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Summary

This paper presents a parallel distributed model for the Differential Evolution algorithm.

The proposed model, Hierarchical Island-Based Model for Differential Evolution, follows a

double-hierarchy master-worker scheme and offers two parallelism levels. In this proposal, the

processes are associated with certain cooperation hierarchy, allowing them to explore in a more

comprehensive way the search space of the problem at hand. A comparative study with other

algorithms from the state of art is also presented. The results show that Hierachical Island-Based

Model for Differential Evolution is a flexible model and achieves good performance in terms of

results quality and computing time.
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1 INTRODUCTION

Many real scientific and industrial problems can be formulated as

numerical optimization problems, but most of them cannot be solved

analytically. Examples include the electronic systems design (place-

ment and routing of components,1 and performance improvement

or the manufacture yield of circuits2), image processing (image

segmentation,3 and color separation4), management problems, and

planning or predictive models (air traffic management,5 electrical sub-

station planning,6 and wildfire behaviour prediction7), among others.

Over the past few decades, researchers have focused on the develop-

ment of algorithmic strategies that attempt to provide approximate

solutions to these problems. Among them, evolutionary computation

offers a number of advantages such as ease of implementation, reli-

able performance, robustness, global search capability, parallelism

posibilities, etc.8

An optimization problem is defined in one study8 by a couple (S, f),

where S represents the set of possible solutions and f ∶ S → R is

the objective function to be optimized. The objective function assigns

to every solution s ∈ S of the search space a real number indicating

its quality. Hence, the main goal in solving an optimization problem

is to find a solution s* ∈ S, called global optimum, which has the best

objective function value of all solutions of the search space. The most

successful models used in practice to formulate and solve optimization

problems are based on mathematical programming.8 Within it, we find

lineal models like Linear Programming or Integer Linear Programming,

in which both the objective function and the constraints associated

are lineal functions. Nonlinear programming models deal with math-

ematical programming problems where the objective function and/or

the constraints are nonlinear. These models are much more difficult to

solve; moreover, some problem properties such as high dimensional-

ity, multimodality, parameter interaction, and nondifferentiability can

not be addressed with those traditional approaches. Metaheuristics are

good candidates to solve moderate and large instances of this type of

problems. They represent a family of approximate optimization tech-

niques and provide “acceptable” solutions in a reasonable time. Unlike
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exact optimization algorithms, metaheuristics do not guarantee the

optimality of the obtained solutions, but they are designed to obtain

good solutions by searching in a clever way over the problem search

space.

The Differential Evolution (DE) algorithm is a population-based

metaheuristic proposed by Rainer Storn and Kenneth Price9 in

1995, and it has exhibited an overall excellent performance for

a wide range of benchmarks as well as real-world application

problems.10 It has been used in a wide variety of areas, including

economy,11 bioinformatics,12–14 industrial engineering,15,16 predic-

tion models,17,18 image processing,19 and many others. At present,

it is possible to find a large number of research and empirical work

describing variants of this algorithm, with the aim of achieving better

performance in results quality or computing time. Examples include

the calibration of some interest parameters,20,21 the development of

hybrid models that combine and enhance the outstanding features of

each methodology,12,22 or the utilization of other techniques providing

new strategies that improve the decision-making process.23,24

With the increasing rate of progress in the hardware area, paral-

lel processing has given rise to a world of techniques that attempt to

exploit computational resources to solve these and other problems

effectively and efficiently. The main motivation for parallel comput-

ing is to accelerate the computation by solving the same problem in a

lower time, or by solving a broader problem preserving a similar exe-

cution time. It has been found that the usage of parallel approaches in

metaheuristics can further improve the solutions quality, regarding the

sequential algorithm, at a low cost of hardware resources or execution

time.25 There is a particular interest in the parallelization of DE on par-

allel and distributed general purpose architectures, as they are one of

the most popular and available computational platforms.

This paper describes an island parallel model for the DE algorithm.

