.



dim Ĝ/Ĥ (compact) Ĝ/K̂ (symmetric) G/H (noncompact) Isotropy representation Note

3 SU(2)/{id} SU(2)/U(1) SL2(R)/{id} Lie group

5
(SU(2) × SU(2))/∆p,qU(1)

(SU(2)×SU(2))/∆SU(2) SL2(C)/U(1) q
(2)
1 ⊕ p

(1)
0 ⊕ p

(2)
1 , q1 ≃ p1

SU(2)/U(1)×SU(2)/U(1) (SL2(R) × SL2(R))/∆p,qSO(2)
q
(1)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 ,

b
p1 ≃ p2 ⇐⇒ p = q

SU(3)/SU(2) SU(3)/U(2) SU(2, 1)/SU(2) q
(1)
0 ⊕ p

(4)
1

6

(SU(2) × SU(2))/{id}
(SU(2) × SU(2))/∆SU(2) SL2(C)/{id} Lie group

(SU(2)/U(1))2 (SL2(R)× SL2(R))/{id} Lie group

Sp(2)/Sp(1)U(1) Sp(2)/Sp(1)Sp(1) Sp(1, 1)/Sp(1)U(1) q
(2)
1 ⊕ p

(4)
1

G2/SU(3) - - Irreducible c

SU(3)/T 2 SU(3)/U(2) SU(2, 1)/T 2 q
(2)
1 ⊕ p

(2)
1 ⊕ p

(2)
2

7

Spin(7)/G2 - - Irreducible c
Sp(2)/SU(2) - - Irreducible c

SU(4)/SU(3) SU(4)/U(3) SU(3, 1)/SU(3) q
(1)
0 ⊕ p

(6)
1

Sp(2)/Sp(1) Sp(2)/Sp(1)Sp(1) Sp(1, 1)/Sp(1) q
(3)
0 ⊕ p

(4)
1

SO(5)/SO(3)
SO(5)/SO(4) SO(4, 1)/SO(3) q

(3)
1 ⊕ p

(1)
0 ⊕ p

(3)
1 , q1 ≃ p1

SO(5)/SO(3)SO(2) SO(3, 2)/SO(3) q
(1)
0 ⊕ p

(3)
1 ⊕ p

(3)
2 , p1 ≃ p2

SU(3)/∆p,qU(1)
SU(3)/U(2) SU(2, 1)/∆p,qU(1)

q
(1)
0 ⊕ q

(2)
1 ⊕ p

(2)
1 ⊕ p

(2)
2 ,

p1 ≃ p2 ⇐⇒ p = q = 1, a
q1 ≃ p1 ⇐⇒ p = 0, q = 1

SU(3)/SO(3) SL3(R)/SO(2) q
(2)
1 ⊕ p

(1)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 , q1 ≃ p1

(SU(3)×SU(2))/∆p,qU(1)(SU(2)×{id}) SU(3)/U(2)×SU(2)/U(1) (SU(2, 1)×SL2(R))/∆p,qU(1)(SU(2)×{id}) q
(1)
0 ⊕ p

(4)
1 ⊕ p

(2)
2 b

(SU(2)× SU(2) × SU(2))/∆a,b,cT
2 (SU(2)/U(1))3 (SL2(R) × SL2(R) × SL2(R))/∆a,b,cT

2 q
(1)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 ⊕ p

(2)
3

8

SU(3)/{id}
SU(3)/U(2) SU(2, 1)/{id} Lie group
SU(3)/SO(3) SL3(R)/{id} Lie group

Sp(2)/T 2 Sp(2)/U(2) Sp(2,R)/T 2 q
(2)
1 ⊕ p

(2)
1 ⊕ p

(2)
2 ⊕ p

(2)
3

Sp(2)/Sp(1)Sp(1) Sp(1, 1)/T 2 q
(2)
1 ⊕ q

(2)
2 ⊕ p

(2)
1 ⊕ p

(2)
2

(SU(2) × SU(2) × SU(2))/∆a1 ,a2,a3
U(1)

SU(2)/U(1)×
(
SU(2)2/∆SU(2)

)
(SL2(R)× SL2(C))/∆p,qU(1)

q
(1)
0 ⊕ q

(2)
1 ⊕ p

(1)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 ,

d
q1 ≃ p1, p1 ≃ p2 ⇐⇒ p = q

(SU(2)/U(1))3 (SL2(R) × SL2(R) × SL2(R))/∆a1,a2,a3
U(1)

q
(2)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 ⊕ p

(2)
3 ,

pi ≃ pj ⇐⇒ ai = aj

SU(2) × (SU(2) × SU(2))/∆p,qU(1)
SU(2)/U(1)×

(
SU(2)2/∆SU(2)

