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ABSTRACT
Hydrosedimentological conditions of floodplain rivers can affect nutrient delivery processes. This 
study evaluated the effects of sedimentological and hydrological regimes on nitrogen (N) speciation 
and transport in the floodplain–river system of the Middle Paraná. Relations of sedimentological 
and hydrological regimes, assessed through turbidity and hydrometric level, with N speciation and 
concentration were analyzed. Simple linear regressions were performed to assess whether N load 
changed within the main channel in response to hydrological and sedimentological regimes. From 
the main channel to the floodplain, dissolved inorganic N decreased; however, the most isolated 
lake had the highest N concentration, almost totally in organic form. Turbidity was negatively 
associated with concentrations of nitrate-N (NO3-N), nitrite-N (NO2-N), and dissolved organic N 
(DON), and relative contributions of these N forms to total N (TN) but was positively correlated to 
particulate N (PN) and ammonium-N (NH4-N). The hydrometric level was positively associated with 
DON concentration and its relative contribution at the main channel but negatively associated with 
DON, PN, and TN concentrations in the most isolated lake. Simple linear regressions showed that 
the sedimentological regime significantly explained all N forms but not TN load. Flooding increased 
TN and mainly DON load. The results show that the hydrosedimentological regime largely affects N 
transport and speciation. The sediment peak incorporates PN to the system and affects dissolved 
N speciation, probably through effects of suspended particles on redox reactions. The increase 
of N inputs to the fluvial system during the flood could be caused by DON exportation from the 
floodplain.

Introduction

Nitrogen (N) is among the most important nutrients in 
aquatic ecosystems because it is often a limiting factor for 
production in waterbodies (Carignan and Planas 1994, 
Jansson et al. 1996, Abell et al. 2010). N is present in dif-
ferent chemical (organic and inorganic) and physical (dis-
solved and particulate) forms with variable bioavailability; 
therefore, the ecological functioning of aquatic ecosystems 
depends both on its total supply and speciation (Mozdzer 
et al. 2010).

Transformations of N forms are generally mediated by 
the biota. The major N compounds available for macro-
phyte and phytoplankton uptake are present as dissolved 
inorganic forms (nitrite, nitrate, and ammonium), which 
are assimilated into organic constituents of cells (Okafor 
2011). A large number of microorganisms can transform 
N forms through both assimilatory and dissimilatory pro-
cesses, however, including nitrification and denitrification 

(Bothe et al. 2007) controlled by multiple environmental 
conditions, such as redox potential, temperature, hydrol-
ogy, and concentration of suspended sediments (Burgin 
and Hamilton 2007, Alexander et al. 2009, Xia et al. 2013).

Floodplain river systems are characterized by a high 
heterogeneity of environmental conditions that affect N 
dynamic both temporally and spatially (Tockner et al. 
1999, Ward et al. 2002). The decreasing trend of nitrate 
from the main channel to the more isolated floodplain 
lakes (Maine et al. 2004, Emmerton et al. 2008, Mayora 
et al. 2013) has been attributed to bacterial denitrification 
and N biological assimilation in floodplain waterbodies, 
which are characterized by high biological productivity 
and organic matter content. Consequently, floodplains are 
considered important sinking areas of the N transported 
by the river, mainly during high waters because of the 
increased exchange of materials between environments 
(Villar et al. 1999, Maine et al. 2004, Hoffmann et al. 2011, 
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2   G. MAYORA ET AL.

within the floodplain, mainly from the migration of  
secondary channels (Paira and Drago 2007). Nearly 75% 
of the water discharge is provided by the Upper Paraná 
River, whereas nearly 90% of the suspended sediments are 
supplied, through the Paraguay River, by Andean head-
waters of the Bermejo River (Amsler and Drago 2009). 
The sediment peak occurs during the late summer, but 
hydrological phases are irregularly timed.

The study sites (Fig. 1c and d) are located within the 
Middle Paraná River system and include the main channel 
and 3 floodplain waterbodies: a lake directly and perma-
nently connected to the main channel by a 0.65 km long 
channel (Lake 1); Miní Stream, a small secondary channel 
connected to several floodplain waterbodies; and a shal-
low lake indirectly connected to the fluvial system through 
the Miní Stream during high waters (Lake 2). The aquatic 
vegetation of both the Lake 1 and Miní Stream is generally 
restricted to the margins. Lake 2 is characterized by a large 
development of aquatic vegetation, generally dominated 
by Ludwigia peploides (Kunth) Raven.

