COPOINTED HOPF ALGEBRAS OVER S,

AGUSTIN GARCIA IGLESIAS AND CRISTIAN VAY

ABSTRACT. We study the realizations of certain braided vector spaces of
rack type as Yetter-Drinfeld modules over a cosemisimple Hopf algebra
H. We apply the strategy developed in [A+] to compute their liftings
and use these results to obtain the classification of finite-dimensional
copointed Hopf algebras over Sy4.

1. INTRODUCTION

A braided vector space is a pair (V,c¢) where V is a vector space and
c € GL(V ® V) is a map satisfying the braid equation

(c®id)(id®c)(c ®id) = (id ®c)(c ® id) (id ®c).

If H is a Hopf algebra, a realization of V' over H is an structure of Yetter-
Drinfeld H-module on the vector space V' in such a way that the braiding c
coincides with the categorical braiding of V' as an object in gyD.

A lifting of V € HYD is a Hopf algebra A such that gr A is isomorphic
to B(V)#H, that is the bosonization of the Nichols algebra of V' with H.
In particular H =~ A, the coradical of A, and (V,c) is said to be the
infinitesimal braiding of A.

In [A+] we developed a strategy to compute the liftings of a given V' €
BYD as cocycle deformations of B(V)#H. In a few words, the strategy
produces a family of H-module algebras £(A), obtained as deformations
of B(V). Set H = B(V)#H. If E(A) # 0, then A(X) = E(A)#H is an
H-cleft object and the associated Schauenburg’s left Hopf algebra £(A) =
L(A(N),H) is a lifting of V € YD,

In particular, the algebras £(A) are deformations of the Nichols algebra
itself, and do not depend a priori of the realization, in the sense that they
can be defined for generic parameters. The choice of a realization thus brings
a restriction on these parameters as a second step.

Hence this new approach reduces the lifting problem to checking that
certain algebras are nonzero. This technical step is solved for the cases we
study here by means of computer program [GAP] and the package [GBNP].

In the present article, we follow this strategy to investigate the quadratic
deformations of a Nichols algebra B(V') where V' is a braided vector space

2010 Mathematics Subject Classification. 16T05.
The work was partially supported by CONICET, FONCyT PICT 2015-2854 and 2016-
3957, Secyt (UNC), the MathAmSud project GR2HOPF.
1



2 GARCIA IGLESIAS, VAY

of rack type V(X,q) or W(q, X), cf. §2.4.1. We give a necessary condition
to realize such a V' over a Hopf algebra and we explore how the quadratic
relations of B(V') are deformed. As a byproduct, we deduce the quadratic
relations of B(W (X, q)), using [GV] and the corresponding description of
B(V(X,q)) given in [GIG].

This general framework allows us to obtain new classification results about
pointed and copointed Hopf algebras. We recall that a Hopf algebra A is
said to be pointed if Ay = kG(A) and copointed when A gy = k& for some
non-abelian group G. Our main result is the following.

Theorem 1.1. Let L be a finite-dimensional copointed Hopf algebra over
kS, L £ k5. Then L is isomorphic to one and only one of the algebras in
the following list:

(a) Hie), ¢ €A, cf. Definition 6.10.

(b) Hff:], c €U, cf. Definition 6.11.

(c) Hie), ¢ €2, cf. Definition 6.13.

In particular, L is a cocycle deformation of gr L.
Finite-dimensional copointed Hopf algebras over k¢ are classified in [AV1].

Proof. Finite-dimensional Nichols algebras over S, are classified in [AHS,
Theorem 4.7] and every such L is generated in degree one by [AG1, The-
orem 2.1]. The algebras listed in the theorem are a complete family of
deformations of these Nichols algebras by Propositions 6.12 and 6.14. The
liftings are constructed using the strategy in [A+], so they arise as cocycle
deformations of their graded versions, see Propositions 6.4. ([

1.1. Pointed Hopf algebras. We fix the following list of pairs (X, q) of a
rack X and a 2-cocycle ¢ € Z2(X,k), see §2.6 for unexplained notation:

(i) The conjugacy class of transpositions O35 C S4, ¢ = —1;
(ii) The conjugacy class of transpositions O3 C Sy, ¢ = X;

(iii) The conjugacy class of 4-cycles OF C Sy, ¢ = —1.

We turn our attention to pointed Hopf algebras and extend some clas-
sification results about pointed Hopf algebras over S4 to any group with a
realization of the right braided vector space. Some of these algebras have
been considered previously in the literature, although not with this gener-
ality. This is the content of the next theorem.

See (28) for the presentation of the Hopf algebras H(A) associated to each
family of parameters A € A(X,q).

Theorem 1.2. Let H be a cosemisimple Hopf algebra and let (X, q) be as in
§1.1. Let L be a Hopf algebra whose infinitesimal braiding M is a principal
realization of V.= V(X,q) in BYD. Then there is X € \(X,q) such that
L ~H(X). In particular, L is a cocycle deformation of gr L ~ B(M)#H.

Proof. By Proposition 5.2, H(A) is a lifting of V' for each A € A.
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On the other hand, any such L is a lifting of M by [AG1, Theorem 2.1]
and references therein. By Corollary 5.5, there is A such that L ~ H(\),
thus L is a cocycle deformation of B(M)#H by Proposition 5.2. O

When G = Sy, Theorem 1.2 is [GIG, Main Theorem], where the classifi-
cation is first completed, using [AHS, Theorem 4.7]. The case (O3, —1) had
been fully understood previously in [AG1, Theorem 3.8]. Theorem 1.2 also
gives an alternative proof to [GIM, Corollary 7.8], see also [GM], where it is
shown that these algebras are cocycle deformations of their graded versions.

The article is organized as follows. In §2 we collect some preliminaries on
Hopf algebras and racks and in §3 we recall the strategy developed in [A+]
to compute liftings, we review the basic steps in the context of copointed
Hopf algebras. In §4 we study realization of braided vector spaces associated
to racks and cocycles. In §5 we turn to pointed Hopf algebras and obtain
new classification results, summarized in Theorem 1.2. In §6 we present our
main result Theorem 1.1, which is heavily inspired by [AV2] and follows by
our work in [A+]. The article contains an Appendix in which we define three
families of algebras and show that they are non-trivial, using [GAP]. The
program files together with the log files are hosted on the authors’ personal
webpages, see www.famaf .unc.edu.ar/~(aigarcialvay).

Acknowledgments. Parts of this work were completed while the first au-
thor was visiting Ben Elias in the University of Oregon (USA) and the second
was visiting Simon Riche in the University of Clermont Ferrand (France);
both visits supported by CONICET. The authors warmly thank these col-
leagues for their hospitality. We thank the referee for his/her suggestions.

2. PRELIMINARIES

We shall work over an algebraically closed field k of characteristic zero.
We write P* for the projective space associated to k*+1 and [v] for the class
of 0 # v € k1. If A is a k-algebra and X C A, then (X) is the two-
sided ideal generated by X. We denote by Alg(A, k) the set of algebra maps
A—=k

Let G be a finite group. We denote by kG its group algebra and by k¢
the function algebra on G. The usual basis of kG is denoted by {g : g € G},
so {0, : g € G} is its dual basis in k¢. We set e the identity element of G.

Fix n € N; we set [, .= {1,...,n} C N. The symmetric group in n letters
is denoted by S, and B,, shall denote the braid group in n strands. We let
sgn : S, — k denote the sign representation of S,,. If X is a finite set, we
write | X| for the cardinal of X.

2.1. Hopf algebras. Let H be a Hopf algebra; we write by m : HQ H — H,
resp. A : H — H ® H, for the multiplication, resp. comultiplication, of H.
We write * for the convolution product in the algebra H*.

We denote by {H;}i>0 the coradical filtration of H and by grH =
Prn>ogr" H = ®n20 H(n)/H(n_l) the associated graded coalgebra of H;
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H 1)y = 0. This is a graded Hopf algebra when H C H is a subalgebra.
We write G(H) C H for the group of group-like elements of H; in particular
G(H) C H). We write Py (H) C H for the set of (g,g')-skew primitive
elements in H, g,¢' € G(H), and set P(H) = Py 1(H).