)
SL2(R)× SL2(C)/U(1) q

(1)
0 ⊕ q

(2)
1 ⊕ p

(3)
0 ⊕ p

(2)
1 , q1 ≃ p1

(SU(2)/U(1))3 SL2(R)× (SL2(R) × SL2(R))/∆p,qU(1)
q
(2)
0 ⊕ p

(2)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 b

p1 ≃ p2 ⇐⇒ p = q

SU(2) × (SU(3)/SU(2)) SU(2)/U(1) × SU(3)/U(2) SL2(R) × SU(2, 1)/SU(2) q
(2)
0 ⊕ p

(2)
0 ⊕ p

(4)
1

Table 1. Non-symmetric, non-product, non-compact homogeneous spaces with semisimple transitive group without com-
pact simple factors, and its corresponding compact duals, in dimensions less than or equal to 8.
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Recall that by [Nik00, Theorem 1], if a G-invariant metric makes the chosen Cartan decom-
position orthogonal (i.e. it is such that 〈q, p〉 = 0), then (G/H, g) is not Einstein. In particular,
if we consider a decomposition of m into irreducible Ad(H)-modules given by q = q1 ⊕ . . .⊕ qu,
p = p1 ⊕ . . . ⊕ pv (recall that q and p are Ad(H)-invariant), and none of the qi is equivalent to
any of the pj , then every G-invariant metric on G/H satisfies 〈q, p〉 = 0, and thus none of them
is Einstein [Nik00, Corollary]. It may be the case that a single Cartan decomposition is not
orthogonal with respect to every G-invariant metric, and still every metric makes some Cartan
decomposition orthogonal (recall that a Cartan decomposition is only unique up to the action
of inner automorphisms). In [Nik00, Theorem 2], necessary and sufficient conditions are given
for this to happen.

The following result is well-known, but we include a proof of it for the sake of completeness.

Proposition 3.4. Let G1/H1, G2/H2 be two homogeneous spaces such that the isotropy rep-
resentation of G1/H1 acts non-trivially on every invariant subspace. Then, any (G1 ×G2)-
invariant metric on (G1 ×G2) / (H1 ×H2) is a Riemannian product of invariant metrics on
each factor.

Proof. If g1 = h1 ⊕ m1 and g2 = h2 ⊕ m2 are reductive decompositions of G1/H1 and G2/H2

respectively, then g1⊕g2 = (h1⊕h2)⊕(m1⊕m2) is a reductive decomposition of G1×G2/H1×H2.
Let pi ⊆ mi be ad(hi)-irreducible subspaces, i = 1, 2. We know that ad(h1)|p1 is non-trivial. If
there was an intertwining operator T : p1 → p2, i.e,

T ◦ ad(Z)|p1 = ad(Z)|p2 ◦ T, for all Z ∈ h1 ⊕ h2,

we could take Z = (Z1, 0) ∈ h1 ⊕ h2 and would have that T ◦ ad(Z1)|p1 = 0, for all Z1 ∈ h1, so
ad(Z1)|p1 = 0, for all Z1 ∈ h1, which is a contradiction. �

We are now in a position to start the case-by-case analysis.

3.1. dimG/H ≤ 7.
After having computed all the isotropy representations, we see that in most of the spaces of

dimension up to 7 in Table 1, the Cartan decomposition we have chosen is such that q and p

share no equivalent modules, and thus these spaces admit no G-invariant Einstein metric. The
exceptions are the following:

SL2(C)/U(1), SO(4, 1)/SO(3), SU(2, 1)/∆p,qU(1), SL3(R)/SO(2).

Non-existence of homogeneous Einstein metrics on SL3(R)/SO(2) was established in [Nik00, Ex-
ample 4] by finding, for every G-invariant metric, a suitable Cartan decomposition which is
orthogonal. By applying the same methods and a straightforward computation, it can be shown
that the space SO(4, 1)/SO(3) also satisfies the hypotheses of [Nik00, Theorem 2], and hence it
admits no homogeneous Einstein metric.

3.1.1. SL2(C)/U(1). Unfortunately, this space admits invariant metrics for which there is no
orthogonal Cartan decomposition.

Consider the following ordered basis B for sl2(C)

Z =

[
i 0
0 −i

]
, Y0 =

[
1 0
0 −1

]
, Y1 =

[
0 1
1 0

]
,(5)

Y2 =

[
0 i
−i 0

]
, X1 =

[
0 1
−1 0

]
, X2 =

[
0 i
i 0

]
.

