
Michigan Math. J. 65 (2016), 451–472

Clustering for Metric Graphs Using the p-Laplacian

Leandro M. Del Pezzo & Julio D. Rossi

Abstract. We deal with the clustering problem in a metric graph.
We look for two clusters, and to this end, we study the first nonzero
eigenvalue of the p-Laplacian on a quantum graph with Newmann
or Kirchoff boundary conditions on the nodes. Then, an associated
eigenfunction up provides two sets inside the graph, {up > 0} and

{up < 0}, which define the clusters. Moreover, we describe in detail
the limit cases p → ∞ and p → 1+.

1. Introduction

One of the major problems for networks is that of clustering. Clustering in a net-
work means that we want to identify dense regions of it maximizing or minimizing
some criterion. Here we deal with metric graphs � that are graphs in which we
have a length for the edges and try to identify two clusters. Our approach to find
two clusters in � is based on the following idea: given a sign-changing function u

defined on the graph, just take A = {u > 0} and B = {u < 0} as clusters (note that
the set {u = 0} may be nontrivial, and therefore it may happen that A∪B �= �). In
this work, we take u to be an eigenfunction for some differential operator; we take
the p-Laplacian −(|u′|p−2u′)′ defined on the graph and study properties of this
approach. We find two extreme cases: for p = ∞ (this is understood as the limit
as p → ∞), A and B are sets that have the diameter as large as possible (each one
of them has the diameter equal to diam(�)

2 ), whereas for p = 1 (understood as the
limit as p → 1), we find that A and B are sets with large total length and small
number of “cuts” in the graph (small perimeter).

A quantum graph is a graph in which we associate a differential law with each
edge and which models the interaction between the two nodes defining each edge.
The use of quantum graphs (in contrast to more elementary graph models, such
as simple unweighted or weighted graphs) opens up the possibility of modeling
the interactions between agents identified by the graph vertices in a more detailed
manner than with standard graphs. Quantum graphs are used to model thin tubular
structures, so-called graph-like spaces, and they are their natural limits as the
radius of a graph-like space tends to zero. On both, the graph-like spaces and the
metric graphs, we can naturally define Laplace-like differential operators; see [2;
16; 26].
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Among properties that are relevant in the study of quantum graphs is the study
of the spectrum of the associated differential operator. In particular, the so-called
spectral gap (this concerns bounds for the first nonzero eigenvalue of the Lapla-
cian with Neumann boundary conditions) has physical relevance and was exten-
sively studied in recent years. We refer, for example, to [16; 17; 20; 18].

In this paper, we are interested in the eigenvalue problem that naturally arises
when we consider the p-Laplacian (|u′|p−2u′)′ as the differential law on each
side of the graph together with Newmann or Kirchoff boundary conditions (see
[15]) at the nodes. To be concrete, we deal with the following problem: in a finite
metric graph �, we consider the minimization problem

λ2,p(�) = inf

{∫
�

|u′(x)|p dx∫
�

|u(x)|p dx
: u ∈ W 1,p(�),

∫
�

|u|p−2u(x)dx = 0, u �≡ 0

}
. (1.1)

There is a minimizer (see Theorem 1.1) that is a nontrivial sign-changing weak
solution to⎧⎨

⎩
−(|u′|p−2u′)′(x) = λ2,p(�)|u(x)|p−2u(x) on the edges of �,∑

e∈Ev(�) | ∂u
∂xe

|p−2 ∂u
∂xe

(v) = 0 on the nodes.
(1.2)

Our main results for this eigenvalue problem can be summarized as follows:

• For 1 < p < ∞, we show that the infimum in (1.1) is attained at a sign-changing
function. We provide examples that show that the set {up = 0} may have non-
trivial measure.

• We study the limit cases p → ∞ and p → 1. For p = ∞, we find a geometric
characterization of the first nonzero eigenvalue, and for p = 1, we prove that
there exist analogues of Cheeger sets in quantum graphs.

Now, let us present precise statements of our results. First, the following result
follows by a standard compactness argument.

Theorem 1.1. Let � be a connected compact metric graph. Then, the infimum
λ2,p(�) in (1.1) is attained and is the first nonzero Neumann eigenvalue for the
p-Laplacian in �, that is, λ2,p(�) is the smallest positive number such that there
exists a nontrivial up ∈ W 1,p(�) such that∫

�

|u′
p(x)|p−2u′

p(x)v′(x) dx = λ

∫
�

|up(x)|p−2up(x)v(x) dx (1.3)

for all v ∈ W 1,p(�).

Concerning the limit as p → ∞, we have the following result.

Theorem 1.2. Let � be a connected compact metric graph, and up be a mini-
mizer for (1.1) normalized by ‖up‖Lp(�) = 1. Let

�2,∞(�) = inf
{
‖v′‖L∞(�) : max

�
v = max

�
−v = 1

}
. (1.4)
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Then,
lim

p→∞λ2,p(�)1/p = �2,∞(�),

and there exists a subsequence pj → ∞ such that

upj
→ u∞

uniformly in � and weakly in W 1,q (�) for every q < ∞. Moreover, any possible
limit u∞ is a minimizer for (1.4).

This value �2,∞(�) can be characterized as

�2,∞(�) = 2

diam(�)
.

For the limit as p → 1+, we have the following:

Theorem 1.3. Let � be a connected compact metric graph, and up be a min-
imizer for (1.1) normalized by ‖up‖L1(�) = 1. Then, there exist a subsequence
pj → 1+ and u1 ∈ BV(�) such that

upj
→ u1

in L1(�).
Moreover, any possible limit u1 is a minimizer for

�2,1(�) = inf

{‖v′‖BV(�)

‖v‖L1(�)

: v ∈ BV(�),

∫
�

sgn(v)(x) dx = 0, v �≡ 0

}
. (1.5)

This value �2,1(�) is the limit of λ2,p(�), that is,

lim
p→1

λ2,p(�) = �2,1(�).

We also have an analogue to Cheeger sets for metric graphs. Here and in what
follows, we denote by �(A) the measure (the total length) of a subset A of �.