We denote by Rep H, resp. Corep H, the tensor category of H-modules,
resp. H-comodules. An H-(co)module algebra is thus an algebra in Rep H,
resp. Corep H. Recall that when A € Rep H is an algebra, then A = A® H
becomes a k-algebra, denoted A# H, with multiplication

(1) (a ® h)(a’ & h/) = a(h(l) . a’) & h(g)hl.

2.1.1. Cleft objects. An H-comodule algebra A is said to be a (right) cleft
object of H if it has trivial coinvariants and there is a convolution-invertible
comodule isomorphism v : H — A. If we choose 7 so that y(1) = 1, then we
say it is a section. In this setting, there is a new Hopf algebra L = L(A, H),
together with an algebra coaction A — L® A such that A becomes a (L, H)-
bicleft object. Moreover, L is a cocycle deformation of H and any cocycle
deformation arises in this way; see [S] for details.

2.2. Nichols algebras. Let (V,c) be a braided vector space. We denote by
B(V') the Nichols algebra of V. Recall that this is the quotient T'(V) /T (V),
where J(V) = ,,~, J"(V) and each homogeneous component J"(V)
is the kernel of the so-called nth quantum symmetrizer ¢, € End(V®").
See [AS] for details. We write J,.(V) C T'(V) for the ideal generated by
PD,<,,<, T"(V) and denote by ‘%T(V) the rth-approximation of B(V'). No-

tice that J2(V) = Jo(V).

2.3. Yetter-Drinfeld modules. We write gyD for the category of Yetter-
Drinfeld modules over H; this is a braided tensor category. We denote by
Hom& (V, W) the space of morphisms V' — W in BYD. We recall from [AG1,
Proposition 2.2.1] that there are braided equivalences g)}D ~ y’Dg when
H has bijective antipode and g)}D ~ g: YD when H is finite-dimensional.
When G is a finite group, the equivalence ﬁg)}D o~ ﬁigyl) will be of special
interest in our setting. We shall also write g)}D = ‘},;gyp.

2.3.1. Liftings. If A is a lifting of V € YD, that is gr A ~ B(V)#H cf. §1,
then there is an epimorphism of Hopf algebras ¢ : T(V)#H — A, the
so-called lifting map [AV1, Proposition 2.4], such that

(2) g =1id, @gm isinjective  and  P((k® V)#H) = Ay

Let (V, ¢) be a braided vector space with a realization V € £YD. A lifting
of (V,¢) over H is alifting of V € EYD. The realization V € HYD is said to
be principal when there is a basis {v; }ier of V' and elements {g¢; }icr € G(H)
such that the H-coaction on V' is determined by v; — ¢; ® v;, © € 1.
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2.4. Racks. We recall that a rack X = (X,>) is a pair consisting of a
nonempty set X and an operation > : X x X — X satisfying a self distribu-
tive law:
x> (y>z2)=(x>y) > (z>2), z,9,2z€X

and such that the maps ¢,: X — X, y— x>y, y € X, are bijective for
each x € X. When ¢, = ¢, implies x = y in X, the rack is said to be
faithful. A rack is called indecomposable if it cannot be written as a disjoint
union X =Y U Z of two subracks Y, Z C X. A quandle is a rack in which
r>rx=z,x€X.

The prototypical example of a rack is given by X = O C G a conjugacy
class inside a group G, with g > h = ghg™"', g,h € O; notice that this is
indeed a quandle.

The enveloping group Gx of X is the quotient of the free group F'(X) =
(fr | * € X) by the relations f,fy, = fonyfs for all ,y € X. This is
an infinite group. The finite enveloping group Fx = Gx/Sx is defined
as the quotient of Gx by the normal subgroup Sx = (fI*,z € X); here
ng =ord ¢,, x € X.

A 2-cocycle on X is a function ¢ : X x X — k*, (z,y) — ¢a, satisfying

Qry>29y,z = Qe>y,o>292,2, all z,y,z € X.

We write Z2(X, q) for the set of 2-cocycles on X. We say that a 2-cocycle
is constant if ¢,y = w, Vo,y € X and a fixed w € k*; we write ¢ = w.

2.4.1. Braided vector spaces associated to racks. If (X,r>) is a rack and ¢
is a 2-cocycle on X, then a structure of braided vector space on the linear
span of {vg|z € X} is determined by

(3) (Vg ® Vy) = @y yUpsy @ Vg, x,y € X.

We denote this braided vector space by V (X, ¢q) and refer to a realization of
V(X,q) over H as a realization of (X, ¢q). We write B(X,q) = B(V(X,q))
for the corresponding Nichols algebra.

There is another braided vector space associated to (X, ¢) which we denote
W(q, X). Following [GV], this is the vector space spanned by {w;|x € X}
with braiding

(4) c(wx & wy) = QyzWy & Wyrg, T,y € X.
We set B(q, X) == B(W(q, X)), see §4.2.

2.5. Quadratic Nichols algebras. A description of the 2nd (or quadratic)
approximation %Q(X ,q) can be found in [GIG, Lemma 2.2]. The quadratic
relations in B(X,¢) are parametrized by a given subset R' = R'(X,q) of
equivalence classes in R = X x X/ ~, where ~ stands for the relation
generated by (i,7) ~ (i > j,1).

More precisely, if (i,7) € R, then it defines a class C' € R as

C ={(i2,71),..., (i\C|vi\C|—1)v (i1’i|C|)}7
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with i1 = j, 49 =4, tpyo = ipr1 > ip, 1 <h <|C|—2and i = i\c| > Z'|C‘_1.
Thus, R’ consists of those classes for which H'ilcz‘l Qs yin = (=1l Set

IC]
(5) bo =Y mn(C)viy,,vi,, C € RI(X,q);

h=1

where 71(C) = 1 and n,(C) = (—=1)""Yqii, disiy - - - @iy, > B > 2. Hence
J*(X,q) =k{bc : C e R'(X,q)}.
See loc. cit. for unexplained notation and details.

We shall write C[h] = {(in+1,1), - - -, (i2,71), .-, (in,in—1)}, so C = C[1].
Also, x> (i,7) = (z>d,2 > j) and x> C = {x 1> (i2,41), ..., 2 > (i1,4c|) }-

We shall also give a description of the set J2(g, X) in §4.3 below.

Remark 2.1. Let X be a quandle. Assume that B(X,q) is quadratic and
finite-dimensional. Then ¢, , = —1 for all z € X.

Indeed, g, is a root of 1, different from 1, for each € X, as otherwise
k[v:] € B(X,q) and we assume that dimB(X,q) < oo. Now, if N, =
ord(gz ), then v)= € J(X, q); hence N, = 2. O

2.6. Nichols algebras associated to symmetric groups. Let us fix n >
3 and let X = X, = O} be the rack of the conjugacy class of transpositions
in' S,, and let Y = Of be the rack given by the conjugacy class of (1234) € Sy.

We shall consider the constant cocycle ¢ = —1 on X,, and Y. Also, let
X : Sy x OF — k* be the map defined in [MS] by

y 1 ifg(z) <g()),
(6) x(g, (i) = o L geS,.
—1if g(i) > g(5), "
Then x = x|xxx: X X X — k* is a non-constant 2-cocycle on X.

Theorem 2.2. Let n = 3,4,5.
(a) [MS, §6.4],[G] The ideal J(Xy,—1) is generated by x%ij),
(D) 2@ +2za)  and  Te)Tar) + TR T LR L)
for all (i5), (kl), (ik) € OF with #{i, j,k,1} = 4.
(b) [MS, §6.4],[G] The ideal J(Xpn,X) is generated by x%ij) and
T T (ki) — T(ri)T(g) for all #{i, j, k,1} = 4,
L(ij)E(ik) — T(ik)L(jk) — L(Gk)T(ig) T (k)T (i) — T(ik)E(ik) — L(i) T (jk)
foralll <i<j<k<n.
(c) [AG3, Theorem 6.12] The ideal J(Y,—1) is generated by x,2,—1 +
Ty 1Tg,
(9) 2 and Tex, + TyTe + T

for all 0,7 € O} with o # 7! and v = o707 L.
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Theorem 2.2 also applies if we consider the braided vector spaces W (g, X)
associated to these conjugacy classes, see Corollary 4.14.