The isotropy subalgebra is given by h = RZ, m = spanR{Y0, Y1, Y2,X1,X2} is a reductive
complement, and it decomposes into irreducible modules as m = p0 ⊕ p1 ⊕ q1, where p0 = RY0,
p1 = RY1⊕RY2, q1 = RX1⊕RX2. Also, if k = h⊕ q1 ≃ su(2), p = p0⊕p1, then sl2(C) = k⊕p is
a Cartan decomposition. Let us fix an inner product 〈·, ·〉B on sl2(C) that makes B orthonormal
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(this inner product is, up to a scalar multiple, the one given by the Killing form of sl2(C),
after reversing its sign on the subalgebra k). Finally, let 〈·, ·〉0 = 〈·, ·〉B

∣∣
m×m

, which is of course

Ad(U(1))-invariant.

Lemma 3.5. Up to isometry, SL2(C)-invariant metrics on SL2(C)/U(1) can be parameterized
by Ad(U(1))-invariant inner products on m of the form

〈·, ·〉h = 〈h · , h ·〉0 ,

where h ∈ GL5(R) is given by

h =




e 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 −d b 0
0 d 0 0 b



, a, b, d, e ∈ R, a, b, e 6= 0.

Moreover, for each such metric, the Ricci curvature satisfies

Ric(h−1Y1, h
−1X2) = 4 d ·

(
(a2 − e2)2 + a2(b2 + d2)

)
a−3b−2e−2.

Proof. Since the modules p1 and q1 are the only equivalent modules, and they are of complex
type, it is clear that the metrics are parameterized by inner products 〈·, ·〉h on m, where h is as

in the statement, but with a 2× 2 block of the form
[
c −d
d c

]
mapping p1 to q1. Using that 〈·, ·〉h

and 〈·, ·〉h·T give rise to isometric metrics for any T = Ad (exp tY0) ∈ Aut(sl2(C)), it is easy to
find t so that the matrix h · T has the desired form.

The formula for the Ricci curvature follows from a routine (though somewhat lengthy) com-
putation. �

The importance of the previous formula for the Ricci curvature is that this off-diagonal entry
vanishes if and only if d = 0 (recall also that 〈h−1Y1, h

−1X2〉h = 0). But if d = 0 then the
Cartan decomposition is orthogonal, and the metric is non-Einstein.

3.1.2. SU(2, 1)/∆p,qU(1). These spaces are the non-compact analogous of the well-known Aloff-
Wallach spaces [AW75]. As long as p 6= 0, the Cartan decomposition is orthogonal with respect
to any SU(2, 1)-invariant metric, hence none of them is Einstein by [Nik00]. However, the
space corresponding to p = 0, q = 1 admits SU(2, 1)-invariant metrics which make no Cartan
decomposition orthogonal. Let us have a closer look at the Lie algebra su(2, 1): an Ad(∆0,1U(1))-
invariant decomposition is given by su(2, 1) = h0,1 ⊕ q0 ⊕ q1 ⊕ p1 ⊕ p2, where

h0,1 = R




0 0 0
0 i 0
0 0 −i


 , q0 = R




2i 0 0
0 −i 0
0 0 −i


 , q1 =








0 z 0
−z̄ 0 0
0 0 0


 : z ∈ C



 ,

p1 =








0 0 z1
0 0 0
z̄1 0 0


 : z1 ∈ C



 , p2 =








0 0 0
0 0 z2
0 z̄2 0


 : z2 ∈ C



 ,

and the modules q1 and p1 are equivalent. Any invariant metric would then make the subspaces
q0, p2 and q1 ⊕ p1 orthogonal. But observe that ad(q0) acts trivially on q0 and p2, and it
acts precisely as the isotropy h0,1 on q1 ⊕ p1. This immediately implies that for any invariant
metric, ad(q0) consists of skew-symmetric endomorphisms, and hence by Lemma 2.10 the Ricci
curvature is non-negative in this directions. Therefore, SU(2, 1)/∆0,1U(1) admits no invariant
metrics of negative Ricci curvature.
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3.2. dimG/H = 8.
The first two spaces of dimension 8 in Table 1 are Lie groups and will be omitted. The next

two cases correspond to homogeneous spaces G/H where rankG = rankH. As is well known,
this implies that the isotropy representation decomposes a sum of pairwise inequivalent modules.
Clearly, any Cartan decomposition will be orthogonal with respect to any G-invariant metric,
and thus none of those can be Einstein by [Nik00]. For the infinite family of homogeneous spaces
(SL2(R)× SL2(R)× SL2(R)) /∆a1,a2,a3U(1) (6-th line in the table), the isotropy representation
may have some equivalent modules in some special cases, but they are all contained in the
subspace p of the Cartan decomposition. This implies that for any G-invariant metric one still
has q ⊥ p, and none of them can be Einstein.