The new proposal, called Hierarchical Island Based Model for Differ-

ential Evolution (HIBM-DE), is based on islands and incorporates two

information exchange mechanism levels. The processes involved are

associated with certain cooperation hierarchy, allowing them to explore

in a more comprehensive way the search space of the problem at hand

and favouring the maintenance of the population diversity. This model is

inspired by two parallel approaches, called Subpopulation Island Based

Model (SIBM-DE) and Classic Island Based Model (CIBM-DE),26 inher-

iting their main characteristics and combining their main advantages.

The remainder of the paper is structured as follows. Section 2 briefly

introduces the classical DE algorithm. Section 3 provides a summa-

rized description about some related work on parallel DE and presents

2 parallel approaches named SIBM-DE and CIBM-DE. Section 4

gives the details of the HIBM-DE method and differentiates it from

other parallel approaches. Section 5 presents the obtained results as

well as the performance comparisons among HIBM-DE and other par-

allel/distributed DE algorithms. Finally, Section 6 summarizes the main

conclusions and future work.

2 DIFFERENTIAL EVOLUTION

The DE algorithm is a population-based stochastic optimizer proposed

by Price and Storn9 in 1995. It starts to explore the search space by

generating a population of individuals. An individual is defined as a

D-dimensional vector, whose initial values are randomly obtained based

on the limits defined by the user and according to the problem nature.

Each individual represents a possible solution of the problem and

belongs to a generation g, ie, let Xi,g = (x1
i,g
, … , xD

i,g
) an individual of the

population, with i = 1,… ,N where the index i denotes i-th population

individual, g determines the generation to which the individual belongs,

D is the problem dimension, and N is the total number of individuals in

the population.

The main idea of the method is to use vectors difference27to mod-

ify the population vector. After initialization, DE performs in sequence

three vector operations: mutation, crossover, and selection. These

operations are repeated from generation to generation until the spec-

ified termination criterion is satisfied. This criterion could be finding

a predefined minimal error, reaching a certain number of iterations,

or reaching a predefined number of objective function evaluations. A

notation is adopted to represent the different strategies used in the

vector operators, namely, DE/x/y/z. x is a string representing the vector

to be perturbed, y is the number of difference vectors used in the muta-

tion phase, and z is the crossover type used. Following, a description of

the strategy DE/best/1/bin is presented.

2.1 Mutation

The mutation operation applies vectors differences among the exist-

ing population members for determining both the degree and direction

of the new individuals produced. The mutation process begins in each

generation by selecting random individuals Xr1 ,g ,Xr2 ,g . A mutant vector

Vi,g + 1 is obtained using the strategy of the Equation 1, where the indexes

i, r1, and r2 are integers numbers different from each other, randomly

generated in the range [1, N].

Vi,g+1 = Xbest,g + (Xr1 ,g − Xr2 ,g)F (1)

The constant F, commonly known as scaling factor or amplification

factor, is a positive number usually less than 1.0 that controls the ampli-

fication difference between individuals r1 and r2, and it is also used to

avoid stagnation in the search process. Xbest,g is the best individual, ie, it

has the best objective function evaluation value among all individuals

of the current generation g. Differential Evolution proposes an alter-

native mutation strategy. Instead of using the best individual (such as

in Equation 1), another individual randomly selected can be used. The

Equation 1 is one of the most popular mutation strategies. Additionally,

DE proposes three alternative strategies.10

2.2 Crossover

After mutation phase, the mutant vector Vi,g+1 = (v1
i,g+1

, … , vD
i,g+1

) and

the current population individual Xi,g = (x1
i,g
, … , xD

i,g
) are involved in the

crossover operation, generating a new vector Ui,g+1 = (u1
i,g+1

, … , uD
i,g+1

),
denominated “trial vector.” There are two crossing operators that can

be applied: binomial or exponential. For the binomial crossover oper-

ator, the Equation 2 is used, and the changed coordinates are dis-

persed randomly over the dimensions {1,… ,D}. This crossover type

copies the jth parameter value from the mutant vector Vi,g + 1 to the

corresponding element in the trial vector Ui,g + 1 if randj ≤ Cr or j = k.
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Otherwise, it is copied from the corresponding target (or parent)

vector Xi,g.