Theorem 1.4. Let � be a connected compact metric graph, and A be a subset of
� such that �(A) = �(�)

2 and Per(A) < ∞. Then

2 Per(A)

�(�)
= inf

{
Per(E)

min{�(E), |� \ E|} : E � �,E �= ∅
}

(1.6)

if only if
u = χA − χ�\A

is a minimizer for �2,1(�).

As we have mentioned at the beginning of this introduction, for a metric graph,
one important problem is clustering. We want to identify two disjoint subsets
A and B of the graph � that are similar in size (here we have to define in which
sense we measure the size of a subset of a metric graph) and such that the resulting
partition of � minimizes or maximizes some criterion (also to be specified). We
remark again that, in general, we are not prescribing that � = A ∪ B , and we can
have � \ (A ∪ B) �= ∅.
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For the case p = ∞, we let A∞ = {u∞ > 0} and B∞ = {u∞ < 0}, and we have
that A∞ and B∞ are two subsets of � with the same diameter that maximizes this
common diameter, that is,

diam(A∞) = diam(B∞) = diam(�)

2
.

For p = 1, we let A1 = {u1 > 0} and B1 = {u1 < 0}, and we obtain two subsets
with total length �(A1) and �(B1) less than or equal to �(�)/2 that maximizes the
sum �(A1) + �(B1) and is such that the perimeter of them inside � is minimized.

In general, for intermediate 1 < p < ∞, letting A = {up > 0} and B = {up <

0}, we obtain something that interpolates between the two previous situations.
Let us end this introductions with a brief description of the ideas and tech-

niques used in the proofs and of the previous bibliography.
The existence of eigenfunctions can be easily obtained by a compactness argu-

ment as for the usual p-Laplacian in a bounded domain of RN ; see [12]. However,
here we show examples that show that the set {up = 0} may have nontrivial mea-
sure (it may contain some edges).

Eigenvalues on quantum graphs are by now a classical subject with an increas-
ing number of recent references; we refer to [5; 11; 17; 18]. The literature on
eigenfunctions of the p-Laplacian in a one-dimensional interval, also called p-
trigonometric functions, is now quite extensive: we refer, in particular, to [22; 23;
24] and references therein.

Concerning the limit as p → ∞ for the eigenvalue problem for the p-
Laplacian in the usual PDE case; we refer to [3; 4; 13; 14; 27]. To study this
limit, the main point is to use adequate test functions to obtain bounds that are
uniform in p in order to gain compactness on a sequence of eigenfunctions.

Finally, for p = 1, we refer to [7; 10; 25], which deal with Cheeger sets in the
Euclidean space. In this limit problem, the natural space that appears is that of
bounded variation functions (that are not necessarily continuous; see [1]).

The paper is organized as follows. In Section 2, we collect some preliminaries;
in Section 3, we deal with the first eigenvalue on a quantum graph and prove
its upper and lower bounds; in Section 4, we study the limit as p → ∞ of the
first eigenvalue, whereas in the final section, Section 5, we look for the limit as
p → 1+.

2. Preliminaries

We start with a brief review of the basic results that will be needed in subsequent
sections. The known results are generally stated without proofs, but we provide
references where the proofs can be found. Also, we introduce our notational con-
ventions.

2.1. Neumann Eigenvalues for the p-Laplacian in One Dimension

First, we introduce a review about the one-dimensional Neumann eigenvalue
problem for the p-Laplacian. For more details, see [21]. Let p ∈ (1,∞) and
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L > 0. We consider the following eigenvalue problem for the p-Laplacian in an
interval: {

−(|u′|p−2u′)′(x) = λ|u(x)|p−2u(x) in (0,L),

u′(0) = u′(L) = 0.

The eigenvalues λ are of the form

λn+1,p =
(

nπp

L

)p
p

p′ ∀n ∈N0,

where πp = 2π
p sin(π/p)

, and 1/p + 1/p′ = 1. The eigenfunctions corresponding to
the zero eigenvalue are the nonzero constants; those corresponding to λn,p with
n > 0 are

un+1(x) = αL

nπp

sinp

(
nπp

L

(
x − L

2n

))
, α ∈R \ {0},

where sinp is the p-sine function.
Note that {λn,p} coincides with the usual Neumann eigenvalues of the Lapla-

cian when p = 2.
Finally, we want to remark that the first nonzero Neumann eigenvalue is

λ2,p =
(

πp

L

)p
p

p′ , (2.1)

and the eigenfunctions u2 corresponding to λ2,p have the property∫ L

0
|u2(x)|p−2u2(x) dx = 0.

2.2. Quantum Graphs

We now recall some basic knowledge about quantum graphs; see, for instance, [2]
and references therein.

A graph � consists of a finite or countable infinite set of vertices V(�) = {vi}
and a set of edges E(�) = {ej } connecting the vertices. A graph � is said to be a
finite graph if the numbers of edges and vertices are finite.

Two vertices u and v are called adjacent (denoted u ∼ v) if there is an edge
connecting them. An edge and a vertex on that edge are called incident. We will
denote v ∈ e when e and v are incident. We define Ev(�) as the set of all edges
incident to v. The degree dv(�) of a vertex V(�) is the number of edges that are
incident to it, where a loop (an edge that connects a vertex to itself) is counted
twice.

A graph � is called a directed graph if each of its edges is assigned a direction.
Each edge e can be identified with an ordered pair (ve,ue) of vertices. The vertices
ve and ue are the initial and terminal vertices of e. The edge ê is called the reversal
of an edge e if vê = ue and uê = ve.

Definition 2.1 (see Definition 1.2.3 in [2]). � is called a metric graph if

(1) each directed edge e is assigned a positive length �e ∈ (0,∞];
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(2) the lengths of the edges that are reversals of each other are assumed to be
equal, that is, �e = �ê;

(3) a coordinate xe ∈ Ie = [0, �e] increasing in the direction of the edge is as-
signed on each edge;

(4) the relation xê = �e − xe holds between the coordinates on mutually reserved
edges.