Remark 2.3. The definitions of the algebras in items (1) and (2) of Theorem
2.2 make sense for any n > 6. They are known as Fomin-Kirillov algebras;
were introduced in [FK]. It is an open problem to state if they are examples
of Nichols algebras and whether they are finite-dimensional or not.

3. LIFTING VIA COCYCLE DEFORMATION

Let H be a cosemisimple Hopf algebra and V € £YD. Let {z1,...,z4}
be a basis of V and set I = Iy. We set B(V) = T(V)/J(V) and assume
that the ideal J (V) is finitely generated.

We recall the method developed in [A+] to compute the liftings of V.
We fix a minimal set G of homogeneous generators of (V) and consider an
adapted stratification G = GoU G U---UGy. For 0 < k < N, we set

By :=T(V), Ho =T(V)#H,
By = Bp_1/(Gr-1), Hi = Bp#H.

By definition (the image of) Gy is a basis of a Yetter-Drinfeld submodule
of P(By). Then By is a braided Hopf algebra in gyD and Hj a Hopf
algebra. See [A+, 5.1] for details. We set Y}, := k(S(Gx)) C Hk.

Let V' = k{y;}icr be another copy of V' and let Ay denote the algebra
T(V)#H. Then Ay is a cleft object of Hy with coaction induced by A

and section 79 = id. Moreover, Ly := L(Ag, Ho) =~ Ho. Then Aj is a
(Ho, Lo)-bicleft object; the coaction of Ly on Ag is A.

We fix the singleton Ay = {Ag} C Cleft(Ho) and we proceed recursively,
for each 0 < k < N, following the steps in [A+, 5.2]. Namely,

Step 1. We construct a family Agy; C Cleft Hiqq [A+, 5.2 (1b)], starting
with Ax. More precisely, we collect in A1 all nonzero quotients

A1 = A/ (oY1), @ € Alghe (Y, Ay),
see [A+, Theorem 3.3]. The coaction is induced by Ajyxp and the section
i, satisfies ;g = id [A+, Proposition 5.8 (b)].

Step 2. We compute L(Agi1, Hit1) for all Agiq € Agyq [A+, 5.2 (2)].

Step 3. We check that any lifting of V' can be obtained as L(Ant1, HN+1),
form some Any1 € Ayt1 [A+, 5.2 (3)].

3.1. On step 1. We further review the algebras Ay and the recursion in
the first step. To do this, we pick £ > 0 and fix the following setting:

o A € Cleft Hy, with section vy : Hi — Ayg.
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e G = {ui}icr, with associated comatrix elements {FE;;};; i.e. the H-
coaction on Gy is determined by
(10) ui Y Ey®u;, il

J

e Y} is the subalgebra of Hj generated by S(Gy).
o o : kS§(Gy) — Ag, for X = (\), € k", is the Hj-comodule map
defined by

(11) PA(S (W) = w(S(w) + > A S(Ey), i€l

. . . . . ™
By construction, there are projection and inclusion maps Ay —= H
L=k

and thus A, = E#H with &, ~ AEOH. Moreover, & is an H-module
algebra [A+, Proposition 5.8 (d)] and the map p : Ay — &, given by p(z) =
:c(o)f)/,;lm(x(l)), defines an H-module projection. Notice that & = T'(V).

Definition 3.1. For each XA = (\;)!"_; € k", we define the set
GrA) = {Ni +%(S(w)) : i € 1} C &
Let Z(A) = (Gr(X)) C & and set E(A) = &, /Z(X). We consider the following

conditions:

(12) EN) £0;
(13) kGr(A) C & is an H-submodule;
(14) v extends to an algebra map Yy — Ayg.

The kth set of deforming parameters is

(15) A ={X €k™:(12),(13) and (14) hold}.

Thus £(A) is an H-module algebra, if A € A,. We set A(X) = E(N)#H.
Remark 3.2. Assume that the elements of Gy are homogeneous of the same
degree. Then @y : Yy — Ag is an algebra map for all A € k™.

Indeed, the subalgebra of T'(V') generated by Gy is free by [AV2, Lemma
28]. Since the antipode is an anti-homomorphism of algebras, Y is also free.

The algebras which we shall collect in Ap;; are precisely the algebras
A(X), XA € A. Indeed, we have the following.

Lemma 3.3. A(M) € Cleft(Hyy1) for all X € Ap. If Agy1 € Agya, then
there is A € Ay such that A1 = A(N).

Proof. Set s; = S(u;) = —>°7_; S(Eij)uj, i € L. Using the fact that
*yk_ulq = Sp and ad|g coincides with the action of H on By inside gyp, it
follows that

(16)  poalsi) =i — > Ww(S(E) - w) = X + 1(S(wi)) € Gr(N).
=1
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Then p induces a linear isomorphism kox(Gr) — kGk(A). In particular,
koa(Gk) is an H-submodule of A,. Hence (pA(Y,")) = Z(X)#H by [A+,
Remark 5.6 (d)] and therefore A(X) = Ai/{pa(Y,)) =~ EA)#H # 0. By
[A+, Theorem 3.3] A(X) € Cleft(Hy, 1) because oy € Alg’ (Ys, Ap).

Now, let Ary1 € Agyq and recall that Ag,q = Ak/<ap(Yk+)> for some
¢ € Alg"* (Y}, Ap_1), see [A+, §5.2 (b)]. Hence, [A+, Lemma 5.9 (a)]
states that for such ¢ there is A € k™ such that ¢|5,) = ¢a and thus
A1 = Ak /{pa(si) 11 € 1,) >~ A(N). U

Under a feasible assumption, we can remove the antipode from the rela-
tions defining E(A).
Lemma 3.4. Let A € Ay. If v is a morphism of H-modules, then
g(A) ~ gk(A)/<)\z — 'yk(u,) NS ]In>

Remark 3.5. The section v, is H-linear when

(1) H semisimple, equivalently dim H < oo, or

(2) k=0.
Indeed, (1) is [A+, Proposition 5.8 (c)] and (2) holds since vy = id.
Proof. Tt follows from the H-linearity of v, that vi(u;) € &, @ € I,,, arguing
as in [AGI, Lemma 4.1]. Tt is enough to see that kGi(A) = k{Xi —v&(ui) }ic1,

as H-submodules by [A+, Remark 5.6 (b)].
Let z; .= pox(s;) for ¢ € I, recall (16). If s € [, then

Y Biiczi=) Eoi-hi—Y (EsiS(En)) - yr(w)
i i il
= e(Bai)hi — > e(Es)vn(w)
7 l
== )\s — Yk (us)
Reciprocally, z; = >, S(Ei) - (A — v (wg)) for all ¢ € I,,. O
3.2. On step 2. By construction, L(Agy1,Hir1) is a cocycle deformation
of Hyy1. Moreover, if § = (F,)n>0 is the filtration on L(Agt1, Hit1) in-
duced by the graduation of Hy1, then the associated graded Hopf algebra
grg L(Ags1, Hr41) is isomorphic to Hyy1 [A+, Proposition 4.14 (c)]; hence
L(ANnt1, Hn+1) is a lifting of V. Thus, the set of deforming parameters
A=Apx- XAy

parametrizes a family of liftings H(AX) of V, A = (Xo,...,An) € A.
The Hopf algebras £1(X) = L(A1(X),H1), A € Ap, obtained after the
first recursion are easy to describe. We set
Hi(A) = T(V)#H/ (ui — X+ NEij i € 1),
J€ln

The next lemma is a particular case of [A+, Proposition 5.10].
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Lemma 3.6. Let A € A. Then
L(Al(}\),H1) =~ /Hl(A)

Proof. Set L1 = L1(A) and let s; = S(u;), @ € I,. By [A+, Proposition
5.10], we have that

= EO/ — ¢+ Z C] 1<z<n

where s; € £, 1 < i < n, is such that
5 @1y, = Z’Yo st)(~1) ®Y0(st) 0% S(Eir) + 1@ " (s4).

