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Abstract 

Glass microspheres are used for both medical and industrial applications among others. It is of interest to develop simple 
experimental techniques to characterize the mechanical properties of different sets of glass microspheres. 

In this study we performed the Point Load Strength Tests (PLST) on alumino-borosilicate and yttrium-aluminosilicate glass 
microspheres samples, with sizes between 50 and 200  obtained by the In Flame Spherodization Method (IFSM). We 
measured the breaking load of each microsphere within a set, and  used Weibull statistics to determine the mechanical parameters 
values of each set of microspheres. 

We found for 75  microspheres, that those made of alumino-borosilicate glass have a Weibull modulus of 4.0±0.1 and for 
the yttrium-aluminosilicate microspheres the Weibull modulus is 3.3±0.1. Scale parameter values are 710±20 and 390±20MPa 
respectively. These results show that the PLST technique and Weibull analysis together constitute a valuable tool for mechanical 
characterization of glass microspheres samples. 
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1. Introduction  

Actually glass microspheres applications are as wide as medical applications, cancer radiotherapy treatment, drug 
delivery, proppants for the oil industry and even uses in the nuclear industry. Glass microspheres can be obtained 
from several methods, and the product properties will rely on the chosen production process. So it is of interest to 
develop a simple technique to analyze the mechanical behavior of sets of glass microspheres, and correlate the 
mechanical properties values obtained with the production process. 

 
Nomenclature 

 vitreous transition temperature 
E Young modulus 

 Poisson modulus 
 Vickers hardness 
,  and  radial stress, azimuthal stress and spherical stress 

R sphere or microsphere radii 
 external force applied on PLST 

 contact length relation between the sphere and the compressing element on PLST 
 maximum tensile stress at breakage 
 breakage external force 

 failure probability of a loaded sample 
 volume of a sample 

 tensile stress 
 Weibull modulus 
 scale parameter  

i order of tested microsphere  
n total number of microspheres tested on a set 

1.1. Glass Microspheres Production - In Flame Spherodization Method 

To obtain glass microspheres, we used the In Flame Spherodization Method (IFSM). In this method, irregular 
glass particles are fed into a flame with a temperature well over the vitreous transition temperature ( ). On their 
way, inside the flame and during a few milliseconds, the glass particles increase their temperature producing a 
simultaneous viscosity decrease adopting a spherical form due to the action of surface tension, Bortot (2012). 
In Fig. 1 we show the IFSM scheme: here the irregular glass particles are slowly fed to the hot region of the flame 
through the Powder Feeder System which consists of a set of vibratory sieves, and then at the center zone of the 
flame the glass particles become spheroidized. Finally the obtained microspheres travel through the cool region of 
the flame (where the temperature is below ) into a cyclone system, which collects all the spheroidized particles. 

 

 

 

 

 

 

 

Fig. 1. IFSM scheme, we present pictures of irregular glass particles and glass microspheres. 
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In the IFSM there is a temperature distribution inside the flame so each particle travels through a different 
thermal path, Bortot (2012). These different thermal paths produce differences in cooling rates for each spheroidized 
particle, which is the cause of different properties values among microsphere sets (different density values). 
In Fig. 2 we present a picture of the Flame Channeling System, between the torch and the cyclone on Fig. 1. Inside 
both circular windows, we can observe the flame and different microspheres glowing tracks (one and four tracks 
respectively). 
 

 

Fig. 2. Flame Channeling System. The flame and microspheres tracks are observed through two circular window holes. 

1.2. Mechanical Characterization Technique 

The Point Load Strength Test (PLST) is an inexpensive method for strength estimation of brittle materials. An 
extensive theoretical analysis of PLST for isotropic spheres was made by Hiramatsu and Oka (HO) on 1966, 
reviewed by Chau et al. (1999). HO obtained the stress field ( ,  and ) in a sphere of radius R as a function of 
the elastic properties of both the compressed material and the compressor element (E, ), the external applied force 
( ) and the contact length relation ( ). 
In Fig. 3 we show (a) a sphere under uniaxial compression; and (b) a schematic stress field in the compressed 
sphere. 

 
 

 

Fig. 3. (a) Sphere under uniaxial compression; (b) Schematic stress field diagram. 

In Fig. 3 (b) we have a three zones map with different stress field conditions. At zone I, which corresponds to the 
contact zone between the sphere and the compressor element, we have a compression stress field. Then in zone II, 
which is ring shaped around the contact area, we have borderlines where  and  become into tensile stresses. 
Finally in zone III, the rest of the volume of the sphere, we have that  and  are always tensile stresses. 
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Under this stress field, brittle spheres fail because of tensile stresses. From the HO analysis the maximum tensile 
stress is located at the load axis, specifically at the center point of the sphere. However when the contact length 
relationship is less than 0.4; the maximum tensile stress moves through the load axis to a point near to the surface of 
the sphere (always in the zone III of Fig. 3 (b)), Shipway et al. (1993), Schönert (2004), Chen (2007). 
Averaging these cases HO proposed, with reasonably accuracy, the relationship (1) to determinate the maximum 
tensile stress in a sphere at breakage. 