Uj
i,g+1

=

{
vj

i,g+1
if randj ≤ Cr or j = k

xj
i,g

in other case
(2)

The indexes j and k belongs to {1,… ,D}. The constant Cr ∈ [0,1],

denominated “crossover factor,” is an algorithm parameter defined by

the user. Cr is used to control the values fraction that are copied from

the mutant vector V. The value randj ∈ {1,… ,N} is the output of a uni-

formly distributed random number generator, and it is calculated in

each comparison made on the vector components. The value k is a ran-

domly generated index chosen for each individual, and it is used to

ensure that the trial vector is not exactly equal to its source vector Xi,g,

in which case, the vector component for the index is taken from the

mutated vector.

To complete the notation, when the binomial crossover is utilized,

the method is named “DE/././bin,” whilst “DE/././exp” is denoted when the

exponential crossover is used.

2.3 Selection

This phase determines which individuals will be part of the next gen-

eration. The objective function of each trial vector Ui,g + 1 is evaluated

and compared with the objective function value for its counterpart Xi,g

in the current population. If the trial vector has less or equal objective

function target value (for minimization problems), it will replace the

vector Xi,g in the population of the next generation (Equation 3). As a

result, all the individuals of the next generation are as good as or better

than their counterparts in the current generation.

Xi,g+1 =
{

Ui,g+1 if f(Ui,g+1) ≤ f(Xi,g)
Xi,g in other case

(3)

3 PARALLEL MODELS

In evolutionary computing, the concept of “island” arises from

the development of hybrid parallel models, which involve several

self-contained algorithms performing a search in parallel and coop-

erating to find an optimum.8 In general, an island is considered to be

a logic entity integrated by a population or subpopulation, which is

evolved by a single process or a group of processes. Periodically, some

individuals may move from one island to another to integrate the tar-

get population. This communication among islands is usually called

“migration phase,” and its occurrence is established by the migration

rate parameter (Mr), which determines how frequently the migration

take place, and by the migration percentage parameter (Mp), which

defines the amount of individuals that will migrate.

An algorithm involving islands and migration is said to be an

algorithm that follows the Island Model. In general terms, when

the island model is implemented in a parallel environment, it can

be mapped over a master/worker pattern.28 It is characterized by

a coordinator process, usually called master, and other processes,

called workers, that collaborate to obtain some final result, making

some tasks and exchanging information with the master, and possi-

bly with each other. Usually, each process is located in a separate

computing unit.

According to the literature,8,10 there are different configuration

possibilities for the island model depending on the purpose to be

achieved. For example, a master process may be in charge of the

initialization and distribution of the population among the worker

processes (management of a unique population subdivided into sub-

populations), or the master can adopt a control position, indicating

each worker to manage its own population (the use of multiple pop-

ulations). Also, the master can help workers to evolve a subpopula-

tion, to take advantage of all the computational resources. Also, the

islands may be initialized with different populations or may use differ-

ent parameter settings for DE, such as the size of the population in each

island, the mutation probability, crossover factor, mutation strategy,

and so on.

The rest of the section is organized as follows. Section 3.1 summa-

rizes some related work on other parallel/distributed DE algorithms.

Sections 3.2 and 3.3 describe SIBM-DE and CIBM-DE, 2 of the different

possibilities for parallelizing DE by using subpopulations and multiple

populations, respectively.