Samplings and laboratory analysis

Samples were collected fortnightly from February to 
November 2012. Subsurface water samples were collected 
in triplicate at the center of the lotic environments and in 
the pelagic zone of the lakes. At the main channel, water 
samples were collected at a point far from tributaries 
that could locally influence water quality. This point is 
located 6 km downstream of the main channel section 
(31°42′–31°40′S; 60°29′–60°45′W), which is considered 
a control site where 85% of total water discharge passes 
through (Drago 1984). Water samples were refrigerated 
and processed within 24 h after sampling, except those 
for dissolved organic carbon (DOC) analysis, which were 
preserved by acidification with concentrated phosphoric 
acid and refrigerated until their analysis (ISO 8245, 1999) 
within 28 d after sampling. Conductivity, pH, tempera-
ture, and dissolved oxygen (HANNA portable checkers) 
were measured in situ.

Turbidity (formazin turbidity units [FTU]) was spec-
trophotometrically estimated with a HACH DR 2000 
spectrophotometer used to estimate the sedimentological 
regime of the environments (Golterman 1975). A varia-
ble volume of water was filtered through Whatman GF/F 
glass-fiber filters with a vacuum pump; filters were stored 
at −20 °C up to 3 weeks for spectrophotometric analysis of 
chlorophyll a (APHA 2005). Filtered water samples were 
filtered again through Millipore filters (pore size: 0.45 μm) 
for analysis of NO2-N by diazotization with sulfanilamide, 
NO3-N + NO2-N by reduction of NO3-N with hydrazine 
sulfate and subsequent determination of NO2-N (Hilton 
and Rigg 1983), NH4-N by the indophenol blue method, 

Roach and Grimm 2011, Welti et al. 2012). Sediment 
peaks considerably increase the rates of N transforma-
tions because suspended particles favor the generation of 
microsites with particular conditions, stimulation of bac-
terial growth, and adsorption of nitrogenous molecules on 
their surfaces (Liu et al. 2013, Xia et al. 2013).

Floodplain rivers are subjected to increasing anthro-
pogenic inputs of N and to hydrosedimentological altera-
tions that could affect delivery processes (Hamilton 2010, 
Morée et al. 2013). In South America, these habitats have 
been comparatively less altered and are under-represented 
in studies of N load (Alvarez-Cobelas et al. 2008, Tockner 
et al. 2008), despite their importance in the amount of 
matter they transport to the sea (McClain and Gann 
2010). The Paraná River, one of the largest floodplain flu-
vial systems of South America, discharges ~470 km3 of 
water and 80 × 106 metric tons of suspended sediments 
to the sea per year (Drago 2007). At its middle stretch, 
most of the water discharge comes from the Upper Paraná 
River, whereas most of the suspended solids come from 
an Andean tributary (Amsler and Drago 2009). Hence, 
hydrological and sedimentological regimes are not cou-
pled, individualizing their effects on N dynamics.

The aim of this work was to evaluate the N dynamic 
in the subtropical system of the Middle Paraná River in 
relation to the sedimentological and hydrological regimes 
and, particularly, to test their effects on the N speciation 
in a main channel–floodplain gradient and the N load 
in the main channel. The analyzed N forms included 
nitrite-N (NO2-N), nitrate-N (NO3-N), ammonium-N 
(NH4-N), dissolved organic N (DON), and particulate N 
(PN). We hypothesized that (1) during high waters, inor-
ganic N forms increase in the floodplain and organic N 
forms increase in the main channel because of the higher 
material exchange among environments; and (2) the sed-
iment peak increases the load of PN in the main channel, 
whereas the flood increases the load of DON because of 
material inputs from the floodplain.

Materials and methods

Study sites

The subtropical Paraná River in central South America 
covers a basin area of 3.1 × 106 km2 (Fig. 1a). The middle 
stretch of the river extends from its confluence with the 
Paraguay River (27°29′S; 58°50′W) to the city of Diamante 
(Argentina; 32°4′S; 60°32′W; Fig. 1b) and has a turbid 
main channel with suspended solids ranging from 20 to 
310 mg L−1 (Bonetto et al. 1994). Along its right margin 
is a 10–50 km wide floodplain (13 000 km2) comprising 
permanent and temporary waterbodies that flood with 
variable frequency. At least 1500 permanent lakes (mean 
area: 0.32 km2, mean maximum depth: 1.46 m) developed 
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INLAND WATERS   3

Figure 1.  (a) drainage basin of the Paraná river; (b) main tributaries and location of the study area; (c) detail of the main channel and 
floodplain at the study area; (d) sampling sites location (indicated by circle).