This formula is simplified by the fact that vo = id, 4 1 — S and the coaction
is the comultiplication in £y. Notice that, in particular,

n
A(si) =) s;@8(Eij)+1®s;, i€l
j=1
Hence,

> (s1)-1) ® (50) 0)S*(Eir) + 1 ® S(s4) =

t

= Z 85 & S Etj)52(Eit) + Z 1® StSQ(Eit) +1® S(Sl)

—Zs]@)&g i)+ Y 1@ S(Ey)u;S*(Eir) + 10 S(s;)

t.J

=5, R01+1® SQ(UI) — Z adS(EZ])(u])
J
Then, the second summand has to be zero and s; = s; = S(u;). O

3.3. On step 3. We give a sufficient condition to find all the quadratic
liftings via cocycle deformation.

Lemma 3.7. Assume that kG = J*(V) and let L be a lifting of V. If
Hom(72(V), V) = 0, then there exists X € A such that L ~ H(X).

Remark 3.8. In the setting of Lemma 3.7, A = Ag and H(A) = Hi(A).

Proof. Let ¢ : T(V)#H — L be a lifting map. Now, M = J%(V) is
compatible with ¢ [A+, Definition 4.7] since J%(V) C P(T(V)). Following
[A+, Lemma 4.8], 71 o |3y = 0 by our hypothesis. Then there are scalars
A = {\}" such that L ~ £;(A) by [A+, Lemma 4.8 (c¢) and Theorem

4.11]. Hence the lemma follows from Lemma 3.6. U

Remark 3.9. The space Homi(7(V), V), for V a braided vector space of
diagonal type, has been studied in [AKM] in connection with braided defor-
mations of B(V).



COPOINTED HOPF ALGEBRAS OVER S4 11

Remark 3.10. In the setting of Lemma 3.7, we see every lifting is determined
by a family A € A. However, two different families A and A’ may define the
same, or isomorphic, liftings.

For each V, H, we study the symmetries of the set A to describe the
complete list of non-isomorphic liftings, see e.g. [A+, Lemma 4.8 (d)].

4. REALIZATIONS

We fix a rack and 2-cocycle (X, q). We investigate some of the necessary
conditions on a Hopf algebra H so that we can realize the braided vector
spaces V (X, q) and W(q, X) in §2.4.1.

4.1. Realizations of V (X, q). We shall study the class of Hopf algebras H
with a realization V (X, q) € ZYD.

Example 4.1. If H = kG, G a finite group, a principal realization of
V(X,q) over H [AG2, Definition 3.2] is the data (-, g, (xi)iex) given by:

e -: (G x X — X is an action of G on X;

e g: X — (G is a function such that g(h i) = hg(i)h~! and g(i) - j = i > 7;

o xi: G — k* satisfies x;(9(j)) = gji, 1,7 € X, and the family (x;)icx is a
1-cocycle, i.e. x;(ht) = xi(t)x¢i(h), for all i € X, h,t € G.

This data defines a Yetter-Drinfeld structure on V (X, q) by
Vg > o @ Uy, g'vm:Xz(g)vg-x§ reX,ged.

The realization is said to be faithful if g is injective, which is always the case
when X is faithful [AG1, Lemma 3.3].

Notice that V' (X, q) clearly admits a natural principal realization over the
enveloping groups Gx and Fx, see §2.4.

Let H be a Hopf algebra. Assume that V' =V (X, q) is an H-module and
an H-comodule: that is there are matrix coefficients {jizy}zyex C H* and
comatrix elements {e;y}. ex C H such that the action and coaction are
determined respectively by

(17) h-vgy = Z Ly (R)vy, AMvg) = Z Exy @ Vy.

yeX yeX

Lemma 4.2. Equations (17) define a realization of V' over H if and only if

(18) Z ,uxy(h(l))eyzh(g) = Z ,uyz(h(g))h(l)ewy, Vx,z€ X,h € H.

yeX yeX
Proof. This is a translation of the Yetter-Drinfeld compatibility. O
We shall fix

(19) K = Hopf subalgebra of H generated by {egy}syex-



12 GARCIA IGLESIAS, VAY

Remark 4.3. In the context of Lemma 4.2, assume that the realization V €
BYD is principal. That is, ez = 64,49z, with g, € G == G(H). Then (18)
becomes:

uwy(h(l))gyh(g) = uxy(h(g))h(l)gm, Vr,z€ X,h € H.

In particular, the realization restricts to V & Eg)ﬂ). Hence, if the rack is
faithful, then this restriction is given by a principal realization.

We fix a realization of V' over H. The action takes a simpler form when
restricted to the subalgebra K C H as in (19).

Lemma 4.4. For x,y,z,t € X,
,Ua:y(ezt) = 5y,z|>x5z,tqZ,m-
The action of K on V is given by
S"(exy) -V = gy FEV" e, >0,
Proof. By definition of realization we have that

Qx,yvmbz(g)vx: Zexy'"l}z@?)y, VSII,ZGX.
yeX
From here we deduce the formula for ji,y(e;). Now, for n > 1 and z # v,

v, = (8" (egr))vy = ZS”H(em)S”(em) cv, = S”"'l(em)sn(em) .
teX

= Sn+1(€:wc)fm(_1)n * Uz,

0 — S(Sn(exy))v¢;7l)n(z) = g{sn-l-l(@ty)sn(ext) . ’U(z)(zfl)n(z)

= Sn+1(€xy)8n(6$x) . qu;(c,l)n(z)

and the lemma follows. O
Corollary 4.5. The following relations hold in K, for all x,y,s,t € X,
(20) qt,y€stCxy = qs,xCspx,t>yCst-

Proof. Follows by plugging h = ey into (18). O

Recall that Gx = ({fz}zex|fefy = fosyfe) denotes the enveloping group
of the rack X, §2.4.

Proposition 4.6. The quotient
K =K/(S"(exy) |z #y, n €N)

is a non-zero group algebra quotient of kKGx, via fy — €z, * € X. We
set G = (€ v € X), 50 K =kG and V € %yl). If X is faithful, then

{€xz }zex is a linearly independent set.
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Proof. First, as the elements {€4y } ., span a coideal contained in KT, K is a
Hopf algebra. Now, €, is a group-like element with inverse § (€xz), K is non-
zero by Lemma 4.4 and V € %yD. In K, it holds e,,€,, = €(z1>2) (z1>2) €a
for all z,y € X, by (20); and the assignment f, — €., z € X, extends to a
Hopf algebra map. O

Remark 4.7. Let C = {(i2,41),...} € R and let ec = €jyi,€4,4,- Then
eih+1ih+1eihih = eCa 1 S h‘ < |C‘
Indeed, Cinyring1 Cinin = Cinin_19n>in_1Cinin = CininCin_19n_1 by (20).

We have seen in Example 4.1 that any braided vector space V = V(X q)
of rack type can be realized over some group algebra kG. Now, even though
the categories igyp and ]ﬁigyD are braided equivalent [AG1], we may not
be able to realize this V over k®. The following lemma exemplifies this
situation in a concrete case.

Lemma 4.8. V(03,—1) cannot be realized over H = k3.

Proof. Indeed, the Hopf subalgebras of K C H are K = H and K = k(sgn),
and neither of these have projections onto quotients of kG@g with g(12, 9(23)
and g(13) linearly independent. O

4.1.1. On the quadratic relations. Notice that, as V € ZJJD, the space
k{bc}tcers € T(V) is a Yetter-Drinfeld submodule, recall (5). In particular,

there are matrix coefficients ac p € H* and comatrix elements Ecp € H
cf. (10), C, D € R/, so that

(21) h-bo= Y acp(bp,  bo— Y Ecp®bp.
DeR’ DerR’

In the next lemma, we express these structural data in terms of the matrix
coefficients {fizy}zyex and comatrix elements {ezy}q yex in (17).

Recall that * denotes the convolution product in H* and the notation
x > C[h] from §2.5.