3.1 Previous related work

Several existing research in parallel DE follow the island model

scheme.8 Most of them are framed within distributed memory mod-

els. Zaharie and Petcu29 presented a proposal for solving a multiob-

jective optimization problem. An individual in the population can be

migrated with a certain probability to a random position in a ran-

dom subpopulation. Tasoulis et al30 developed a parallel DE version,

named PDE, using a ring interconnection topology and a random migra-

tion rate controlled by a parameter of the algorithm. The aim of that

work was to study the implications of a controlled migration con-

stant. Kozlov and Samsonov31 proposed a parallel DE algorithm and

applied it to solve a biological data fitting problem. It also follows

a ring interconnection topology, where the replacement strategy in

the migration phase is to substitute the oldest member in the tar-

get subpopulation (the one who has been the longest in the popu-

lation without being replaced) by the best individual in the source

subpopulation. The analysis was performed with different migration

rates, and they analysed the dependency between the communica-

tion frequency and the accuracy of the optimization. Apolloni et al32

designed a modified version of the PDE algorithm in a generic way,

namely, island-based distributed differential evolution, integrating a

set of 5 parameters in the migration phase. Their experimentation

was based on 2 and 4 islands, and they demonstrated a higher search

capacity compared with the classical DE algorithm. Zhang et al33

explored the DE parallel capabilities with a hybrid version, named

Distributed Memetic Differental Evolution (DMDE), which enhances

exploration and exploitation capabilities, combining a parallel dis-

tributed DE method with two local search approaches. The subpopu-

lations are arranged following a Von Newman topology. In the migra-

tion phase, the best individual replaces the worst neighbour. This

proposal has been compared with other parallel versions (including

the Apolloni’s one), and it has demonstrated to achieve good per-
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FIGURE 1 Subpopulation Island-Based Model. The master initializes and distributes the population. To take advantage of all the computational
resources, the Master becomes a worker and collaborates in the evolutionary process

formance, generally better than the other proposals, in computing

quality and convergence speed.33 These characteristics make DMDE

a competitive algorithm from the state of the art. For this reason, in

Section 5.2.2, a comparison of HIBM-DE against the proposal of

Zhang et al is presented.

In the following, we describe two parallel models for Differential

Evolution that are based on the island model. The description of them

will be helpful to better understand the HIBM-DE behaviour. Each

model exploits parallelism with a specific purpose; their main charac-

teristics and differences are highlighted.

3.2 Subpopulation Island-Based Model for

Differential Evolution

In the SIBM-DE,26 a unique population is managed, which is initialized

by a master process, and it is distributed among the worker processes,

which evolve the subpopulations until reaching a certain termination

condition. In this model, an island is constituted by a worker process,

which evolves a subpopulation. Figure 1 describes this model. The boxes

that represent an island are framed within a doted-line box, symbol-

izing a single computing unit. As it can be seen, the master process

distributes the subpopulations among the workers. To take advantage

of all the computational resources, the master retains one subpopula-

tion and turns into a worker. Then, the workers and the master start

evolving the subpopulation until a certain predefined termination con-

dition. Every certain generations number, the processes communicate

to each other following a ring topology to share some individuals from

their subpopulations. The main goal of this model is to achieve a com-

puting time reduction with regard to the sequential version. This goal

is achieved precisely because the original population is partitioned in

smaller parts. In consequence, each island has a subpopulation com-

posed by a few individuals, and the workers collaborate evolving them.

Although this model achieves a considerable execution time reduction,

it has been shown that it does not achieve good results quality for some

functions compared with the sequential version or with the CIBM-DE

model, and the results quality gets worse as the subpopulation size gets

smaller.26

3.3 Classic Island-Based Model for Differential

Evolution

In the CIBM-DE,26 the master process does not manage any popula-

tion, but it has a controlling role, indicating each worker to initialize

and evolve a whole population. The workers have a harder task com-

pared with the previous model, because each island manages a larger

number of individuals (a complete population). A worker unit evolv-

ing a complete population is considered to be an island (see Figure 2).