If a sequence of edges {ej }nj=1 forms a path, its length is defined as
∑n

j=1 �ej
. For

two vertices v and u, the distance d(v,u) is defined as the length of the shortest
path between them. A metric graph � becomes a metric measure space by defining
the distance d(x, y) of two points x and y of the graph (that are not necessarily
vertices) to be the shortest path on � connecting these points, that is,

d(x, y) := inf

{∫ 1

0
|γ ′(t)|dt : γ : [0,1] → � Lipschitz, γ (0) = x, γ (1) = y

}
,

and the measure as the one obtained from the usual Lebesgue measure on each
edge (we denote the measure of A ⊂ � by �(A)). The total length of a metric
graph (denoted �(�)) is the sum of the lengths of all edges, and its diameter (de-
noted by diam(�)) is the maximum distance between two points in �.

A metric graph � is said to be connected or compact when it is connected or
compact in the sense of a topological space.

A function u on a metric graph � is a collection of functions ue defined on
(0, �e) for all e ∈ E(�), not just at the vertices as in discrete models.

Let 1 ≤ p ≤ ∞. We say that u belongs to Lp(�) if ue belongs to Lp(0, �e) for
all e ∈ E(�) and

‖u‖p

Lp(�) :=
∑

e∈E(�)

‖ue‖p

Lp(0,�e)
< ∞.

The Sobolev space W 1,p(�) is defined as the space of continuous functions u on
� such that ue ∈ W 1,p(Ie) for all e ∈ E(�) and

‖u‖p

W 1,p(�)
:=

∑
e∈E(�)

‖ue‖p

Lp(0,�e)
+ ‖u′

e‖p

Lp(0,�e)
< ∞.

Observe that the continuity condition in the definition of W 1,p(�) implies that for
each v ∈ V(�), the function on all edges e ∈ Ev(�) takes the same value at v.

The space W 1,p(�) is a Banach space for 1 ≤ p ≤ ∞. It is reflexive for 1 <

p < ∞ and separable for 1 ≤ p < ∞.

Theorem 2.2. Let � be a compact graph, and 1 < p < ∞. The injection
W 1,p(�) ⊂ Lq(�) is compact for all 1 ≤ q ≤ ∞.

A quantum graph is a metric graph � equipped with a differential operator H,
accompanied by vertex conditions. In this work, we consider

H(u)(x) := −�pu(x) = −(|u′(x)|p−2u′(x))′.



Clustering for Metric Graphs Using the p-Laplacian 457

Our vertex conditions are the following:

∑
e∈Ev(�)

∣∣∣∣ ∂u

∂xe

∣∣∣∣
p−2

∂u

∂xe
(v) = 0, ∀v ∈ V(�), (2.2)

where the derivatives are assumed to be taken in the direction away from the
vertex.

Throughout this work,
∫
�

u(x)dx denotes
∑

e∈E(�)

∫ �e
0 ue(x) dx.

3. The First Nonzero Eigenvalue in �

Let � be a compact connected quantum graph, and p ∈ (1,∞). We say that the
value λ ∈ R is a Neumann eigenvalue of the p-Laplacian in � if there exists a
nontrivial function u ∈ W 1,p(�) such that∫

�

|u′(x)|p−2u′(x)v′(x) dx = λ

∫
�

|u(x)|p−2u(x)v(x) dx (3.1)

for all v ∈ W 1,p(�), in which case, u is called an eigenfunction associated with λ.
Of course, the first eigenvalue is λ = 0 with eigenfunction u ≡ 1. Moreover, if

λ > 0 is an eigenvalue and u is an associated eigenfunction, then, taking v ≡ 1 as
a test function in (3.1), we have

∫
�

|u(x)|p−2u(x)dx = 0.
Thus, the existence of the first nonzero eigenvalue λ2,p(�) is related to the

problem of minimizing the quotient
∫
�

|v′(x)|p dx/
∫
�

|v(x)|p dx among all func-
tions v ∈ W 1,p(�) such that v �= 0 and

∫
�

|v(x)|p−2v(x) dx = 0. This is exactly
the contents of Theorem 1.1, which we prove next.

Proof of Theorem 1.1. Take a minimizing sequence un for λ2,p(�) and normalize
it according to ‖un‖Lp(�) = 1. This sequence satisfies

∫
�

|un(x)|p−2un(x) dx =
0, and its W 1,p-norm is bounded. Hence, by a standard compactness argument,
using the compactness result of Theorem 2.2, it follows that there exists a sub-
sequence unj

that converges strongly in Lp(�) and weakly in W 1,p(�). The
limit of this subsequence satisfies ‖u‖Lp(�) = 1,

∫
�

|u(x)|p−2u(x)dx = 0 and
‖u‖p

W 1,p(�)
= λ2,p(�). Therefore, λ2,p(�) is attained, and it is the first nonzero

Neumann eigenvalue of the p-Laplacian in �.
The fact that a minimizer satisfies (1.3) is standard, but we include a short proof

here for completeness. Let up be a nontrivial minimizer. Then using Lagrange
multipliers, we get the existence of λ ∈R such that∫

�

|u′
p(x)|p−2u′

p(x)v′(x) dx = λ

∫
�

|up(x)|p−2up(x)v(x) dx (3.2)

for all v ∈ W 1,p(�) with
∫
�

|v(x)|p−2v(x) dx = 0. Since
∫
�

|u(x)|p−2u(x)dx =
0, we conclude that (3.2) also holds for v = 1 and, therefore, for every v ∈
W 1,p(�). Finally, taking v = up , we get that λ = λ2,p(�). �

Remark 3.1. In general, the second eigenvalue λ2,p(�) is not simple. For in-
stance, let � be a simple graph with four vertices and three edges, that is,
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V(�) = {v1,v2, v3, v4} and E(�) = {[v1,v2], [v2,v3], [v2,v4]},

�

L L

L
v1 v2

v3

v4

λ2,p(�) = (
πp

2L
)p

p
p′ .

Observe that

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

2L
πp

sinp(
πp

2L
(x − L)) if x ∈ I[v1,v2] = [0,L],

2L
πp

sinp(
πp

2L
x) if x ∈ I[v2,v3] = [0,L],

0 otherwise,

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

2L
πp

sinp(
πp

2L
(x − L)) if x ∈ I[v1,v2] = [0,L],

2L
πp

sinp(
πp

2L
x) if x ∈ I[v2,v4] = [0,L],

0 otherwise,

are two linearly independent eigenfunctions associated with λ2,p(�).
Also, remark that in this example, the described eigenfunctions associated with

λ2,p(�) vanish on an entire edge. Therefore, here we have that the set {u = 0} is
nontrivial.