Let us now consider the following spaces:

SL2(R)× SL2(C)/U(1), SL2(R)× (SL2(R)× SL2(R)) /∆p,qU(1), SL2(R)× SU(2, 1)/SU(2).

They are all of the form SL2(R)×G1/H, for some semisimple Lie group G1. Notice that all of
them admit metrics which are not Cartan-orthogonal for any Cartan decomposition, and hence
[Nik00] can not be applied. Another problem that arises when studying the Einstein equation
in these spaces is that whenever the isotropy representation of the space G1/H has some trivial
modules, then the space G/H admits non-product G-invariant metrics (cf. Proposition 3.4).
However, there is still some control on such trivial modules. Namely, an easy computations
with Lie brackets shows that for the spaces under consideration we have [m0,m0] ⊆ h, where
m0 represents the trivial module in G1/H. By looking at the Ricci curvature of G/H at eH in
directions tangent to the orbit of G1, and in directions orthogonal to this orbit, we were able to
show that if the Ricci curvature preserves this orthogonality, then this forces the metric to be
a product (clearly, for an Einstein metric such orthogonality would automatically be preserved
by the Ricci curvature). Since SL2(R) does not admit any left-invariant Einstein metric, this
proves that G/H does not either.

Proposition 3.6. Let G/H = SL2(R) × (G1/H) be a homogeneous space with G1 semisimple,
and assume that NG1(H)/H is abelian. Then, G/H admits no G-invariant Einstein metric.

Proof. Assume that there exists a G-invariant Einstein metric g on G/H. Let g1 = h ⊕ m

be an Ad(H)-invariant decomposition, and further decompose m = m0 ⊕ m1, where h ⊕ m0 =
Lie(NG1(H)). Then m0 = {X ∈ m : [h,X] = 0} is the trivial Ad(H)-module, m1 is the sum of
all non-trivial Ad(H)-modules of m, and our assumption implies that [m0,m0] ⊆ h. By setting
p0 = sl2(R)⊕m0, p = p0 ⊕m1, we have a reductive decomposition for G/H given by g = h⊕ p,
and p0 corresponds to the trivial module. In particular, p0 ⊥ m1. Setting l := m⊥

0 ⊆ p0, we
obtain the orthogonal decomposition

p =

p0︷ ︸︸ ︷
l
⊥
⊕m0

⊥
⊕m1︸ ︷︷ ︸
m

.

Our assumption [m0,m0] ⊆ h implies that the following bracketing relations are satisfied:

[h, p0] = 0, [h,m1] ⊆ m1, [l, l] ⊆ [p0, p0] ⊆ h⊕ p0,(6)

[l,m1] ⊆ h⊕m, [m0, p0] ⊆ h, [m,m1] ⊆ h⊕m.

Since [h, p0] = 0 we may use Lemma 2.10 to obtain

〈RicX,Y 〉 = 1
4

∑

r,s

〈[Ur, Us]p,X〉〈[Ur , Us]p, Y 〉 − 1
2 trS (adp X)S (adp Y ) ,

where X,Y ∈ p0 and {Ur} is any orthonormal basis for p. Assume from now on that X ∈ m0,
Y ∈ l, and that {Ur} is the union of orthonormal basis for l,m0 and m1. Noticing that by (6)
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one has that [p,m] ⊥ l and that adp X only acts nontrivially on m, the above formula simplifies
as

〈RicX,Y 〉 = 1
4

∑

Ur,Us∈l

〈[Ur, Us]p,X〉〈[Ur , Us]p, Y 〉 − 1
2 trS (admX)S (adm Y ) .

Choose an orthonormal basis {Yi}
3
i=1 for l, with Yi = Ai + Bi, Ai ∈ sl2(R), Bi ∈ m0, and such

that {Ai} is a Milnor basis for sl2(R), with brackets

[A2, A3] = αA1, [A3, A1] = βA2, [A1, A2] = γA3, α, β, γ 6= 0.

Also, choose an orthonormal basis {X0
j }

d
j=1 for m0 so that trS(admX0

i )S(admX0
j ) = 0 if i 6= j

(this is indeed possible since the application (X,Y ) 7→ trS(admX)S(adm Y ) is a symmetric
bilinear form on m0). Then, a straightforward calculation shows that

〈RicX0
j , Y3〉 = −〈B3,X

0
j 〉

(
γ2 + trS(adm X0

j )
2
)
,

and using the Einstein condition we conclude that 〈B3,X
0
j 〉 = 0. Analogously, we obtain that

〈Bi,X
0
j 〉 = 0, for all i = 1, 2, 3, j = 1, . . . , d, thus 〈sl2(R),m0〉 = 0. Therefore, sl2(R) ⊥ m, and

this implies that the metric is locally a Riemannian product. But this is a contradiction, since

S̃L2(R) does not admit any left-invariant Einstein metric. �

Finally, we study the family (SL2(R)× SL2(C)) /∆p,qU(1). Unfortunately, we are not able
to deal with the case where p = q. Notice though that this missing case represents just one
homogeneous space from the above infinite family.