The aim of this model is to explore the search space in a more compre-

hensive way. This goal is reached because each island is initialized with

a different seed. The CIBM-DE can be viewed as launching in parallel

multiple DE sequential version instances, together with communica-

tion process among workers provided by the migration operation. In

the CIBM-DE, the migration process follows a ring topology. Although

this model obtains better results quality, thanks to a broader an deeper

search, the migration and coordination of the processes introduce

some overhead in the algorithm. In consequence, the CIMB-DE exe-

cution time is similar or even higher to the sequential version execu-

tion time, considering each single population with the same size as the

sequential version.

4 HIERARCHICAL ISLAND-BASED MODEL
FOR DIFFERENTIAL EVOLUTION

In the following, we present HIBM-DE. Its processing scheme is framed

within the hierarchical parallel algorithms,8,34 and it provides two par-

allelism levels. One level can enhance the computational speed, whilst

the other can lead to a broader problem domain coverage. These
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FIGURE 2 Classic Island-Based Model. The Master does not manage the population. Each worker initializes and handles a whole population. After
each migration, the workers inform to the master the best individual found and wait for a response to proceed or finalize the evolutionary process

characteristics are inherited from the methods benefits mentioned in

Sections 3.2 and 3.3, respectively.

The model comprises the CIBM-DE characteristics, considering that

multiple populations are involved in the evolutionary process, and each

island has a whole population initialized with a different seed. However,

instead of having a unique worker responsible for evolving the popula-

tion, HIBM-DE proposes a group of processes collaborating in this task,

such as in SIMB-DE, with the aim of accelerating the evolutionary pro-

cess in each island. In consequence, they are organized in a way that

one process, named the island master, will coordinate the population

evolution performed by the workers of that island.

Figure 3 describes HIBM-DE. The evolutionary process begins with

the master of each island, which initializes its own population (like

CIMB-DE) and distributes it among the worker processes (like

SIBM-DE). The workers are related following a predefined topological

order. In HIBM-DE, the order selected is a ring topological one. Each

worker is in charge of evolving its subpopulation, applying all the DE op-

erators over the individuals (mutation, crossover, and selection). A

high level description of the HIBM-DE parallel algorithmic scheme

follows

Every certain number of generations, and considering the topol-

ogy, an intra-island migration phase is launched, in which the workers

communicate to each other to send certain individuals from their sub-

populations (lines 4 to 10 from worker pseudocode). The intra-island

migration rate (Intra-Mr) determines the frequency at which this com-

munication phase occurs. The amount of individuals that migrates is a

certain percentage of the population; the resulting number is propor-

tionally divided among the workers from the same island. This percent-

age, named Mp, is a parameter of the algorithm.
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FIGURE 3 Hierarchical Island Based Model. Two levels of hierarchy. At bottom level, the workers evolve the islands local subpopulations. At top
level, the masters communicate following a ring interconnection topology, to share global information

Like CIBM-DE and SIBM-DE, the HIBM-DE replacement strategy is

semielitist, because the individuals to be migrated are the best subpop-

ulation member (the one who has the best fitness value), and the rest is

completed by means of a random selection. While the selected individ-

uals are migrating, the worker organizes its subpopulation to determine

which will be the candidates to be replaced by the newly received ones

(line 8 from worker pseudocode). The received individuals will replace

the worst individuals of the target subpopulation, whenever they have

better objective function value than the individuals to be replaced

(lines 9 and 10 from worker pseudocode).

After this intra-island communication with neighbours workers, the

inter-island migration phase is launched, in which each worker commu-

nicates with the master of their island to send it to some individuals

(lines 13 and 14 from worker pseudocode). The number of individuals

to be sent by each worker is calculated based on the global percentage

of individuals to be migrated (Mp) divided by the number of workers

in each island. Like the intra-island migration, each worker selects the

best individual, and the rest is completed by means of a random selec-

tion. Once this inter-island migration phase is launched, each worker

resumes the evolutionary process until the master is ready for sending

the individuals that arrive from another island.