These features correspond to a highly symmetric case. If we change the graph
just by taking the same configuration but with three different lengths L1, L2,
L3 for the three different edges, then we have an eigenvalue whose associated
eigenfunction vanishes only at one point (hence, its zero set has zero length). In
fact, vanishing of an eigenfunction associated with the first nontrivial eigenvalue
at the vertex v2 is impossible since, for different lengths, we have different values
of the first eigenvalue of the p-Laplacian with mixed boundary conditions (u = 0
at one endpoint and u′ = 0 at the other). By the same reason an eigenfunction
must vanish only inside the longest edge, and there is only one possibility for
this point xp (it must be the only one such that the first eigenvalue with mixed
boundary conditions in the interval between the vertex vi and the point xp in the
longest edge equals λ2,p(�)).

Our next result shows an upper bound and a lower bound for λ2,p(�), which
depend on p, the length of a metric graph, and the number of elements in E(�).
The proof is similar to that of [8, Thms. 3.5 and 3.8]. See also [19, Thm. 1].

Theorem 3.2. Let � be a connected compact metric graph, and p ∈ (1,∞). Then(
πp

�(�)

)p
p

p′ ≤ λ2,p(�) ≤
(

card(E(�))πp

�(�)

)p
p

p′ ,

where card(E(�)) is the number of elements in E(�).
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Note that the bounds given in the theorem are optimal. For instance, let � be a
graph with only one edge, that is, V(�) = {v1,v2} and E(�) = {[v1,v2]},

�

�(�)
v1 v2

Then, by (2.1) we have that

λ2,p(�) =
(

πp

�(�)

)p
p

p′ ,

and then the upper and lower bounds in Theorem 3.2 are attained and coincide.

4. The Limit as p → ∞
In this section, we deal with the limit as p → ∞ of the eigenvalue problem (1.1).
We split the proof of Theorem 1.2 into several steps.

Lemma 4.1. We have

lim sup
p→∞

λ2,p(�)1/p ≤ �2,∞(�). (4.1)

Proof. Let w ∈ W 1,∞(�) be admissible for �2,∞(�), that is, max� w =
−min� w = 1. Now, multiply the positive part w+ of w by ap ∈ R and the nega-
tive part w− of w by bp ∈R to obtain∫

�

|z(x)|p−2z(x) dx = 0

with
z(x) = apw+(x) − bpw−(x).

Note that z is continuous in � and we can always assume that

max
�

|z| = 1,

hence, ap = 1 or bp = 1. Also note that

ap

(∫
�

(w+(x))p−1 dx

)1/(p−1)

= bp

(∫
�

(w−(x))p−1 dx

)1/(p−1)

and hence
lim

p→∞ap = lim
p→∞bp = 1

since

lim
p→∞

(∫
�

(w+(x))p−1 dx

)1/(p−1)

= lim
p→∞

(∫
�

(w−(x))p−1 dx

)1/(p−1)

= 1.

Then, z is an admissible function for the minimization problem defining
λ2,p(�). Hence, we get

λ
1/p

2,p (�) ≤ ‖z′‖Lp(�)

‖z‖Lp(�)

.
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Now, we just observe that

lim
p→∞‖z‖Lp(�) = ‖w‖L∞(�) = 1

and

lim
p→∞‖z′‖Lp(�) = ‖w′‖L∞(�) = max{‖(w+)′‖L∞(�); ‖(w−)′‖L∞(�)}.

Hence, it follows that

lim sup
p→∞

λ2,p(�)1/p ≤ ‖w′‖L∞(�),

and we conclude
lim sup
p→∞

λ2,p(�)1/p ≤ �2,∞(�). �

As a second step, we prove that, up to a subsequence, up converges uniformly to
a minimizer of �2,∞(�).

Lemma 4.2. Let up be an eigenfunction associated to λ2,p(�) normalized with
‖up‖Lp(�) = 1. Then, up to taking a subsequence, up converge uniformly in �

and weakly in W 1,r (�) for any 1 < r < ∞ to some u∞ ∈ W 1,∞(�), which is a
minimizer of �2,∞(�).

Moreover, we have

lim
p→∞λ2,p(�)1/p = �2,∞(�).

Proof. We first notice that {up}p≥r is bounded in W 1,r (�) for any r . Indeed, by
Hölder’s inequality,∫

�

|u′
p(x)|r dx ≤ ‖u′

p‖p

Lp(�)(�(�))1−r/p,

so that, by (4.1),

‖u′
p‖Lr(�) ≤ λ2,p(�)1/p(�(�))1/r−1/p ≤ C. (4.2)

By Morrey’s inequality {up}p>r is bounded in some Hölder space C0,α(�),
and then, up to a subsequence, up → u∞ in C(�). We can also assume that this
convergence holds weakly in W 1,r (�) for any r .

Let us prove that ‖u∞‖L∞(�) = 1. We have∫
�

|up(x)|r dx ≤ ‖up‖p

Lp(�)(�(�))1−r/p,

so that by the normalization ‖up‖Lp(�) = 1 we get

‖up‖Lr(�) ≤ (�(�))1/r−1/p. (4.3)

Letting p, r → ∞ in (4.3), we see that ‖u∞‖L∞(�) ≤ 1. Now, suppose that
‖u∞‖L∞(�) ≤ 1 − 2ε < 1 for some ε > 0. Since ‖up‖L∞(�) → ‖u∞‖L∞(�) as
p → ∞, we have ‖up‖L∞(�) ≤ 1 − ε for p large. Then

1 =
∫

�

|up(x)|p dx ≤ (1 − ε)p�(�) → 0
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as p → ∞, which is a contradiction with the normalization ‖up‖Lp(�) = 1.
We now verify that max� u∞ + min� u∞ = 0. From

∫
�

|up(x)|p−2up(x) dx =
0 we obtain that ∫

{up≥0}
|up(x)|p−1 dx =

∫
{up≤0}

|up(x)|p−1 dx.