With respect to the inclusions h1 := so(2) ⊆ sl2(R), h2 := u(1) ⊆ su(2) ⊆ sl2(C) we have that

h := ∆p,qu(1) ⊆ h1 ⊕ h2 ⊆ sl2(R)⊕ sl2(C) =: g.

Given an Ad(H)-invariant inner product on some reductive complement m, we extend it in the
usual way to an Ad(H)-invariant inner product 〈·, ·〉 on g. By looking at the decomposition of
the isotropy representation from Table 1 in the case when p 6= q,

m = q
(1)
0 ⊕ q

(2)
1 ⊕ p

(1)
0 ⊕ p

(2)
1 ⊕ p

(2)
2 , q1 ≃ p1 6≃ p2,

we see that the ideals sl2(R), sl2(C) are orthogonal (notice that p
(2)
2 , q

(2)
1 ⊕p

(1)
0 ⊕p

(2)
1 correspond

to reductive complements for the homogeneous spaces SL2(R)/SO(2), SL2(C)/U(1), respectively,
and h ⊕ q0 = h1 ⊕ h2). This easily gives that 〈·, ·〉 is ad(h)-invariant if and only if it is both
ad(h1)- and ad(h2)-invariant. Thus, q0 acts by skew-symmetric endomorphisms on g, and by
Lemma 2.10 we have that

Ric(Y, Y ) = 1
4

∑

i,j

〈[Xi,Xj ]m, Y 〉2 ≥ 0, Y ∈ q0.

Remark 3.7. It is worth pointing out that when p 6= q, all homogeneous metrics in the above
homogeneous space can be approximated by strictly locally homogeneous metrics (cf. [Tri92]),
namely, metrics which are locally homogeneous but are not locally isometric to any globally
homogeneous manifold. This is simply done by considering irrational slopes approximating the
rational slope p/q of the given space. It was proved in [Spi93] (see also [Böh14]) that strictly
locally homogeneous metrics do not have non-positive Ricci curvature.

On the other hand, if p = q there exist homogeneous metrics that cannot be approximated in
that way.
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4. Non-unimodular transitive group

In this section we study Einstein homogeneous spaces G/K of negative scalar curvature with
G non-unimodular and G/K as in Theorem 2.1. Following the discussion of Section 2 we can
assume that

(7) g = (g1 + z(u))⋉ n,

where u = g1 + z(u) is a reductive Lie algebra, g1 is semisimple with no compact ideals, k ⊂ g1
and z(u) = RH, with H the mean curvature vector (see Corollary 2.8).

Before starting the proof of our main result in the non-unimodular case, we state two lemmas
which yield information about semisimple homogeneous spaces in low dimensions. Their proof
follows immediately from Table 1, and the fact that irreducible symmetric spaces of the non-
compact type are diffeomorphic to Euclidean spaces.

Lemma 4.1. Let G1/K be a simply-connected semisimple homogeneous space of the non-
compact type2 with n = dimG1/K ≤ 5. Then, either G1/K = SL2(C)/U(1) or G1/K ≃ Rn.

Lemma 4.2. Let G1/K be a 6-dimensional simply-connected semisimple homogeneous space

of the non-compact type such that G1 contains S̃L2(R) as a simple factor. Then, G1/K is
diffeomorphic to R6.

We now focus on the proof of Theorem D. Given a homogeneous Einstein space (G/K, g)
with negative scalar curvature and G non-unimodular, we consider for it the decomposition
given in (7). By virtue of Corollary 2.3, our goal will be to prove that G1/K is diffeomorphic to
a Euclidean space. Observe that we may assume dimG1/K ≤ dimG/K − 3. Indeed, we always
have dim z(u) = 1 and dim n ≥ dim z(u) because the representation θ|z(u) : z(u) → n is faithful
(its kernel must be in the nilradical). If dim n = 1, we know by Theorem 2.4 and Remark 2.5
that (G/K, g) is a Riemannian product, and thus not de Rham irreducible. More generally,
for this reason we can also assume that θ|g1 6= 0. We now proceed with the proof, considering
different cases according to the dimension of G/K.

4.1. dimG/K ≤ 8.
We have that dimG1/K ≤ 5. By Lemma 4.1, either G1/K is diffeomorphic to Rn for some

n ≤ 5, or G1/K = SL2(C)/U(1). In the latter case, θ|g1 = 0, since dim n = 2 and there exists no
nontrivial 2-dimensional representation of the simple Lie algebra sl2(C). Thus, this is a product
case.