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

1:
45

 1
6 

N
ov

em
be

r 
20

17
 



4   G. MAYORA ET AL.

variable). A delay of 5−30 d in turbidity values of the 
Paraná River with respect to hydrometric level of the 
Bermejo River (Alarcón et al. 2003) were evaluated at 1 d 
intervals to determine the best fit in the regression analysis.

Hydrological and sedimentological regimes were 
assessed through the river hydrometric level and tur-
bidity at each site, respectively. A Kruskal-Wallis with 
Dunn’s posttest was used to assess differences among 
the study sites with respect to limnological variables. 
Relations of hydrological and sedimentological regimes 
with concentrations of N forms as well as their percent-
ages of contribution to TN and DN were analyzed with 
Spearman correlation using PAST software (Hammer et al.  
2001). Simple linear regressions were performed with 
RcmdrPlugin.HH package in R software (R Development 
Core Team 2008) to assess whether the loads of analyzed 
N forms (dependent variables) changed in response to 
the hydrosedimentological regimes of the main channel 
(independent variables: hydrometric level and turbidity). 
Data were tested for normality and homogeneity of var-
iance of residuals.

Results

Limnological variables and N speciation within the 
main channel–floodplain gradient

Chlorophyll a and DOC concentrations increased from 
the main channel to the most isolated floodplain lake, 
whereas dissolved oxygen and NO3-N showed the oppo-
site trend (Kruskal-Wallis: significant differences among 
Lake 2 and the other sites, P < 0.001; Table 1). Lake 2 had 

and total dissolved N (DN) by digestion with potassium 
persulfate (APHA 2005). Total N (TN) was determined 
from unfiltered water following the same digestion proce-
dure. Dissolved inorganic nitrogen (DIN) was calculated 
as the sum of NO3-N, NO2-N, and NH4-N; DON as the 
difference between DN and DIN; and PN as the difference 
between TN and DN. Contributions of each N form to the 
TN concentration, as well as contributions of dissolved 
N forms to the DN concentration (%), were calculated.

Depth of floodplain sites was measured in situ with an 
ultrasonic probe. In the main channel, the formation of 
migrating bed dunes up to 2.5 m in height (Reesink et al. 
2015) precluded in situ depth as a suitable measure to eval-
uate its hydrological variations; therefore, its hydrometric 
level at the Paraná Harbor Gauge (informed by “Centro 
de Informaciones Meteorológicas”, CIM-UNL) was used 
to estimate the hydrological regime of the system. Water 
discharge (Q; m3 s−1) was calculated following Toniolo 
(1999) as: 

 

where PHL is the hydrometric level of the main chan-
nel at the Paraná Harbor Gauge. Loads (metric tons d−1) 
of different N forms were estimated as the product of  
Q × N concentrations.

The hydrometric level of the Bermejo River at the 
Mansilla Gauge was obtained from the Comisión Regional 
del Río Bermejo. Regression analyses were performed to 
assess the relationship between the hydrometric level of 
the Bermejo River (independent variable) and turbidity at 
the main channel of the Middle Paraná River (dependent 

(1)
Q = 7.6206 × 2.71828183PHL+2609.93 × PHL + 6288.27,

Table 1. Mean values and ranges of variation (in brackets) of limnological variables and relative contributions of n forms to tn and 
dn at the main channel and floodplain environments of the Middle Paraná river sampled from February to november 2012. Cond = 
conductivity, Chl-a = chlorophyll a, dO = dissolved oxygen, n/d = not detected. different letters indicate significant differences among 
environments according to Kruskal–Wallis test and dunn’s posttest (P < 0.05).