We already know that ‖u∞‖L∞(�) = 1. Let us show that max� u∞ = 1 and
min� u∞ = −1. We argue by contradiction. Assume, for example, that
max� u∞ = 1 but min� u∞ ≥ −1 + 2ε for some ε > 0. Since up → u∞ in C(�),
we also have min� up ≥ −1 + ε for p large. Then∫

{up≥0}
|up(x)|p−1 dx =

∫
{up≤0}

|up(x)|p−1 dx ≤ (1 − ε)p−1�(�) → 0

as p → ∞. Since {up} is bounded in C(�) (because it converges), we obtain

1 =
∫

�

|up(x)|p dx ≤ C

∫
�

|up(x)|p−1 dx → 0,

which is a contradiction.
Since ‖u∞‖L∞(�) = 1 and max� u∞+min� u∞ = 0, we have that u∞ is an ad-

missible test-function for �2,∞(�). It follows that �2,∞(�) ≤ ‖u′∞‖L∞(�). Since
up → u∞ weakly in W 1,r (�) for any ∞ > r > 1, we also have from (4.2) that

‖u′∞‖Lr(�) ≤ lim inf
p→∞ ‖u′

p‖Lr(�) ≤ |�|1/r lim inf
p→∞ λ2,p(�)1/p.

Letting r → ∞, we obtain, using (4.1), that

�2,∞(�) ≤ ‖u′∞‖L∞(�) ≤ lim inf
p→∞ λ2,p(�)1/p ≤ lim sup

p→∞
λ2,p(�)1/p ≤ �2,∞(�),

from which the claim follows. �

Now, our goal is to show that �2,∞(�) = 2
diam(�)

. As a first step, we prove an
inequality.

Lemma 4.3. We have �2,∞(�) ≥ 2
diam(�)

.

Proof. Given some admissible test-function u for the minimum defining
�2,∞(�), let x ∈ � be a point where u attains its maximum, and y ∈ � a point
where u attains a minimum, so that u(x) = 1 and u(y) = −1. Consider also some
curve γ : [0, T ] → � joining y and x. Then

2 = u(x) − u(y) = u(γ (T )) − u(γ (0))

=
∫ T

0
u′(γ (s))γ ′(s) ds = ‖u′‖L∞(�) Long(γ ).

Taking the infimum over all such curves γ and all admissible u, we obtain

2 ≤ �2,∞(�)d(x, y),

from which the claim follows. �

We now prove the reverse inequality.
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Lemma 4.4. We have �2,∞(�) ≤ 2
diam(�)

.

Proof. Take two points x0, y0 ∈ � such that diam(�) = d(x0, y0). Consider the
function

u(z) = 2

diam(�)

(
d(z, x0) − diam(�)

2

)
, z ∈ �.

This function is admissible for the minimization problem for �2,∞ and has

‖u′‖L∞(�) = 2

diam(�)
.

This gives the desired upper bound.
Another possible choice of a test-function is

u(z) = Cy(z)+ − Cx(z)+,

where

Cy(z) = 1 − 2

diam(�)
d(z, y) and Cx(z) = 1 − 2

diam(�)
d(z, x)

are the cones centered at x and y of height 1 and slope 2
diam(�)

. �

Remark 4.5. In the example described in Remark 3.1 with three edges of the
same length L, we have that this limit selects (extracting a subsequence upj

with
pj → ∞) two edges as A∞ and B∞, and the third edge is just {u = 0}. Here the
diameter of � is 2L, and we obtain two sets of maximum diameter as A∞ and
B∞.

When we consider the same configuration of the graph, but with three different
lengths L1, L2, L3 (assume that L1 > L2 > L3) for the three different edges, we
get that the diameter of � is L1 + L2 and our limit as p → ∞ gives A∞ as the
segment of the longest edge of length (L1 + L2)/2 starting at v1 and B∞ as the
rest of the graph.

5. The Limit as p → 1+

In this section, we study the other limit case, p = 1. We will use functions of
bounded variation on the graph (denoted by BV(�)) and the perimeter of a subset
of the graph (denoted by Per(D)). More precisely, BV functions on a compact
interval are exactly those u that can be written as a difference g − h where both g

and h are bounded and monotone. In terms of derivatives, a function is in BV if
its distributional derivative is a finite Radon measure whose total variation gives
the BV-norm of the function. Given a set D, we say that it has finite perimeter if
its characteristic function χD is in BV (and we define the perimeter of D as the
total variation of the distributional derivative of χD). These concepts extend to a
metric graph � by applying them on each edge. We refer to [1] for more precise
definitions and properties of functions and sets in this context.

We start by showing two technical lemmas required in the proof of Theo-
rem 1.3.
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Lemma 5.1. Let � be a connected compact metric graph, and v ∈ BV(�) be such
that ∫

�

sgn(v)(x) dx = 0. (5.1)

If there exists a constant c �= 0 such that∫
�

sgn(v − c)(x) dx = 0, (5.2)

then ‖v − c‖L1(�) = ‖v‖L1(�), and

�({x : v(x) ≥ c}) = �({x : v(x) ≤ 0}) and �({x : 0 < v(x) < c}) = 0

if c > 0;
�({x : v(x) ≤ c}) = �({x : v(x) ≥ 0}) and �({x : c < v(x) < 0}) = 0

if c < 0.