4.2. dimG/K = 9.

4.2.1. dimG1/K = 6. As dimn = 2 we know that θ(g1) ⊆ End(R2) is semisimple, so g1 must
have an ideal isomorphic to sl2(R). We conclude that G1/K is diffeomorphic to R6 by using
Lemma 4.2.

4.2.2. dimG1/K ≤ 5. By Lemma 4.1, we only consider the case where G1/K = SL2(C)/U(1).
We have that dim n = 3, and it is easy to see that θ|g1 = 0 since there is no subalgebra of sl3(R)
isomorphic to sl2(C). Hence this is also a product case.

4.3. dimG/K = 10.

2see Definition 3.2.
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4.3.1. dimG1/K = 7. We have that dimn = 2 and θ(g1) is semisimple, that is, g1 has an ideal
isomorphic to sl2(R). The list of all possible homogeneous spaces G1/K to consider is very long.
However, if G1/K is a product of lower dimensional homogeneous spaces, then it must be a
product of some irreducible symmetric spaces of non-compact type and some of the spaces in
Table 1. Since its dimension is 7, it easily follows that there is at most one factor which is non-
symmetric, and Proposition 3.4 implies that on G1/K the metric is a product of corresponding
invariant metrics on each of the factors. Moreover, since the kernel of θ|g1 has codimension 3,
θ must necessarily vanish on some of these factors. This implies at once that the whole space
G/K splits as a Riemannian product.

By the preceeding discussion, we may now assume that G1/K is non-product, i.e. it is one
of the spaces listed in Table 1. Since g1 has an ideal isomorphic to sl2(R) there are actu-
ally only two possibilities: the simply connected covers of SL2(R)

3/∆T 2
a,b,c and of SU(2, 1) ×

SL2(R)/∆p,qU(1)(SU(2)× {e}). But both of them are diffeomorphic to R7, hence we are done.

4.3.2. dimG1/K = 6. Here dim n = 3 and θ|g1 6= 0. Since θ|g1 maps g1 into sl3(R), for it to be
non-trivial it is necessary that g1 contains at least one simple ideal of dimension at most 8. By

Lemma 4.2, we may further assume that G1 contains no S̃L2(R) factor. Thus it is clear from
Table 1 that if G1/K were a product of lower dimensional homogeneous spaces then each factor
would be symmetric space, and the result would follow.

On the other hand, if G1/K is non-product, it also follows from Table 1 that the only possi-
bilities are

SU(2, 1)/Tmax, SL2(C).

But then we must have θ|g1 = 0, because there exist no nontrivial 3-dimensional representations
of the simple Lie algebras su(2, 1) or sl2(C).

4.3.3. dimG1/K ≤ 5. By using Lemma 4.1 we have that either G1/K ≃ Rn, for some n ≤ 5,
or G1/K = SL2(C)/U(1). We need to analyze the latter case. We are reduced to showing
that equation (1) has no solutions for SL2(C)-invariant metrics on SL2(C)/U(1), for any θ :
g1 → End(R4) that satisfies (2). We now use the notation of Section 3.1.1. Let us assume
that θ(g1) 6= 0, since otherwise we are in a product case, and consider an arbitrary Ad(U(1))-
invariant inner product on sl2(C) written in the form 〈·, ·〉h given in Lemma 3.5, h ∈ GL5(R).
An orthonormal basis for the reductive complement m is given by Bh = {h−1Y0, . . . , h

−1X2}.
Up to equivalence of representations, there are two 4-dimensional real faithful representations
of sl2(C): the tautological representation, and its conjugate, and they are both irreducible. Let
us consider the case where θ is equivalent to the tautological representation (the other case is
completely analogous). There exists h2 ∈ GL(n) such that with respect to the inner product
h2 · 〈·, ·〉n the matrices of θ(Z), . . . , θ(X2) have the forms (5) (after identifying a complex

number a + bi with a 2 × 2 real matrix
[

a b
−b a

]
). This is equivalent to saying that the matrices

of (h−1
2 · θ)(Z), . . . , (h−1

2 · θ)(X2) have such a form with respect to the inner product 〈·, ·〉n. But
now an easy computation shows that

∑

Y ∈Bh

[(
h−1
2 · θ

)
(Y ),

(
h−1
2 · θ

)
(Y )t

]
= 0,

that is, h−1
2 · θ is also a zero of the moment map for the natural GL(n)-action on End(sl2(C),End(n))