Main channel Lake 1 Miní Stream Lake 2 
temp (°C) 20.5 (13.0–28.5) 19.8 (11.1–27.8) 19.3 (9.6–28.0) 17.9 (9.3–29.2)
pH 6.6 (5.2–7.7) 6.6 (5.7–7.3) 6.6 (5.6–7.3) 6.5 (5.4–8.9)
Cond (μs cm−1) 92 (69–115) 92 (71–121) 111 (81–165) 93 (39–139)
dOC (μM) 252 (199–336)a 259 (177–322)a 320 (201–441)a 858 (331–1266)b

Chl-a (μg l−1) 2.3 (0.5–8.8)a 3.8 (0.9–8.4)a 11.6 (1.7–33.5)a 11.6 (3.0–51.7)b

dO (mg l−1) 7.8 (6.4–9.9)a 7.5 (6.3–10.5)a 6.4 (4.9–8.5)a 2.9 (n/d–15.0)b

tn (μM) 78.8 (50.1–116.4)a 73.2 (43.2–112.3)a 68.8 (48.8–102.0)a 124.0 (50.7–315.6)b

dOn (μM) 28.4 (3.9–65.6)a 27.3 (6.0–63.1)a 31.5 (3.1–66.6)a 66.6 (33.5–97.0)b

nO3-n (μM) 19.4 (10.8–29.3)a 17.1 (10.3–24.1)a 10.6 (2.8–20.1)b 1.3 (n/d–6.6)c

nO2-n (μM) 0.07 (n/d–0.15)a 0.07 (n/d–0.16)a 0.08 (n/d–0.23)a 0.02 (n/d–0.13)b

nH4-n (μM) 3.8 (n/d–20.1) 3.8 (n/d–22.2) 5.2 (n/d–43.7) 2.8 (n/d–18.2)
Pn (μM) 28.2 (0.9–84.5) 26.6 (2.3–81.8) 24.5 (1.0–78.2) 54.0 (1.3–220.6)
dOn to tn (%) 37.3 (4.4–72.2)a 38.2 (10.5–73.7)a 47.5 (3.6–82.7)ab 60.2 (27.2–98.0)b

nO3-n to tn (%) 25.4 (13.1–41.8)a 24.5 (14.3–55.7)a 15.5 (5.6–31.4)a 1.4 (0.0–6.3)b

nO2-n to tn (‰) 1.0 (0.0–2.5)a 1.0 (0.0–2.8)a 1.2 (0.0–4.4)a 0.2 (0.0–1.2)b

nH4-n to tn (%) 3.4 (0.0–14.3) 3.3 (0.0–18.7) 3.7 (0.0–13.1) 1.2 (0.0–3.7)
Pn to tn (%) 33.7 (1.0–72.6) 33.9 (4.1–72.8) 33.2 (1.9–89.4) 37.1 (1.5–71.2)
dOn to dn (%) 51.7 (12.0–75.2)a 54.0 (21.9–76.8)a 62.1 (22.0–93.0)a 94.6 (84.2–100)b

nO3-n to dn (%) 39.4 (20.8–59.4)a 38.4 (22.3–72.5)a 28.0 (6.3–71.1)a 1.9 (0.0–8.2)b

nO2-n to dn (‰) 1.3 (0.0–2.9)a 1.4 (0.0–3.0)a 1.8 (0.0–6.3)a 0.2 (0.0–1.6)b

nH4-n to dn (%) 8.7 (0.0–39.0) 7.5 (0.0–39.1) 9.7 (0.0–47.4) 3.5 (0.0–15.8)
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INLAND WATERS   5

Variability of N speciation in relation to 
hydrosedimentological phases

Hydrological conditions at the Middle Paraná River 
changed from a low water phase (LW1, Feb–Apr 2012) 
to a high water phase (HW, May–Aug 2012) and back to a 
LW (LW2, Sep–Nov 2012; Fig. 2a). Lake 2 was connected 
to the fluvial system only during HW, whereas Lake 1 
remained permanently connected but with higher lotic 
influence during HW. The turbidity peak at the main 
channel coincided with low waters (LW1: 84-288 FTU; 
Fig. 2b). The sedimentological regime at the main channel 
assessed through its turbidity (PTurb; FTU) was signifi-
cantly explained by the hydrological state of the Bermejo 
River with an offset of 8 d (r2 = 0.86; P < 0.01) according 
to the following exponential regression: 
 

where BHL is the hydrometric level of the Bermejo River 
(m). The turbidity peak was slightly attenuated at the 
floodplain waterbodies connected to the main channel 
(Fig. 2b). During LW1, turbidity also increased at Lake 2 
(up to 370 FTU; Fig. 2b).