   (1) 

where  is the breakage external force, and  is the maximum tensile stress at breakage. 
 

Using experimental data we can calculate the value of  developed inside a tested microsphere, during a PLST 
experiment. Then to characterize a set of given glass microspheres, Weibull statistics allows us to analyze the data 
obtained from the corresponding set of PLST tests. 
According to Weibull statistics the breakage of a brittle sample is a statistic event and is due to tensile local stresses 
developed at previously existent cracks inside the material. The largest crack determines the total resistance of the 
sample, Ashby (1998). Equation (2) shows the Weibull Statistics expression:  

   (2) 

where  is the failure probability of a sample with volume  loaded with a tensile stress . In equation (2)   is the 
Weibull modulus which is a material property and accounts for the fragility of the material (the lesser the value of m, 
the larger the fragility); and  is a scale parameter which represents the stress allowing to survive 37% of the 
samples. The scale parameter is not a material property and decreases with larger sample volume because of the 
existence of larger cracks. 

 
In summary, using the PLST technique and Weibull statistics we performed the mechanical characterization of 

sets of glass microspheres with given chemical composition and size ranges. We measured the breakage load on 
each microsphere within a set during the PLST tests, and with the HO solution we calculated the maximum tensile 
stress at breakage. Then using the Weibull statistics, we determined the Weibull modulus and the scale parameter 
which represent the mechanical characteristics of each set of microspheres. 

2. Experimental Methods and Data Analysis 

2.1. Glass Microspheres Samples 

We used an alumino-borosilicate glass (SG7 glass) with a percent weight composition 71.7 SiO2; 8.4 B2O3; 8.6 
Al2O3; 1 MgO; 2.7 CaO; 7.5 Na2O; Audero et al. (1995), and yttrium-aluminosilicate glass (YAS glass) with 
composition 35 SiO2; 45 Y2O3; 20 Al2O3; Bortot (2012). 

In Table 1 we show several bulk properties of these glasses. 

Table 1. Glass physicals properties. 

Physical properties YAS glass, (Bortot,2012) SG7 glass, (Audero et al., 1995) 

vitreous transition temperature (°C) 910 560 

density (gr/cm3) 3.37 2.3 

Young modulus (GPa) 110 73 

Poisson modulus 0.29 0.22 

Vickers hardness (kgf/mm2) 850 550 
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We obtained different sets of microspheres from SG7 and YAS irregular glass particles by the IFSM with a 
butane-propane-oxygen flame. Then we performed the mechanical characterization of sets of 40 SG7 glass 
microspheres, each set having diameters of 75, 100, 125, and 150 . Also we compared two sets of 40 YAS glass 
microspheres with diameters around 75 , with and without an annealing process at 950°C for 4 hours after IFSM. 

2.2. Point Load Strength Test Device (PLST) 

We developed a sample holder device that was attached to an INSTRON Test Machine N°5567 to perform the 
PLST on each glass microsphere. The sample holder device consists of a compressor element and a container 
element made from cobalt steel “Super70(18)” (18% weight cobalt). The mechanical properties of the steel used are 

; ; , Shipway (1993). The hardness of the cobalt steel prevents plastic 
deformation of the compressor and container elements when each PLST test is performed. 
In Fig. 4 we show a lateral view scheme of the sample holder device. 

 
 

 

Fig. 4. Sample holder scheme, lateral view. 

To perform the PLST on each microsphere we used a magnifying glass to determine the tested microsphere size 
and a needle to handle it individually. To measure the breakage load we used a dynamometer with an acquisition 
board attached to the INSTRON Test Machine. 

2.3. Data Analysis 

2.3.1. Tensile Strength 

From the HO solutions we obtained the expression (3) for the maximum tensile stress at the microsphere 
breakage: 

 (3) 

where , by elastic theory  and 
; where gls indicates a glass bulk property and stl indicates a steel 

property. 
 

Expression (3) is similar to expression (1) but allows incorporating bulk mechanical properties of the sample and 
the components of the sample holder device. 

2.3.2. Maximum Likelihood Method (MLM) 

We used the Maximum Likelihood Method (MLM) to calculate the Weibull parameters values (  and ). The 
mathematical expression for the Weibull parameters in MLM are (4) and (5), Dongfang et al. (2004). 
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 (4) 

  (5) 

where  is the breakage tensile stress on the i-th tested microsphere; and n is the total number of tested 
microspheres on a set. 