Proof. We consider the case c > 0. The other case is similar. We begin by intro-
ducing the following notation: E+

0 = {x : v(x) > 0}, E−
0 = {x : v(x) < 0}, E0 =

{x : v(x) = 0}, E+
c = {x : v(x) > c}, E−

c = {x : v(x) < c}, Ec = {x : v(x) = c},
and E0,c = {x : 0 < v(x) < c}. By (5.1) and (5.2) there exist w1 ∈ sgn(v) and
w2 ∈ sgn(v − c) such that

0 =
∫

�

w1(x) dx = �(E+
0 ) +

∫
E0

w1(x) dx − �(E−
0 ) (5.3)

and

0 =
∫

�

w2(x) dx = �(E+
c ) − �(E−

c ) +
∫

Ec

w2(x) dx

= �(E+
c ) − �(E0,c) − �(E0) − �(E−

0 ) +
∫

Ec

w2(x) dx

≤ �(E+
c ) − �(E0,c) +

∫
E0

w1(x) dx − �(E−
0 ) +

∫
Ec

w2(x) dx

(‖w1‖L∞(�) = 1)

= �(E+
c ) − �(E0,c) − �(E+

0 ) +
∫

Ec

w2(x) dx (by (5.3))

= −2�(E0,c) +
∫

Ec

(w2 − 1)(x) dx

≤ −2�(E0,c) (note that ‖w2‖L∞(�) = 1).

Observe that if we assume that �(E0,c) > 0, then we arrive at a contradiction in
the last inequality. Then �(E0,c) = 0. Therefore,

0 =
∫

�

w1(x) dx = �(E+
0 ) +

∫
E0

w1(x) dx − �(E−
0 )

= �({x : v(x) ≥ c}) +
∫

E0

w1(x) dx − �(E−
0 ),
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and

0 =
∫

�

w2(x) dx = �(E+
c ) + �(E−

c ) +
∫

Ec

w2(x) dx

= �(E+
c ) − �({x : v(x) ≤ 0}) +

∫
Ec

w2(x) dx.

Subtracting these equations, we get

0 = �(Ec) +
∫

E0

w1(x) dx + �(E0) −
∫

Ec

w2(x) dx

=
∫

E0

(w1 + 1)(x) dx +
∫

Ec

(1 − w2)(x) dx.

Therefore, w1 = −1 in E0 and w2 = 1 in Ec due to ‖wi‖L∞(�) ≤ 1 for i = 1,2.
Thus,

0 =
∫

�

w1(x) dx = �({x : v(x) ≥ c}) +
∫

E0

w1(x) dx − �(E−
0 )

= �({x : v(x) ≥ c}) − �({x : v(x) ≤ 0}),
that is, �({x : v(x) ≥ c}) = �({x : v(x) ≤ 0}).

Finally,∫
�

|v − c|(x) dx =
∫

{x : v(x)≥c}
(v − c)(x) dx +

∫
{x : v(x)≤0}

(c − v)(x) dx

=
∫

�

|v(x)|dx + c|{x : v(x) ≥ c}| − c|{x : v(x) ≤ c}|

=
∫

�

|v(x)|dx,

and the proof is complete. �

Lemma 5.2. Let � be a connected compact metric graph, and v ∈ L1(�) and
{vn}n∈N be such that∫

�

sgn(vn)(x) dx = 0 ∀n ∈ N, and vn → v strongly in L1(�). (5.4)

Then, ∫
�

sgn(v)(x) dx = 0.

Proof. For any n ∈N, by (5.4) there exists wn ∈ sgn(vn) such that∫
�

wn(x)dx = 0. (5.5)

Moreover, ‖wn‖L∞(�) ≤ 1 for all n ∈N. Therefore, there exist a function w and a
subsequence, still denoted {wn}n∈N, such that

wn ⇀ w weakly in Lq(�) for any 1 < q < ∞.
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Thus, using (5.5), we have∫
�

w(x)dx = lim
n→∞

∫
�

wn(x)dx = 0,

and for any ϕ ∈ C∞(�), we have∣∣∣∣
∫

�

w(x)ϕ(x) dx

∣∣∣∣ =
∣∣∣∣ lim
n→∞

∫
�

wnϕ(x)dx

∣∣∣∣ ≤
∫

�

|ϕ(x)|dx.

Then w ∈ L∞(�), and ‖w‖L∞(�) ≤ 1. In addition, by (5.4),

wn → sgn(v) a.e. in {x : v(x) �= 0}
as n → ∞. Thus, w ∈ sgn(u1) and

∫
�

w(x)dx = 0, that is,
∫
�

sgn(v)(x) dx = 0.
�

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We split the proof into three steps.
Setp 1. First, we show that {up}1<p≤2 is bounded in W 1,1(�).
Let ϕ ∈ C∞(�) be such that ϕe is odd with respect to the center of Ie for any

e ∈ E(�). Then ∫
�

|ϕ(x)|p−2ϕ(x)dx = 0 ∀p ∈ (1,∞).

Then, using that up is a minimizer for λ2,p(�) with ‖up‖Lp(�)=1 and Hölder’s
inequality, we get

‖u′
p‖p

L1(�)
≤ ‖u′

p‖p

Lp(�)(�(�))p−1 ≤ ‖ϕ′‖p

Lp(�)

‖ϕ‖p

Lp(�)

(�(�))p−1.

Therefore, {up}1<p≤2 is bounded in W 1,1(�).
Setp 2. Next, we show that

lim inf
p→1+ λ2,p(�)1/p ≥ �2,1(�).

Let {upn}n∈N be a subsequence of {up}p∈(1,2) such that pn → 1+ as n → ∞ and

lim
n→∞‖u′

pn
‖Lpn(�) = lim inf

p→1+ λ2,p(�)1/p. (5.6)

By step 1, {upn}n∈N is bounded in W 1,1(�). Then, by Theorem 8.8 in [6] and
Theorem 1 in [9, Sect. 5.2.1] there exist a constant C > 0, u1, and a subsequence,
still denoted {upn}n∈N, such that

‖upn‖L∞(�) ≤ C ∀n ∈ N, (5.7)

upn → u1 strongly in Lq(�) for any q ∈ [1,∞), (5.8)

upn → u1 a.e. in �, (5.9)

and

‖u′
1‖(�) ≤ lim inf

n→∞ ‖u′
pn

‖L1(�) ≤ lim inf
n→∞ ‖u′

pn
‖Lp(�)(�(�))(pn−1)/pn

= lim inf
p→1+ λ2,p(�)1/p. (5.10)
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Moreover, by (5.7), (5.8), and Holder’s inequality we have that∫
�

|u1(x)|dx = lim
n→∞

∫
�

|upn(x)|dx ≤ lim
n→∞‖upn‖Lpn(�)(�(�))(pn−1)/pn = 1

≤ lim
n→∞Cpn−1‖upn‖L1(�)(�(�))(pn−1)/pn =

∫
�

|u1(x)|dx.