Lemma 4.9. Let C = {(i2,i1),...} and D = {(j2,j1),...} € R'. Fix
l=1,...,|D|, then

€] te]
ac,p = E o iy v * Mg Bop =Y —o—lep i ei
— nl(D) Th+1J14+1 ThJl f; T]l(D) Th4+1J14+1 11

In particular,

m(©)
(22) aC,D(ex,y) = 5:c,y hZ:l WéD[l],be[h] Azipy19x,ip,
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If (s,t) ¢ D, then
IC] IC]
Znh(c)/‘ihﬂsruiht =0= Z%(C)eihﬂs@iht-

Proof. The structural data of the Yetter-Drinfeld module 72(X,¢q) in the
basis {v,vy}4yex are given by
ﬁry,st = Hzxs * Uyt and dry,st = €xsCyt,

Thus, we can compute the action and coaction of the bc’s in two different
ways: using either the matrix coefficients (3, s and the comatrix elements
dyyst or the ac p’s and Eg p’s. The lemma follows by comparing both
computations. Identity (22) follows by Lemma 4.4. O

Remark 4.10. We stress that uc,p and Ec p can be expressed in several
ways, as many as the cardinal of D. If we choose [ = 1, then recall that
n (D) = 1. In particular, (22) becomes

0 otherwise.

Remark 4.11. In the setting of Remark 4.3, that is when V € gyD is
principal, Lemma 4.9 univocally associates an element gc = ¢;,9;, € G(H)
to each C € R’ in such a way that A\(bc) = gc @ be; cf. [AG2, §3.3].

4.2. Realizations of W(q, X). Let G be a ﬁnite group. Recall that there

is a braided equivalence (F,n) : K&YD —> aYD [AG1, Proposition 2.2.1]
with F'(V') =V as vector spaces and action and coaction given by:

frv={(f,S(1)))ve), Mv)= Zét @t l.v and
(24) teG
n:FV)@ F(U)— F(V@U), v®u uy_1v® )
for every V,U € YD, f ek v eV, uel.
Lemma 4.12. Assume that V (X, q) has a principal realization over G and

let W be the image of V(X,q) by F. Then W = W (q, X) as braided vector
spaces.

Proof. According to (24), W =V as vector spaces,

5t'vx:6t’g;1vx and  A(vy) = wa 5t®vt 1.,t€G, xeX.
teG
Hence, the braiding is given by
c(vy ® vy Z Xac 5t Vy @ Vy—1.4 Xr(gy)”y ® Vg, x
teG
= Qy,zVy @ Uysgz-

Thus, we can identify W with W (q, X) via vy — w. O
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In view of the Lemma 4.12, we also call a principal realization of W (q, X)
over k% to the image by the functor (F,n) of the Yetter-Drinfeld module
V(X,q) € (SYD defined by a datum (-, g, (xi)iex)-

4.3. Quadratic relations of B(q, X). Recall that the quadratic relations
of B(X,q) are generated by certain elements bc, C e R = R/(X,q), see
§2.5. For every C' € R/(X,q), we define the element bc € T(q, X) by

c|
(25) bo =Y nn(C) wi,wi,, -
h=1

Proposition 4.13. The quadratic relations of B(q, X) are
T*q,X) =k{bc : C € R'}.

Proof. We can consider V (X, q) as a Yetter-Drinfeld module over a finite
group G with a principal realization [AG3], see Example 4.1. Then, by [GV,
Lemma 3.2], J%(¢q, X) = n~(J?(X,q)). Using that

IC]
-1 —1 C
9 U= G et ] hH Ginrin = (=1,
=1
we obtain 77! (bo) = be and the lemma follows. O

The next, well-known fact, is a direct consequence of Proposition 4.13.

Corollary 4.14. Let n = 3,4,5.
(a) The ideal J(—1,X,,) is generated by l’%ij) and (7), for all (iy) € OF.
(b) The ideal J(x,Xy) is generated by x%ij) and (8), for all (ij) € OF.
(c) The ideal J(Y,—1) is generated by xox5-1 + x5-125 and (9) for all
o€ Of. O
Let H be a Hopf algebra and fix a realization of W(q, X) over H. Let
{tey tzyex € H* and {egzy}tzyex € H be the associated matrix coefficients
and comatrix elements of this realization, cf. (17). Then they must satisfy
(18). As in (19) we still denote by K the Hopf subalgebra of H generated

by {eczry}z,yex-
Lemma 4.15. For all x,y,z,t € X, it holds that p(ezy) = 02t Ozon,y Qo

and hence Gyt €st €xy = Qx,t Cxy Cxr>s,y>t-
Moreover, the action of K on W(q, X) satisfies

5 .
S"(egy) -w, =4 T qixlwz, Z.fn z.s even,
Oz, 2y Qzy Wz if n is odd.
Proof. Tt follows as Lemma 4.4 and (20). .

We see that every k{w,} € W(q, X) is K-invariant. This defines, for each
z € X, an algebra map

’l}z = Wzz € Alg(Ku k)a €xy 5Z|>I»?J Qex, T,Y € X.
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Proposition 4.16. (1) For every z,t € X, ¥,0; = $0ys.
(2) G¥ — Alg(K,k), fy > U,z € X, is a group homomorphism.
(8) If X is faithful, then {9,}.cx is linearly independent.

Proof. (1) By an straightforward computation, we obtain that

Qzz Gt z>x lft[> (ZI>:Z:) =Y,
0,0 (ery) = ’
VilCay) {0, otherwise;

Gtz Qo2 o, i (ED>2) D> (tD> ) =y,
ﬁtﬁtbz(ezy) = {0 T 2t z,t>T Stherine

Since 1> is self distributive, we only have to check ¢z Gt 202 = Qi @is2,050 and
this follows from the definition of 1-cocycle. The proof of ¥.9;(S"(esy)) =
V042 (S™(exy)), n € N, is similar. Thus (2) also follows.

If X is faithful, it follows that ¥, # ¥ for z # t and thus they are linearly
independent in K* since they are group-like elements in the Hopf algebra
K° C K* (the Sweedler dual of K). O

Remark 4.17. Proposition 4.16 gives a necessary condition to realize W (q, X)
over a Hopf algebra. We deduce that W (sgn, O3) cannot be realized over
kSs3; compare it with Lemma 4.8.

Let {&c.p}c,pers and {EC,D}C,DGR’ be the structural data of J2(g, X)
as Yetter-Drinfeld module over H. That is, let

(26) h-i)C: Z dc}D(h)i)l% Ecl—> Z EC,D®I~7D
DeR/ DER/

define the H-action and H-coaction, respectively. Next lemma follows as
Lemma 4.9 and provides formulas to compute these data in terms of the
realization.

Lemma 4.18. Let C = {(i2,?1),...} and D = {(j2,51),...} € R'. Fiz
l=1,...,|D|, then

IC] |C]
- nn(C) - nn(C)
_ . L E _ e i
aC,D ; nl(D) Fip gy * Hipq1gigrs c,D ; nl(D) €ingiCint1di41
IC] IC]
If (S7t) ¢ D, then Z nh(c)ﬂihs * Wi gt = 0= Z nh(c)eihseih+lt' U
h=1 h=1

5. LirTINGS OF V (X, q)

In this section we shall compute the liftings of a realization V =V (X, q) €
BYD for (X, q) a rack and a cocycle from the list in §1.1.
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5.1. A general setting for quadratic deformations. The Nichols alge-
bras associated to the pairs (X, ¢) listed in §1.1 are quadratic, see Theorem
2.2. This motivates the following general definition.

Let (X, q) be a finite rack and a 2-cocycle, set B(X, q) as in §2.4.1. Recall
the description of the generators {b¢c }cer of the space of quadratic relations
in B(X,q) from (5). Let H be a cosemisimple Hopf algebra supporting a
realization V = V (X, q) € £YD.

Recall the strategy presented in §3; we shall study the set of deforming
parameters Ay C k*' for Gy = {bc}oer- We write A = Aq for short. We
follow Definition 3.1 and Lemma 3.4 to fix

GA) ={bc —Ac:CeR}CT(V), EAN)=T(V)/{(G(A)).
Recall the notation from (21) and Lemma 4.9.
Lemma 5.1. £(A) inherits an H-module structure from T'(V') when
(27) e(Wrc = > acp(Mrp, CeR,heH O
DeR/
That is, (13) is equivalent to (27). Hence the set of deformation parame-
ters (15), see also Remark 3.2, is given by
A ={X = (Ac)oer’|(27) holds and E(A) # 0}.
For each A € A we set
(28) HA) = (b¢ — Ao+ Y _ApEcp | C€R).
DeR/(X,q)

We review the results from §3 in this setting:

Proposition 5.2. Set H = %Q(X, Q#H. If A € A, then

(a) A(X) = E(XN)#H € Cleft(H).