(see Remark 2.2, (b)). From the rigidity imposed by Geometric Invariant Theory for such zeros
[RS90, Theorem 4.3], we can conclude that in fact h2 ∈ O(n, 〈·, ·〉n), and thus the matrices of
θ(Z), . . . , θ(X2) have the form (5) with respecto to 〈·, ·〉n (see also the proof of [AL15, Proposi-
tion A.1] for a more detailed application of this argument). We now plug this information into
equation (1), and since θ(X2) is skew-symmetric, by looking at the Ricci curvature and using
Lemma 3.5 we obtain that d = 0. In other words, h is diagonal, and in particular the metric
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associated to 〈·, ·〉h leaves orthogonal the Cartan decomposition sl2(C) = k ⊕ p, k = h ⊕ q1,
p = p0 ⊕ p1. Notice that the operator Cθ ∈ End(m) given by

〈CθX,Y 〉 = trS (θ(X))S (θ(Y ))

is a positive multiple of the identity on p. Hence, by following the same arguments used in the
proof of [Nik00, Theorem 1] we can conclude that the equation

(8) Ric〈·,·〉 = c I + Cθ

can not be satisfied for 〈·, ·〉h. Therefore, there are no Einstein metrics in this case.

Remark 4.3. The fact that the proof of [Nik00, Theorem 1] could be adapted for the more
general equation (1) as long as G1 is simple was kindly communicated to us by Jorge Lauret
[Lau12].

5. Strong Alekseevskii’s conjecture

This section is devoted to studying the strong Alekseevskii conjecture and showing that it
holds up to dimension 8, with the possible exceptions of invariant metrics on non-compact
semisimple Lie groups or on the space (SL2(R)× SL2(C)) /∆U(1).

As in the previous section, we consider Einstein homogeneous spaces G/K with G chosen
as in Theorem 2.1, which are not Riemannian products. We also assume the simply-connected
hypothesis, which is non-restrictive since it suffices to prove the strong Alekseevskii conjecture in
the simply-connected case (see Remark 2.2 (e) and [AC99, Jab15b]). Regarding the semisimple
case, according to Theorem 3.1 all semisimple homogeneous spaces in Table 1 are either Lie
groups, or the space (SL2(R)× SL2(C)) /∆U(1), or they do not admit an Einstein metric. The
remaining semisimple homogeneous spaces are symmetric spaces, and it is well-known that they
are isometric to solvmanifolds. Therefore, by [DM88], in the following we will only study the
cases where the transitive group is non-unimodular (see Remark 2.2, (f)). We proceed case by
case, according to the dimension of G/K. Our goal will be to show that G1/K is isometric a
solvmanifold.

5.1. dimG/K = 6.
These spaces were analyzed by Jablonski and Petersen in [JP14, §4].

5.2. dimG/K = 7.
First we state the following lemma, which follows easily from Table 1 and the well-known fact

that irreducible symmetric spaces of the non-compact type are isometric to solvmanifolds.

Lemma 5.1. Let (G1/K, g) be a simply-connected semisimple homogeneous space of the non-
compact type with a G1-invariant metric g, and dimG1/K ≤ 5. Then, either (G1/K, g) is
isometric to a solvmanifold, or G1/K is one of the following spaces

S̃L2(R), SL2(C)/U(1), (SL2(R)× SL2(R)) /∆p,qSO(2),

SU(2, 1)/SU(2), SL2(R)× SL2(R)/SO(2).

By using Theorem 2.4, Remark 2.5 and Corollary 2.8, we can assume that dimG1/K ≤ 4,
dim z(u) = 1 and dimn ≥ 2. We divide into cases according to the dimension of G1/K.

5.2.1. dimG1/K = 4. By Lemma 5.1 we know that G1/K is a solvmanifold.

5.2.2. dimG1/K = 3. The only case in which G1/K is not a solvmanifold is when G1/K =

S̃L2(R). The existence of an example in this case would imply that there is a 6-dimensional
unimodular expanding algebraic soliton, by using that non-unimodular Einstein spaces are one-
dimensional extensions of unimodular algebraic solitons (see [LL14, §6]). Since for that soliton
one would have u = sl2(R), we arrive at a contradiction by using [AL15, Appendix].
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5.3. dimG/K = 8.
We assume that dimG1/K ≤ 5 and dimn ≥ 2.

5.3.1. dimG1/K = 5. We have that dimn = 2. Then, by using Lemma 5.1, we consider the
following possibilities to G1/K :

SL2(C)/U(1), SU(2, 1)/SU(2), (SL2(R)× SL2(R)) /∆p,qSO(2), SL2(R)× SL2(R)/SO(2).