At the main channel, the hydrometric level was nega-
tively associated with the relative contribution of NO3-N 
to DN (NO3-N:DN) and positively associated with the 
concentration and relative contribution of DON to TN 
and DN (DON:TN and DON:DN). These trends were 
similar to those of the more connected environments 
(Lake 1 and Miní Stream; Spearman: P < 0.05; Table 2). 
DON concentration increased during HW at all sites 
except at Lake 2, where it decreased (Fig. 3). In addition, at 
Lake 2 the river hydrometric level was negatively related to 
TN and PN concentrations (Spearman: P < 0.01; Table 2).

At all studied sites, turbidity was negatively associated 
with concentrations of dissolved N forms (except for 
NH4-N) and/or their relative contributions to TN and DN 

(2)PTurb = 7.432e0.4821(BHL),

the highest TN, DON, and PN as well as the lowest DIN 
concentrations (Table 1). This waterbody differed signifi-
cantly from the other sites in terms of the concentrations 
and relative contributions of dissolved N forms (except 
for NH4-N) and TN concentration (Kruskal-Wallis:  
P < 0.05; Table 1).

Figure 2.   Variations from February to november 2012 of (a) 
hydrometric level of the main channel and water depth of 
floodplain environments; (b) turbidity at each sampled site of the 
Middle Paraná river. Hydrosedimentological phases (lW1, HW, 
and lW2) are shown.

Table 2.  spearman correlation coefficients among indicators of the hydrosedimentological regime (river hydrometric level [Hl] and 
turbidity at each site [turb]) and n form concentrations and their relative contributions to tn and dn at the main channel and floodplain 
environments of the Middle Paraná river sampled from February to november 2012. Bold values = P < 0.01; regular type = P < 0.05.

Main channel Miní Lake Miní Stream Aislada Lake

HL Turbidity HL Turbidity HL Turbidity HL Turbidity
tn −0.75 0.72
dOn 0.72 0.69 −0.60
nO3-n −0.52 −0.57
nO2-n −0.74 −0.68 −0.52
nH4-n 0.88 0.58
Pn 0.74 0.69 −0.55 0.72
dOn:tn 0.64 −0.72 −0.67
nO3-n:tn −0.74
nO2-n:tn −0.74 −0.69 −0.62
nH4-n:tn 0.82
Pn:tn 0.81 0.61 0.80 0.64
dOn:dn 0.66 0.60 0.61 −0.53
nO3-n:dn −0.56
nO2-n:dn −0.69 −0.54
nH4-n:dn 0.85 0.66 0.54
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6   G. MAYORA ET AL.

(Spearman: P < 0.05; Table 2). By contrast, concentrations 
and contributions of PN and NH4-N were positively cor-
related with turbidity (Spearman: P < 0.05; Table 2). LW1 
concentrations and relative contributions were therefore 
lowest for NO2-N and NO3-N and highest for PN and 
NH4-N (Fig. 3).

Effects of the hydrosedimentological regime on N 
transport within the main channel

Simple linear regression analysis showed that TN 
load within the main channel, and particularly DON, 
increased with hydrometric level (r2 = 0.41, P = 0.0131 and  
r2 = 0.45, P = 0.0083, respectively; Fig. 4). Turbidity 
explained significantly the loads of NO3-N (r2 = −0.32, 
P = 0.0335), NO2-N (r2 = −0.68, P = 0.0003), DON  
(r2 = −0.38, P = 0.0188), NH4-N (r2 = 0.49, P = 0.0056), 
and PN (r2 = 0.30, P = 0.0428; Fig. 5).

Discussion

The traditional theoretical framework maintains that 
floodplains act as nutrient sink areas, removing N from 
the main channel during floods (Villar et al. 1999, Maine 

Figure 3.   Mean concentrations of dOn ( ), Pn ( ) and dIn ( ) (bar graphs), and percentages of contribution to dIn of nO2-n (■), 
nO3-n ( ), and nH4-n () (pie charts) during different hydrosedimentological phases (lW1, HW, and lW2; Feb–nov 2012) at (a) the main 
channel of the Middle Paraná river; (b) lake 1; (c) Miní stream; (d) lake 2. note differences in y-axes scales.

Figure 4.  scatter plots for the relationships between hydrometric 
level of the main channel (predictor variable) and n form loads 
(dependent variables). solid lines are linear regression lines, 
dotted lines indicate 95% confidence intervals around regression 
lines, and dashed lines indicate 95% prediction intervals.  Only 
significant relationships are shown (P < 0.05).
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INLAND WATERS   7

processes governing N transformation and transport 
within floodplain rivers (Fig. 6).