(b) H(A) is a cocycle deformation of H.

(c) grz H(A) =H.
IfB(X, q) is quadratic, then

(d) H(X) is a lifting of V(X,q). O

Recall the definition of the subalgebra K C H as in (19).
Remark 5.3. If we restrict to K C H, then (27) becomes,
(29) AC = Qajip 1 Qe,inh(C)Ap  if D =2 > C[h].
Proof. Indeed, if C' = {(i2,41),...}, then by (23):
A=Y 0pasci(C)aip, quin ps @ € X.
DeR/

The claim follows since, for each D € R’, there is at most one x € X and
h € Ij¢|, such that D = x> C[h]. O
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Set G = (€4, : ¢ € X) and let K = kG be the subquotient group algebra
from Proposition 4.6. Let (ec)cer’ € K be as in Remark 4.7.

Proposition 5.4. Let (X,q) be such that B(X,q) is quadratic. Assume
that X is faithful and that

(30) €ec # Cups Vze X,CeR.

Let H be a Hopf algebra with realization V = V(X,q) € BYD. If L is a
lifting of V', then there is A such that L ~ H(X).

Proof. Following Lemma 3.7, we need to show that Hom!(7%(V),V) = 0.
Let ¢ € Hom(72(V),V); set
Qp(bC) = Z Loz, (tC,z)meX S k.
zeX
Since ¢ is H-colinear, we see that for every h € H, y € X and C € R':
IC|
n(C

> tewen = 3 touBen = 30 S toy i i

zeX DeR’ Der/ =1 M
using Lemma 4.9. This implies an equality in (30), a contradiction. O
Corollary 5.5. Let X be a finite indecomposable and faithful rack. Let g

be a 2-cocycle on X and set V =V (X,q). Let H be a Hopf algebra with a
realization V € ZyD. Assume that either

(a) q is constant; or

(b) X =03, q=x as in (6).
If L is a lifting of V € gyD, then there is X such that L ~ H(X).
Proof. We need to check (30) in G. Notice that

e: X =G, T > Gy = €py,

is injective, as X is faithful. Then (a) is [GV, Lemma 3.7 (c)]. For (b), we
proceed by inspection. First, assume that g2 = gy- In particular, z # y and
Gay = 929y9y - = 92 = gy, s0 x >y = y. This contradicts [GV, Lemma 3.7
(a)], which establishes that in this case g2 # g,.

Now, assume that x >y # y. We may set, without lost of generality,
that © = (12), y = (la), a = 3,4. Moreover, we can set a = 3, so z =
(b4), b = 1,2,3. Once again, we have that x.(g.) = —1 and x.(g29y) =
Xz(9y)Xy>2(92) = 1. This proves the claim. O

S

5.1.1. Principal realizations. If the realization is principal and (g¢)cer’
G(H) is as in Remark 4.11, then

HA) =T(V)#H/(bc —Ac(1—gc): C eR').

If G is a finite group and H = kG, then H(A) was introduced in [GIG,
Definition 3.6], provided that (30) holds.

In this case, a complete description of the isomorphism classes is achieved
via standard arguments, see [GIG, §6.].
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Lemma 5.6. Let X be a faithful rack. Let q be a 2-cocycle on X such
that B(X,q) is quadratic. Let H be a cosemisimple Hopf algebra with a
principal realization V =V (X, q) € ZYD. Then H(X) = H(N) if and only
FA=XN=0eckR or [\ =[N]ePRI-1, O

5.2. Liftings associated to the symmetric groups. We fix now (X, q)
as in §1.1. That is, X = O or Of and ¢ = —1 or ¢ = x as in (6). We set
V = V(X,q) and let H be a cosemisimple Hopf algebra with a realization
vV elyp.

Lemma 5.7. If (27) holds, then E(A) # 0. Hence

A={x=(\c)cer|e(MAc = D acp(h)Ap,VC e R he H}.
Der’

Proof. This is a particular case of Proposition 7.2, as the algebras £(\) are
particular examples of the algebras considered in loc. cit. We develop this
in detail: Recall that the conjugacy classes {C'}cers that parametrize the
space of relations of each Nichols algebra B(X,q) have either one, two or
three elements. Now, (29) implies that, if |C| = |D|, then A\c = A\p. We
write \; = A\¢| if [C] =4, i = 1,2,3. Moreover, when ¢ = ¥, it follows that
A2 = 0. Thus, £(A) coincides with

o €00, \s) with ag;) = A1, (i7) € OF; when (X,q) = (O3, —1);
[ ] 8§<A3> With a(ij) = )\1, (Z]) c On; When (X, q) = (04,)();
. gg(/\l,)\g) with 8, = A2, o € Of; when (X, q) = (OF, —1).

This shows the claim. O

Example 5.8. Let us fix (X,q) = (03, —1) and let H be a cosemisimple
Hopf algebra with a realization V (X, q) € £YD. Let (esr)orex € H be as
in (17). We consider the subsets X (2), X(3) C X x X:

((12),(34)), ((13), (24)), ((23), (14))},
((27), (ik)) Yicjar UL (i), (i) yicj<ts

>
—

w
N—

Il
—

so R’ is in bijection with X x X (2) x X(3), cf. §2.6. Let A € A: recall
that in this case A = (A¢)cers identifies with a triple (A1, A2, A3) € A, via
Ao = A if [C] = i.
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Thus H () is the quotient of T'(V)# H modulo the ideal generated by:

2 E 2 E E .
A, = )\1 1-— €J7M - AQ eo“u,eo',z/ - )\3 60’,/.LeLT,1/7

pex (n)EX(2) (nv)EX(3)

Us0r + QrGg = )\2 1- § €opCrv | — )\1 5 €o,uCr,u — )\3 g €o,ufr,v;
(1) EX (2) Hnex ()EX(3)

Aoy + Aopolo + Qulops = A3 | 1 — § CouCur | — A E €u,uCu,u
()X (3) hex

— A2 E €o,u€u,v;

(m)€X(2)

for all 0 € X, (0,7) € X(2) and (o,v) € X(3).

6. LirTINGS OF W (g, X)

We fix a rack and 2-cocycle (X, q) and W (g, X) the associated braided
vector space as in (4). In this section we study the liftings of W (g, X).

6.1. On the strategy applied to B(q, X). We fix a cosemisimple Hopf
algebra H with realization W = W (q, X) € £YD.

Recall the definition of the subalgebra K C H in (19). We will assume
throughout this section that H = K, i.e. that H is generated by the co-
matrix elements attached to the realization W & gyD. This is a technical
assumption that is only present with the purpose of giving a more concrete,
that is in terms of (X, q), description of the liftings #(X). Besides, this
assumption is satisfied in the examples we target to study.

We present general results that will allow us to apply the strategy of §3 to
find the liftings of W € YD. As in §5, we explore the first iteration of the
strategy with Gy = {EC}CER/ the set generators of the quadratic relations
given in Corollary 4.13. For each sequence of scalars A = (A¢)cer’ we set

GA) = {bc — Ao :C e R’} C T(W).
Lemma 6.1. kG(X) C T(W) is an H-submodule if and only if

(31) )\C = 0 Zf 5x,y 7& 6i2\>(i11>:v),y qi1,1’ qiz,i1|>.l‘
for some x,y € X. Then the (0th) set of deforming parameters is
(32) A ={(Ac)cer/|E(A) # 0 and (31) holds}.

Proof. Let A’ be the set of families A = (\¢)¢ satisfying (31). Let (ipt1,ip)
in C and z,y € X. Then

Exy * (wihwihH) = 5ih+1|>(ihl>x),y iy, x Qipg ip >z Wiy, Wip g -
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As g is a 2-cocycle, we have that

Qip,,x Qipr,in>x = Qi 1>ipinp10x Q1,2 = Qipgosing1>e Gipgr,z-

On the other hand, notice that ip41 > (i, > ) = ia > (i1 > x). Therefore

Cay - (EC - Ac) = 5i2>(i1>:p),y i1,z Qis,ii>x BC - 6:c,y Ac.