3. Experimental Results 

3.1. Alumino-borosilicate glass microspheres 

In Fig. 5 we show (a) the failure probability at different stress values for sets of SG7 microspheres with diameters 
(D) of 75, 100, 125, and 150 ; (b) the Weibull modulus as a function of microsphere size; and (c) the scale 
parameter as a function of microsphere diameter. 
In Table 2 we show the values of Weibull modulus and the scale parameters for each set of microspheres. 
 
 

 

     

Fig. 5. (a) Probability of failure at different stresses for SG7 microspheres with diameters (D) of 75, 100, 125 and 150 ; (b) Weibull 
modulus as a function of microsphere diameter; (c) scale parameter as a function of microsphere size. 
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     Table 2. Weibull modulus and Scale parameter values for sets of SG7 microspheres of different size. 

Microspheres diameter ( ) Weibull modulus Scale parameter (MPa) 

75 4.0±0.1 710±20 

100 3.3±0.1 540±20 

125 3.1±0.1 560±20 

150 2.7±0.1 500±20 

The Weibull modulus decreases with larger microsphere diameters; this result evidences an increase on the 
material fragility on larger size microspheres. 

The Scale parameter decreases with larger diameters according to the Weibull theory. However the different 
Weibull modulus values of different sets of spheroidized particles do not allow us to correlate both parameters. 

3.2. Yttrium-aluminosilicate glass microspheres 

In Fig. 6 we show the failure probability at different stress values for sets of 75  YAS microspheres, the red 
solid dots refers to a set of annealed microspheres after the IFSM. 
In Table 3 we present the Weibull modulus and the scale parameter values for each set of microspheres. 
 
 

 

Fig. 6. Probability of failure as a function of the applied stress for 75  YAS microspheres. The red solid dots refer to annealed microspheres 
after the IFSM. 

     Table 3. Weibull modulus and scale parameter values for sets of 75  YAS microspheres. 

YAS microspheres (75  Weibull modulus Scale parameter (MPa) 

IFSM  3.3±0.1 390±20 

IFSM+ annealing process 4.3±0.1 370±20 

The Weibull modulus of annealed microspheres was 30% higher than for the not annealed microspheres, and the 
scale parameter values were the same on both sets. These results mean that there is a decrease on the microspheres 
fragility with no change on their resistance to breakage, because the annealing process. 
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3.3. Comparison of mechanical characteristics for different composition glass microspheres 

In Fig. 7 we present (a) the failure probability at different stress values for a set of 75  YAS glass microspheres 
and a set of 75  SG7 glass microspheres, both without annealing process; (b) the same data for probability of 
failure as a function of stress shown in (a), but each stress value was normalized with its scale parameter ( ). 

 
 

 
Fig. 7. (a) Probability of failure at different stress values for set of 75  SG7 glass microspheres and a set of 75  YAS glass microspheres, 

both without annealing process; (b) Probability of failure at different stress normalizes with the scale parameter of each set of 75  

microspheres. 
 
The set of SG7 glass microspheres breaks at higher stresses than the set of YAS glass microspheres. This result 

shows that SG7 microspheres have more resistance to breakage than YAS microspheres. 
The normalized curves show a higher Weibull modulus for SG7 glass microspheres which demonstrates that SG7 
glass microspheres are less fragile than YAS glass microspheres. 

4. Discussion and Conclusions 

We developed a simple technique for the mechanical characterization of glass microspheres with different sizes 
and compositions. We characterized sets of SG7 glass microspheres with several diameters, a set of 75  YAS 
glass microspheres and finally a set of 75  annealed YAS glass microspheres. 

 
Particularly for sets of alumino-borosilicate glass microspheres (SG7) we obtained a decrease in the fragility for 

larger size microspheres. This can be understood since different size spheres have different thermal histories in the 
IFSM, thus different glass properties. Moreover, the cooling process originates internal tensions in the microspheres 
because of the external surface layer cools faster than the internal volume. This effect can increase the fragility of 
bigger microspheres (150 ). 
We expect that the Weibull modulus has to reach an asymptotic value with the volume increase, since for larger 
diameters a larger fraction of its volume will have the same glass transition temperature ( ) and a similar cooling 
process. 
 

A 30% decrease on the fragility was obtained after an annealing process for the 75  yttrium alumino-silicate 
(YAS) microspheres set without change on their resistance to breakage. This result can be understood because of the 
partial healing during the annealing process of internal flaws generated in the IFSM. 
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Finally, when comparing the mechanical properties of sets of microspheres with different compositions and the 

same size, we obtained that SG7 glass microspheres are less fragile than YAS glass microspheres. Also SG7 glass 
microspheres exhibit a higher resistance to breakage. 
The fragility difference can be explained because the glass transition temperature ( ) necessary for the 
spherodization process in SG7 glass is lower than YAS glass, so less internal flaws or tensions remained after the 
cooling process. 
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