Then ‖u1‖L1(�) = 1.
On the other hand, by (5.7) we have that {|upn |pn−2upn}n∈N is bounded in

L∞(�). Therefore, there exist a function w and a subsequence, still denoted
{upn}n∈N, such that

|upn |pn−2upn ⇀ w weakly in Lq(�) for any 1 < q < ∞.

Thus, ∫
�

w(x)dx = lim
n→∞

∫
�

|upn(x)|pn−2upn(x) dx = 0,

and for any ϕ ∈ C∞(�), we have∣∣∣∣
∫

�

w(x)ϕ(x) dx

∣∣∣∣ =
∣∣∣∣ lim
n→∞

∫
�

|upn(x)|pn−2upn(x)ϕ(x) dx

∣∣∣∣
≤ lim

n→∞Cpn−1
∫

�

|ϕ(x)|dx (by (5.7))

=
∫

�

|ϕ(x)|dx.

Then w ∈ L∞(�), and ‖w‖L∞(�) ≤ 1. In addition, by (5.9),

|upn |pn−2upn → sgn(u1)

a.e. in {x : u1(x) �= 0} as n → ∞. Thus, w ∈ sgn(u1) and
∫
�

w(x)dx = 0, that is,∫
�

sgn(u1)(x) dx = 0.
Then u ∈ BV(�) and

∫
�

sgn(u1)(x) dx = 0, and therefore, by (5.10),

�2,p(�) ≤ ‖u′
1‖(�) ≤ lim inf

p→1+ λ2,p(�)1/p

since ‖u1‖L1(�) = 1.
Setp 3. Finally, we show that

lim sup
p→1+

λ2,p(�)1/p ≤ �2,1(�).

Let {pn}n∈N ⊂ (1,2) be such that pn → 1+ and

lim sup
p→1+

λ2,p(�)1/p = lim
n→∞λ2,pn(�)1/pn . (5.11)

Given v ∈ BV(�) \ {0} such that
∫
�

sgn(v)(x) dx = 0, there exists {ϕj }j∈N ⊂
C∞(�) such that

ϕj → v strongly in L1(�), (5.12)

ϕj → v a.e. in �, (5.13)

‖ϕ′
j‖L1(�) → ‖v′‖BV(�). (5.14)
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Moreover, there exists a constant C > 0 such that

‖ϕj‖L∞(�) ≤ C ∀j ∈N. (5.15)

Fix j ∈ N. For any n ∈ N, there exists cj,n ∈ [minx∈� ϕj (x),maxx∈� ϕj (x)]
such that ∫

�

|ϕj (x) − cj,n|pn−2(ϕj (x) − cj,n) dx = 0. (5.16)

By (5.15) there exist cj ∈ [minx∈� ϕj (x),maxx∈� ϕj (x)] and a subsequence, still
denoted {cj,n}n∈N, such that cj,n → cj as n → ∞. Moreover, proceeding as in
step 2, we can check that there exists wj ∈ sgn(ϕj − cj ) such that

∫
�

wj (x) dx =
0, that is,

∫
�

sgn(ϕj (x) − cj ) dx = 0.
Then,

lim sup
p→1+

λ2,p(�)1/p = lim
n→∞λ2,pn(�)1/pn ≤ lim inf

n→∞
‖(ϕj − cj,n)

′‖Lpn(�)

‖(ϕn − cj,n)‖Lpn(�)

≤ lim inf
n→∞

‖(ϕj − cj,n)
′‖(pn−1)/pn

L∞(�) ‖(ϕni
− cni ,pi

)′‖1/pn

L1(�)

(�(�))(1−pn)/pn‖(ϕj − cj )‖L1(�)

= ‖(ϕj − cj )
′‖L1(�)

‖ϕj − cj‖L1(�)

.

(5.17)
On the other hand, since cj ∈ [minx∈� ϕj (x),maxx∈� ϕj (x)] for all j ∈ N,

by (5.15) there exist c ∈ R and a subsequence, still denoted {cj }j∈N, such that
cj → c as j → ∞. Then, by (5.12) we have that ϕj − cj → v − c strongly in
L1(�). Therefore, by Lemma 5.2,

∫
�

sgn(v(x) − c) dx = 0. Hence, by (5.17),
(5.14), and Lemma 5.2 we obtain

lim sup
p→1+

λ2,p(�)1/p ≤ lim
j→∞

‖(ϕj − cj )
′‖L1(�)

‖ϕj − cj‖L1(�)

= lim
j→∞

‖ϕ′
j‖L1(�)

‖ϕj − cj‖L1(�)

= ‖v′‖(�)

‖v − c‖L1(�)

= ‖v′‖(�)

‖v‖L1(�)

.

Since v is arbitrary, we have that

lim sup
p→1+

λ2,p(�)1/p ≤ �2,1(�).

Therefore, from this inequality and step 2 we conclude that

lim
p→1+ λ2,p(�) = �2,1(�)

and that u1 is a minimizer for (1.5). �

The next result gives a curious property that we include here just for completeness,
although it is not needed in the proofs of our main results.
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Lemma 5.3. Let � be a connected compact metric graph, ϕ ∈ C∞(�) be such
that ∫

�

sgn(ϕ)(x) dx = 0, (5.18)

and {cp}p>1 be a subset of (minx∈� ϕ(x),maxx∈� ϕ(x)) such that∫
�

|ϕ(x) − cp|p−2(ϕ(x) − cp) dx = 0. (5.19)

Then cp → 0 as p → 1+.