Spatial variability of N speciation

During all studied hydrosedimentological phases, we 
found a decreasing DIN (mainly NO3-N) concentration 
trend from the main channel toward the most isolated 
floodplain lake, as in previous studies (Maine et al. 2004, 
Emmerton et al. 2008, Mayora et al. 2013). The most 
isolated lake, however, had the highest N concentration, 
almost totally in organic form. Similarly, Devercelli et al. 
(2016) analyzed 22 environments with different degrees 
of hydrological connectivity to the main channel of the 
Middle Paraná River and observed the highest N concen-
trations at more isolated lakes despite their low NO3-N 
concentration. The high N concentration suggests that 
its inputs are higher than its outputs in these alluvial 
waterbodies.

Most previous studies emphasized biological assimi-
lation and denitrification as processes to remove NO3-N 
from floodplain lakes (Villar et al. 1999, Saunders and 
Kalff 2001, Maine et al. 2004, Roach and Grimm 2011). 
The high biomass of aquatic macrophytes assimilates 
large quantities of DIN, which is immobilized as organic 
N and incorporated into bottom sediments after plant 
decay (Villar et al. 1999). Anaerobic conditions and high 
organic matter content promote denitrification, however, 
which reduces NO3-N to gaseous N that is permanently 
lost from the waterbodies to the atmosphere (Burgin and 
Hamilton 2007). By contrast, N retained within biomass 
can be returned to the water column, either as PN, DON, 
or NH4-N (excretes, exudates, detritus, and lixiviates; Wen 
and Peters 1994, Tyler et al. 2001, Aprile and Darwich 
2013). The low DIN together with the high DON and PN 
concentrations at Lake 2 suggest that in highly vegetated 
areas of the floodplain, the N dynamic is largely affected by 
biological assimilation. We hypothesized that denitrifica-
tion is comparatively less important in these sites, leading 
to low permanent N removal (Fig. 6). In addition, inputs 
of terrestrial N through surface runoff and flooding of 
riparian areas could increase the fraction of organic N at 
more isolated floodplain lakes (Hill et al. 1999), increasing 
the relation of N inputs to N outputs (Fig. 6).

The dissimilatory nitrate reduction to ammonium 
(DNRA) can also remove NO3-N from floodplain lakes 
(Sgouridis et al. 2011, Welti et al. 2012). Similarly to deni-
trification, DNRA is promoted by anaerobic conditions 
and availability of organic carbon (electron donor) and 
prevails over denitrification when NO3-N (electron accep-
tor) is in limited supply (Tiedje 1988, Porubsky et al. 2009, 
Enrich-Prast et al. 2016). High organic matter and low 
NO3-N concentration in more isolated lakes of the Middle 

et al. 2004, Hoffmann et al. 2011, Roach and Grimm 
2011, Welti et al. 2012), but we found that during HW, 
N inputs to the main channel increased. In this respect, 
the analysis of temporal and spatial variability of N 
forms allowed us to propose new hypotheses about the 

Figure 5.   scatter plots of the relationships between turbidity 
of the main channel (predictor variable) and n form loads 
(dependent variables). solid lines are linear regression lines, 
dotted lines indicate 95% confidence intervals around regression 
lines, and dashed lines indicate 95% prediction intervals.  Only 
significant relationships are shown (P < 0.05).
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exchange of materials among the river and the floodplain 
during high waters was ineffective at decreasing the net 
input of N to the main channel. This finding is in contrast 
with traditional approaches indicating that floodplain 
lakes and riparian areas are important sinks of the N car-
ried by the river. The concept of floodplain as an N sink 
during high flow has been based on the low concentration 
of NO3-N and the high quantity of buried organic N at 
floodplain lakes as well as on the downstream decrease of 
NO3-N along the main channel during floods (Hamilton 
et al. 1997, Tockner et al. 1999, Maine et al. 2004, Mugni 
et al. 2005, Hupp et al. 2009, Wolf et al. 2013).

The downstream decrease of NO3-N along the main 
channel observed by Maine et al. (2004) in the Middle 
Paraná River during a flood could have been caused by 
incoming NO3-N-poor water from the floodplain and by 
NO3-N removal within the main channel itself (Alexander 
et al. 2009). Processes removing N from floodplain lakes 
and riparian areas (denitrification, biological assimilation 
and sedimentation of PN), however, are favored by higher 
development of bacteria and primary producers and 
increased residence time of water and N forms (Janauer 
and Kum 1996, Saunders and Kalff 2001, Alexander et 
al. 2009). N removal from the floodplain therefore likely 
increases during low water (Fig. 6) when the hydrological 
connectivity with the main channel is low, and therefore 
floodplain has no appreciable effect on N load in the river. 