Thus, it is clear that kG(\) is a H-module if X € A’. Instead, if A & A’
and kG(A) is a H-submodule, we see that bc and 1 belong to kG(A) by
acting by a suitable e,,. However, as {BC}CGR/ is linearly independent,
bo,1 ¢ kG(A). By this contradiction we finish the proof. O

Next lemma concerns Step 3, recall §3.3.

Lemma 6.2. Let f € Homg(j?(W), W) and assume that X is faithful. If
C ={(i2,i1),...} € R, then f(bc) = vcwj, for some jo € X and vo € k.
Moreover, if v # 0, then

5jc|>x,y qjc,l‘ = 5i2|>(i1|>x)7y Qil,z qi27i1|>x VCU, Yy € X and

(33) o Ecp, ifi=jp,
joi = e ,
0, ifi# jp for all D € R'.

Reciprocally, every pair (j,v) of families v = (vo)cer: € kK7, j ,
jo € X, satisfying (33) define a morphism f = f;,, € Homi(J?(W), W)
by setting f(bc) = vo wj, .

Proof. By assumption f is a morphism of H-modules. Since W is the direct
sum of non-isomorphic simple H-modules, by Lemma 4.16, there are jo € X

and v¢ € k for every C' € R/ such that f(bo) = ve Wi -
In the proof of Lemma 6.1, we saw that

exy : bC = 6i2l>(’i1>:l}),y qi1,CE qig,i1 >x bC

Thus, the first equality of (33) holds because f(esy, - bc) = exy - f(wje)-
Since f also is a H-comodule map, the second equality of (33) is immediate.
The reciprocal statement is clear. O

Remark 6.3. Let C = {(i2,41),...} € R’. The following are direct conse-
quences of Lemmas 6.1 and 6.2.

(1) Tf ¢, #id and A € A, then A¢ = 0.
(2) If @iy i, # ¢j for all j € X, then f(bc) = 0.

We can summarize the results from §3 in this context as follows.

Proposition 6.4. Set H = %z(q,X)#H. If X € A, then
(a) A(X) = EAN)#H € Cleft(H).
(b) H(A) is a cocycle deformation of H.
(c) grz H(A) =H.

If B(q, X) is quadratic, then
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(d) H(X) is a lifting of W(q, X).
Assume also that X is faithful and Remark 6.3 (2) holds, then
(d) every lifting of W(q, X) is isomorphic to H(X) for some A € A. O

In the next subsections we will see that our main examples of braided
vector spaces satisfy the hypothesis of the above proposition. We give a
more concrete description of the algebras H(\) for H = k> in §6.2, which
allows us to study the isomorphism classes.

6.1.1. The rack of transpositions. Let X = OF, ¢ = —1 and x be the 2-
cocycle given in §2.6. Thus, R' = R'(X, —1) = R/(X, x) is in bijection with
X x X(2) x X(3), recall Example 5.8. We keep the notation above.

Lemma 6.5. Let W = W (X, —1) or W(X, x). Then
(34) A ={(Ac)oer| Ac =0 if C # {z,2},Vz € X}
and HomiL(72(W), W) = 0.

Proof. In this setting, (31) states that Ac must vanish if C' # {z,x}. Hence
kG(A) is a H-submodule by Lemma 6.1. Moreover, £(A) # 0 by Proposition
7.2, cf. Lemma 5.7. Indeed, £(X) ~ £4(0,0) when ¢ = —1 and £(X) ~ £X(0)
when ¢ = x, for ag;) = Ac, C = {(ij), (ij)} € R'. This proves (34).
Finally, Hom& (72(W), W) = 0 by Lemma 6.2 and Remark 6.3. O

Remark 6.6. In particular, A ~ kX, via A\c — A, if C = {(z,)}.

6.1.2. The rack of 4-cycles. Let Y = O3 and ¢ = —1, recall §2.6. Then
R’ = R'(Y,—1) consists of singletons {(o,0)}, pairs {(o,071), (c71,0)}
and classes of the form {(o,7),(v,0),(r,v)} for o,7,v = 076~ € Y. The
corresponding quadratic relations b = b were listed in Theorem 2.2 (c).

Lemma 6.7. Let W = W (Y,—1). Then
(35) A= {)\ ek®| Ao =0 if C is not a pair}

and HomL(J2(W), W) = 0.
Proof. Follows as Lemma 6.5, using Proposition 7.2. (]
Remark 6.8. Here, A ~ kY, via Ao — A, if C' = {(a, o 1), (a‘l,a)}.

6.2. Copointed Hopf algebras over S4. In this section we specialize the
results in §6.1.2 and 6.1.2 to the case H = k%, G = S,.
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Let X = Ojand W € kg . * VD denote the principal realization of W (—1, X),
Wi(x,X) or W(—1,Y). The YD-structure on W is given by:

0t - Wy = O g Wy, Mwg) = ngn(t)&t ® Wy-14, W =W(-1,X);

teG

Op-we = Opatwe,  AMwe) = > X6 @ wi-rgy,, W =W(x, X);
teG

0 - Wo = 0y p-1We, ANWo) = ngn(t)&t Q@ Wi-1g¢, W =W(-1,Y);
teG

foreachz € X, 0 €Y and t € Sy4.

The following lemma permits the application of our previous results.

Lemma 6.9. Let W = W(-1,X), W(x,X) or W(—1,Y). Then k5 is

generated as an algebra by the comatriz elements associated to W.

Proof. W decomposes into the direct sum of three simple kS*-comodules U;
with dimU; = i for ¢ = 1,2,3. This follows by dualyzing the S4-action.
Then the coalgebra spanned by the comatrix elements associated to W has
dimension 14 = 14+ 4 + 9. Therefore K = k5 because dim K has to divide
24 = dim k1. 0

6.2.1. The liftings H(X) up to isomorphism. We give explicitly the presen-
tation of the liftings of W € ]kS " *YD. Recall from Remarks 6.6 and 6.6 that

A ~ kX, A ~ kY, respectively. However, these sets are bigger than the
family of isomorphism classes of liftings.
For the rack X, we consider

m::{(x Yeex € kX me_o}

zeX
Here we write Ay := A¢ when C = {(z,z)}. Given X € 4, we set
2= (e —A1yg) g €K, z€X.
gESy

The group I'y := k> x Aut(S4) acts on R4y via (11,0) > X = pu(Ag())eex- The
class of A in 204 /Ty will be denoted [A].

Definition 6.10. Fix X € 204,. We set
Hin =T (=1, X)#k>* /T
where 7 is the ideal generated by all the elements in (7) and
(36) w2 —f) reX.
Definition 6.11. Fix A € (4. We set
My = (6 X)#E T
where 7 is the ideal generated by all the elements in (8) and (36).
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Proposition 6.12. (1) If L is a lifting of W(~1,X) € £YD, then
L >~ Hy) for one and only one [A] € Ay/Ty.
(2) If L is a lifting of W(x,X) € '}gjyp, then L ~ Hf&} for one and
only one [A] € Ay /Ty.
Proof. (1) Fix W = (—1, X)), the proof for W (x, X) in (2) is identical. First,
by Proposition 6.4 (e), L ~ H(A) for some XA € A. Set [A| =3 _y A; and
A'=X—A|(1,...,1) € Ay. Then it follows that H(X) =~ Hy.

Assume now there is a Hopf algebra isomorphism © : Hy — Hy for
some X\, X" € 4. Then we have a group automorphism 6 of S; induced by
(@lks4)*. Let ¢x and ¢y be lifting maps for Hy) and H|y. Hence there are
non-zero scalars ¢, ¢ € X, such that

Oda(wz) = cadp(wo(zy), T € X,

by Lemma [GV, Lemma 5.6 (e)] and using the adjoint action of k. Since
© is a coalgebra map we deduce ¢, = ¢ for all z € X, for some fixed ¢ € k.
Therefore X' = (c?,6) > A and hence [X'] = [A]. O

We now consider the rack Y = O}. Let

A = {(Ay)yey €k Ay =Ayand YA, = 0}.
yey

We consider the group Ty acting on 2 via (y, 0)> A = (Mo ) seor- As above
[A] denotes the class of A in 2/T. Given A € %A, we introduce
= Ay = Ag1yg)dy €K%, yeY.
gESy

Hence, fy)‘_1 = fy>‘ because A\,-1 = Ay for ally € Y.