Proof. We show that all convergent subsequences of {cp}p>1 converge to 0. Let
{cpi

}i∈N be a subsequence of {cp}p>1 such that

pi → 1+ and cpi
→ c ∈

[
min
x∈�

ϕ(x),max
x∈�

ϕ(x)
]

as i → ∞. We will see that c = 0.
It is clear that there exists a constant C > 0 such that

‖ϕ − cpi
‖L∞(�) ≤ C ∀i ∈ N. (5.20)

Then {|ϕ − cpi
|pi−2(ϕ − cpi

)}i∈N is bounded in Lq(�) for all q ∈ [1,∞].
Therefore, there exist v ∈ Lq(�) and a subsequence that, still denoted {|ϕ −
cpi

|pi−2(ϕ − cpi
)}i∈N, such that

|ϕ − cpi
|pi−2(ϕ − cpi

) ⇀ v weakly in Lq(�)

for any 1 < q < ∞. Thus,∫
�

v(x) dx = lim
i→∞

∫
�

|ϕ(x) − cpi
|pi−2(ϕ(x) − cpi

) dx = 0, (by (5.19))

and for any φ ∈ C∞(�), we have∣∣∣∣
∫

�

v(x)φ(x) dx

∣∣∣∣ =
∣∣∣∣ lim
i→∞

∫
�

|ϕ(x) − cpi
|pi−2(ϕ(x) − cpi

)φ(x) dx

∣∣∣∣
≤ lim

i→∞Cpi−1
∫

�

|φ(x)|dx (by (5.20))

=
∫

�

|φ(x)|dx.

Then v ∈ L∞(�), ‖v‖L∞(�) ≤ 1, and∫
�

v(x) dx = 0. (5.21)

In addition,

|ϕ − cpi
|pi−2(ϕ − cpi

) → sgn(ϕ − c)

a.e. in {x : ϕ(x) − c �= 0} as i → ∞. Therefore, v ∈ sgn(ϕ − c).
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On the other hand, by (5.18) there exists w ∈ sgn(ϕ) such that

0 =
∫

�

w(x)dx = �(E+
0 ) +

∫
E0

w(x)dx − �(E−
0 ), (5.22)

where E+
0 = {x : ϕ(x) > 0}, E−

0 = {x : ϕ(x) < 0}, and E0 = {x : ϕ(x) = 0}.
We now suppose by contraction that c �= 0. We only consider the case c > 0.

The case c < 0 is similar.
Taking E+

c = {x : ϕ(x) > c}, E−
c = {x : ϕ(x) < c}, Ec = {x : ϕ(x) = c}, and

E0,c = {x : 0 < ϕ(x) < c}, we have that

0 =
∫

�

v(x) dx (by (5.21))

= �(E+
c ) − �(E−

c ) +
∫

Ec

v(x) dx (v ∈ sgn(ϕ − c))

= �(E+
c ) − �(E0,c) − �(E0) − �(E−

0 ) +
∫

Ec

v(x) dx

≤ �(E+
c ) − �(E0,c) +

∫
E0

w(x)dx − �(E−
0 ) +

∫
Ec

v(x) dx (‖w‖L∞(�) ≤ 1)

= �(E+
c ) − �(E0,c) − �(E+

0 ) +
∫

Ec

v(x) dx (by (5.22))

= −2�(E0,c) +
∫

Ec

(v − 1)(x) dx ≤ −2�(E0,c) (‖v‖L∞(�) ≤ 1).

If �(E0,c) > 0, then we arrive at a contradiction. If �(E0,c) = 0, then we have
two possibilities: either ϕ ≥ c or ϕ ≤ 0. In the case ϕ ≥ c, we get a contradic-
tion with (5.22). Finally, if ϕ ≤ 0, then we arrive at a contradiction with (5.21).
Consequently, c = 0. �

Proof of Theorem 1.4. We begin by observing that

�2,1(�) ≤ inf

{
Per(E)

min{�(E), �(� \ E)} : D � �,E �= ∅
}
.

Therefore, if u = χA − χ�\A is a minimizer for �2,1(�), then

�2,1(�) = ‖u′‖(�)

‖u‖L1(�)

= 2 Per(A)

�(�)
≥ inf

{
Per(E)

min{�(E), �(� \ E)} : D � �,E �= ∅
}
,

that is,

�2,1(�) = 2 Per(A)

�(�)
= inf

{
Per(E)

min{�(E), �(� \ E)} : E � �,E �= ∅
}
.

On the other hand, suppose that (1.6) is valid. For any v ∈ BV(�) such that∫
�

sgn(v)(x) dx = 0, v �= 0, by the coarea formula (see [9, Thm. 1 in Sect. 5.5])
we have that

‖v′‖(�) =
∫ ∞

−∞
Per(E+

t ) dt, (5.23)

where E+
t = {x : v(x) > t}.
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Since
∫
�

sgn(v)(x) dx = 0, we also have that �(E+
t ) ≤ �({x : v(x) ≤ t}) for all

t ≥ 0 and �(E+
t ) ≥ �({x : v(x) ≤ t}) for all t < 0. Then, by (5.23) and (1.6) we

get

‖v′‖(�) =
∫ ∞

0
Per(E+

t ) dt +
∫ 0

−∞
Per(E+

t ) dt

≥ 2 Per(A)

�(�)

(∫ ∞

0
�(E+

t ) dt +
∫ 0

−∞
�({x : v(x) ≤ t}) dt

)

≥ 2 Per(A)

�(�)
‖v‖L1(�).

Then,

�2,1(�) ≥ 2 Per(A)

�(�)
= ‖u′‖(�)

‖u‖L1(�)

. (5.24)

Finally, we observe that �(x : u(x) > 0) = �(A) = �(� \ A) = �({x : u(x) ≤
0}). Then

∫
�

sgn(u)(x) dx = 0, and by (5.24), u is a minimizer for �2,1(�). �

Remark 5.4. In the example described in Remark 3.1 with three edges of the
same length L, we have that this limit selects (as for the case p = ∞) two edges
as A∞ and B∞ and the third edge is just {u = 0}. Here we have only one “cut” in
our graph � (the perimeter of A and B inside � is one).

Now, let us consider the same configuration of the graph, but with three dif-
ferent lengths L1, L2, L3 for the three different edges, and let us assume that
L1 > L2 > L3 with L1 > L2 +L3. In this case, we get that this limit finds a point
x0 ∈ � that divides � in two sets A and B with the same total length. The position
of x0 is the point in L1 whose distance to v1 is (L1 + L2 + L3)/2.

�

L1
L2

L3
v1 v2

v3

v4

x0
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