Paraná system could promote DNRA over denitrification, 
as noted in the proposed theoretical framework (Fig. 6).  
Because NH4-N is more available biologically than  
NO3-N, DNRA increases N recycling but not N removal 
from waterbodies (Sgouridis et al. 2011).

Effects of the hydrological regime on N speciation 
and transport

During floods, the fraction of organic N increased in 
the main channel and directly connected environments, 
as predicted, but in the most isolated lake, inorganic N 
decreased, contrary to expectations. In the last site, con-
centrations of NO3-N and NO2-N were undetectable dur-
ing most samplings collected in high waters, suggesting 
a rapid removal of these anions after their input from the 
river.

Floods probably improved DON mobilization from 
more isolated floodplain lakes and riparian areas to the 
main channel (where both DON concentration and load 
increased with hydrometric level) by increasing hydro-
logical connectivity among environments (Tockner et al. 
1999). Similar results have been observed in other rela-
tively pristine floodplain rivers (Saunders and Lewis 1988, 
Emmerton et al. 2008, Zurbrügg et al. 2013, Zuijdgeest 
et al. 2015). The increased DON load caused the trans-
port of TN to rise during the flood; hence, the increasing 

Figure 6.  the main factors controlling transformation and remotion of n forms at the more isolated floodplain lakes and n exchanges 
within the main channel–floodplain gradient, according to the proposed hypothetical framework. these lists of n transformations 
and pathways are not exhaustive, but rather illustrate the relative importance of those considered most important. arrows indicate n 
transport. the size of arrows and letter fonts indicate the relative importance of n transport and transformation in each hydrological phase 
and comparatively between low waters and high waters. dnra = dissimilatory nitrate reduction to ammonium; n biol assimilation =  
n biological assimilation.

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

1:
45

 1
6 

N
ov

em
be

r 
20

17
 



INLAND WATERS   9

and PN, hence probably coming from bottom sediments 
(Hamilton and Lewis 1990) or constituting compounds 
in algal cells (Reynolds 2006).

At the main channel of the Middle Paraná River and 
permanently connected environments (Lake 1 and Miní 
Stream), the sediment peak was associated with high con-
centrations and relative contributions of PN and NH4-N 
attributed to the transport of vegetal detritus from flooded 
margins at the headwaters of the Bermejo River to the 
Middle Paraná system (Pedrozo and Bonetto 1987). 
Ammonification of organic N compounds can increase 
NH4-N concentration. Moreover, the high concentration 
of suspended particles could have favored ammonification 
by increasing availability of surfaces where both ammoni-
fying bacteria and DON can be adsorbed (Xia et al. 2013). 
This supposition is consistent with the low concentration 
of DON as well as of its relative contribution to TN and 
DN during periods with high turbidity. The sediment peak 
was also characterized by decreasing concentrations of 
NO2-N and NO3-N and relative contributions of these N 
forms to TN and DN. In turbid rivers, these ions can be 
largely removed by reduction because of the generation 
of particle microsites with low dissolved oxygen concen-
tration (Liu et al. 2013). In addition, particle surfaces may 
contain metals that catalyze redox reactions (Choi et al. 
2013) and act as reducing agents (Hou et al. 2015). As 
a result, we found that the sediment peak increased the 
transport of NH4-N and PN but decreased the transport 
of other dissolved N forms, with no significant effect on 
TN load.

Conclusion

Variations in river N load and speciation were governed 
by hydrosedimentological conditions. The sediment peak 
incorporated PN and influenced dissolved N speciation 
by favoring production of NH4-N and removal of other 
dissolved N forms, probably through effects of particles 
on redox reactions. Hence, the sedimentological regime 
affects N speciation but not N load. By contrast, the hydro-
logical regime influenced N load, which rose during the 
flood because of an increasing DON load. The N net input 
to the main channel during periods with increasing hydro-
logical connectivity among environments indicates that 
the floodplain can be a source of N to the river through 
DON exportation. Finally, DON is a significant compo-
nent of the N pool and should be included in studies on 
N pathways.
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