In the first two cases, we must have θ|g1 = 0 since there exist no nontrivial 2-dimensional
representations of the simple Lie algebras sl2(C) and su(2, 1). By Theorem 2.4 and Remark 2.5,
these are product cases. In the latter case, we also are in a product case. Indeed, the metric
restricted to G1/K is a product metric. In addition, since dim n = 2, θ must necessarily vanish
on some of these factors. This implies at once that the whole space G/K splits as a Riemannian
product. We now deal with the case G1/K = (SL2(R)× SL2(R)) /∆p,qSO(2).

This case is similar in nature to the one in Section 4.3.3: we are reduced to solving equation (1)
for invariant metrics on G1/K, for every possible representation θ : g1 = sl2(R) ⊕ sl2(R) →
End(R2). Let H =

[
1 0
0 −1

]
, X =

[
0 1
−1 0

]
, Y = [ 0 1

1 0 ] be a basis for sl2(R), and consider the
ordered basis B for sl2(R)⊕ sl2(R) given by

Z = (pH, q H) , X0 = (q H,−pH) , Y1 = (X, 0) ,

Y2 = (Y, 0) , X1 = (0,X) , X2 = (0, Y ) .

The isotropy subalgebra is hp,q = RZ, m = spanR{X0, Y1, Y2,X1,X2} is a reductive complement,
and the decomposition into irreducible submodules is given by m = q0⊕p1⊕p2, where q0 = RX0,
p1 = RY1 ⊕ RY2, p2 = RX1 ⊕ RX2, and p1 ≃ p2 if and only if p = q.

First notice that θ must have a kernel, which we may assume without loss of generality to be
the first sl2(R) factor. This implies that θ(H, 0) = 0, and since θ(Z) is skew-symmetric, it is
clear that θ(X0) must also be skew-symmetric. Thus, using equation (1) we obtain that

RicG1/K(X0,X0) < 0.

This is already enough to rule out the cases p 6= q, since in those cases we have p1 6≃ p2, which
forces X0 to act skew-symmetrically on g1, and by Lemma 2.10 we get a contradiction.

Let us now consider the remaining case p = q = 1, which is considerably more difficult. The
following is the analogous of Lemma 3.5 for this situation, and can be proved in the very same
way.

Lemma 5.2. Up to isometry, SL2(R)×SL2(R)-invariant metrics on (SL2(R)× SL2(R)) /∆1,1SO(2)
can be parameterized by Ad(SO(2))-invariant inner products on m of the form

〈·, ·〉h = 〈h · , h ·〉0 ,

where h ∈ GL5(R) is given by

h =




e 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 d 0 b 0
0 0 d 0 b



, a, b, d, e ∈ R, a, b, e 6= 0.

Reasoning as in Section 4.3.3, we see that condition (2) implies that θ restricted to the second
sl2(R) factor is nothing but the tautological representation of this Lie algebra. Let us consider
the operator Ricθ ∈ End(m) given by

〈
Ricθ X,Y

〉
h
= RicG1/K(X,Y )− trS(θ(X))S(θ(Y )).
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Equation (1) for a metric 〈·, ·〉h can be rephrased as

(9) Ricθ = cI, c < 0.

Since we now know θ and 〈·, ·〉h explicitly, we can actually compute Ricθ in terms of a, b, d, e. Let

us call rθi,j, 1 ≤ i, j ≤ 5, the entries of the matrix of Ricθ with respect to the 〈·, ·〉h-orthonormal

ordered basis Bh =
{
h−1Y | Y ∈ B

}
. Then, assuming that det h = 1, we have that

rθ1,1 =
1
2

(
a4e4 +

(
b2 − d2

)2)
+ a2d2

(
e2 − 4b2

) (
e2 + 4b2

)
,

rθ1,1 + 2 rθ4,4 + 2 a · d−1 rθ2,4 =
1
2

(
a2 − b2 + d2

)2
e4 + 4a4b2

(
4b2 − e2

)
.

Despite the ugliness of these formulas, we see that all the terms and factors on the right hand
side are positive except for e2 − 4b2, which appears with a different sign in both of them. For a
solution of (9), both expressions should be negative (they would equal c and 3 c, respectively).
It is now clear that such a solution does not exist.

5.3.2. dimG1/K = 4. By Lemma 5.1 we know that G1/K is isometric to a solvmanifold.

5.3.3. dimG1/K = 3. Here, the only case to consider is G1/K = S̃L2(R). Similarly to the case
in Section 5.2.2, we have a contradiction.
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[BK06] Christoph Böhm and Megan M. Kerr, Low-dimensional homogeneous Einstein manifolds, Trans. Amer.
Math. Soc. 358 (2006), no. 4, 1455–1468.

[Boc48] S. Bochner, Curvature and Betti numbers, Ann. of Math. (2) 49 (1948), 379–390.
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