Definition 6.13. Fix A € 2. We set

Hp = T(—1,Y)#k5 /Ly
where L is the ideal generated by (9) and
(37) TyTy—1 + Ty-1Ty — fy)‘, yevy.

Proposition 6.14. Let L be a lifting of W(—1,Y) € K4YD. Then L is

isomorphic to Hy for one and only one [A] € Ay /Ty.

Proof. 1t follows as Proposition 6.12. U

7. APPENDIX

In this section we introduce three families of algebras, all of which we
show to be nontrivial using GAP, and that are essential to show that the Hopf
algebras introduced along the article are indeed liftings of a given braided
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vector space. In particular, they are examples of PBW deformations of
Fomin-Kirillov algebras, as recently defined in [HV].

Let us set, for n > 3, X,, = OF and Y = Of as in §2.6. Also, consider the
constant cocycle ¢ = —1 on X, and Y, and the cocycle x on X, as in (6).
Definition 7.1. We set V,, = W,, = kX, U = kY.

(a) For each family of scalars o = (a(ij))i<j € k and py, 2 € k, Ea(p1, p2)
is the quotient of T'(V;,) by the ideal generated by

x( j) = )
(i) T (k1) T L (k1) T (ig) = H1
L(ig) L (ik) T Lk (ik) T TR (i) = 12,
for all (ij), (kl), (ik) € X,, with #{i, 4, k, 1} = 4.
(b) For each family of scalars o = (a(;j))i<; € k and p € k, E&(p) is the
quotient of T'(W,,) by the ideal generated by
x(w
L(ig)L(kt) = T(kD)T(ij
L)X (ik) — T(ik) (k) — L(k)F(ij
L(ik)T(ij) = L(jk)T(ik) — L(ij) T (jk
forall 1 <i<j<k<n.

) = X(ij)>

y =0 for all #{i,j,k,1} =4,
) = My

) = M

(¢) For each family of scalars 3 = (8 )secy € k and pug, us €k, gg(,ul, 12) is
the quotient of T'(U) by the ideal generated by

2 _
Ty = M1,
ToTo-1 + Te-1T5 = By,
Tolr + TyTo + TrTy = U2

for all 0,7 € Y with o # 7% and v = o701

Proposition 7.2. Assume n = 3,4 and let £ be either Eq(u1, u2), Ex(p) or

Ep(p, p2). Then € # 0.

Proof. We check this using GAP, by computing a Grobner basis for the ideal

defining £. See files 024-1.1og, 024-chi.log and 044-1.1og. For instance,

the Grobmer basis for Eq(u1,pe) is given by the generators of the ideal

defining £ together with
T(13)T(12)T(13) — T(12)T(13)T(12) — Q(12) T X(13)T(23) — H2T(13) + H2T(12),
T(14)T(12)T(14) — T12)T(14)T(12) — Q(12) T Q(14)T(24) — H2T(14) + 12T (12),
T(14)T(13)T(12) T T(14)T(12)%(23) — L(23)T(14)T(13) — H2T(14) + H1Z(13),
T(14)T(13)T(23) T T(14)T(12)%(13) — L(23)L(14)T(12) — H2Z(14) + H1Z(12),
T(14)T(13)T(14) — T(13)T(14)T(13) — Q(13) T X(14)T(34) — H2T(14) + H2T(13),
T(24)T(23)T(14) — T(14)T(12)T(23) — L(12)T(24)T(23) — H1T(24) + H2T(23),

T(24)T(23)T(24) — T(23)T(24)T(23) — Q(23) T Q(24)T(34) — H2T(24) + H2L(23),
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T(14)T(12)T(13)T(23) — T(23)T(14)T(12)T(23) T X(23)T(14)T(13) T H2T(23) T (14)
T H1T(12)T(23) — H1M2,
T(14)Z(12)T(13)Z(14) T Z(13)T(14)L(12)T(13) T T(12)L(13)T(14)L(12) T 2(13)
— Q4)T(24)T(34) T 1T (14)T(13) — H2T(14)T(12) — Q(12) T Q(13)(23) % (24)
— H2T(13)T(14) T H1T(13)T(12) T H1T(12)T(14) — H2T(12)T(13)
— Qi3)ph2 — Hip2 + 13,
T(14)T(12)%(23)%(14) T T(12)T(14)T(12)T(23) + A(12) — Q(14) T (24) T (23)
— H1T(14)T(12) — H2T(23)T(14) — H2T(12)T(23) T K12,
L(14)T(12)L(13)L(12)T(23) — L(23)T(14)T(12)L(13)L(12) — M2 (14)T(12)L(13)
— H2%(23)T(14)T(13) T H2Z(23)T(14)T(12) T H1ZT(12)T(13) L (12)
+ Q12)013) T X(12)Q(23) — O13)Q(23) T (14) T B1M2T(13) — 12T (12),
T(14)Z(12)%(13)T(12)T(14)L(12) + T(13)T(14)T(12)L(13)T(12)L(14) + Q(13)
— (1) T(14)T(13)T(24) T (34) T X(12) — A(13)T(14)L(12) T (13) L (24)
— M2T(14)T(12)T(13)T(12) — Q(12) T Q(13)T(23)T(14)T(12) T (24)
= H2Z(13)T(14)%(12)L(13) — H1L(13)L(12)F(14)L(13) — H2L(13)L(12)F(14)L(12)
— 13) T Q1) T(12)T(14) T (13) T (34) T H1T(12)T(14) T (12)T(23)
— H1T(12)T(23)T(14)T(13) — H2X(12)T(13)T(14)T(12) — H2L(12)T(13)T(12)T(14)
— 13y 2 F Q(14) 2T (24) T (34) T Q(12) 1 — Q(14) 1T (24) T (23) — Q(13) 1 — i
+ 0 (14) 12 (14)T(34) T Q(13) H2 — Q1) 2T (14)T(24) T Q(12) b1 + M§$(14)$(12)
T ozt — Qe H1T(23)T(34) + Q(12)H2 — Q13)H2T(23) T (24) T Q(13)H2
— Q(14) 2T (13)T(34) — QY(12) 2 T Q(14) 2T (13)T(24) T X(12) b1 — M?$(13)$(14)
+ N%x(ls)f(lz) + ar2)1 — Q13) 1T (12)T(24) — Q(14)H2 — H1f2
+ ng(m)w(m) + a12)014) + M%x(m)x(l?)) — Q(12)0(14) M2
— Qi) pafiz + iz e + 0ay s + pipe — 1,
T(14)T(12)%(13)T(12)T(14)L(13) T T(12)T(14)T(12) T(13)T(12) L(14) ~ Q(12)
T QT4 Ta2)T(24)T(23) — A(13) + X14)T(14)T(12)T(23) T(34)
— H2T(14)T(12)T(13)T(12) — Q(12) T Q(14)T(13)T(14)T(12) T (24)
— 1T (13)T(14)T(12)T(13) — H2T(13)T(12)T(14)T(13) T H2T(12)T(14)T(12) T (23)
= H2Z(12)T(14) % (12)L(13) — H2L(12)T(23)T(14)L(13) — H1L(12)T(13)T(14)L(12)
— H2T(12)T(13)T(12)T(14) T —C13) 41 + Q(14) H1T(24) T (34) + Q(12) U2
— Q(14) 2T (24) T (23) — Q(12) 41 T Q(14) 1T (14) T (24) T X(12) b1 — M%$(14)$(13)
— Qa2 + M§30(14)33(12) + Q132 — O 14) 2T (23) T (34) T Q(12) 1
— O (13) 1T (23)T(24) + Q(12) b2 — Q(14) 2T (13)T(24) T Q(12)(14)
— i+ M%$(13)$(12) +aa)p — M%$(12)$(14) + pape + M§$(12)IC(13)
— Q12)0(1a) 2 — (1) MK + Cuzy R + Qs+ e — .
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