The master collects all the individuals received and sends them to the

master of the next island in the topological order (lines 5 and 6 from

master code). Once the master has sent the individuals, it receives the

same amount of individuals from the master of the predecessor island

and distributes them among the workers of its island (lines 7 and 8 from

master code).

It can be noticed that the inter-island migration actions that take

place among the masters are performed concurrently with the work-

ers evolutionary actions, in the sense that once the workers have sent

the selected individuals to the master, they resume the cycle apply-

ing the DE operators. In this way, the workers remain active, evolving

their subpopulations and minimizing idle periods. This simultaneity

between workers and masters is conditioned by an appropriate setting

of Inter-Mr and Intra-Mr parameters, taking into account the network

speed and the amount of information to be transmitted in each migra-

tion. The amount of individuals selected for the migration process will

determinate the model convergence degree. If the immigrants number

is very low, the information exchange process is less efficient and the

islands (and subpopulations) tend to evolve independently.8 Instead, if

there are many immigrants (Mr too high), the islands tend to converge

to the same solution.10 In our implementation, we use empirical values

for all this parameters, according to the execution environment.

Figure 4 describes the collaboration actions among all the entities in

the model, represented by a sequence diagram. The white boxes in the

workers lifeline represent the subpopulation evolution (DE). The grey

part of the box represents a communication phase: the light grey boxes

symbolize the involvement in the intra-island migration whilst the dark

grey boxes denote the involvement in the inter-island migration. The R

boxes in the masters lifeline represent the actions needed to receive

the individuals from the workers. The M part of these boxes denotes

the migration of the collected individuals to another island. In the work-

ers lifeline, R symbolizes the reception of individuals (immigrant from

other island) sent by the master. In this scenario, the HIBM-DE was con-

figured with 2 islands and 2 workers in each island. As it can be seen

in the figure that both the intra-island migration and the inter-island

migration occurs at a migration rate of 500 generations. However, the

inter-island migration is firstly applied at the 750 generation, and in

consequence, the inter-island reception in the workers is synchronized

in an intermediate generation between 2 inter-island migration phases.

As it can be observed from Figure 4, when the workers arrive to a gen-

eration in which the intra-island migration must occur, they exchange

the individuals with another neighbour worker in the topological order.

Then, they send some individuals to the island master, and they con-

tinue evolving the subpopulation until the synchronized reception of

new individuals that come from another island.
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FIGURE 4 Hierarchical Island Based Model for Differential Evolution: sequence diagram example. Migration rate Intra-Mr = 500 generations. The
inter-island migration is firstly applied at the 750 generation, to overlap the inter-island communication with the intra-island processing

The evolutionary process finalizes when all the islands have reached

a predefined termination condition. In the HIBM-DE, this condition

could be reaching a predefined number of generations or reaching cer-

tain error value. To collect the best individual found through all the

islands, the model includes another process called monitor. After all

the workers finish evolving their subpopulations, the master of each

island receives the last group of individuals from its workers. Then, it

selects the best member in the group and sends it to the monitor pro-

cess (lines 11 and 12 from master pseudocode). Finally, the monitor

selects the best of all the individuals received, and the evolutionary

process finalises (lines 1 to 3 from monitor pseudocode).

Since HIBM-DE is based on a parallel/distributed computing model,

it is possible to arrange the available computing units in several ways,

depending on the purpose to be achieved. Even fixing a certain number

of computing units makes it possible to adjust HIBM-DE to different

islands organizations. As an example, having 16 computing units, it is

possible to configure 3 islands composed of 4 workers in each island or

5 islands composed of 2 workers in each island.

In summary, this model proposes a two-level information exchange

mechanism. On the one hand, the intra-island communication allows

the evolution of the population to speed up by the jobs distribution

among the workers. On the other hand, the inter-island communica-

tion gives the possibility to share information from other search spaces,

since each island is initialized with a different seed.

The next section presents a comparative study of the three mod-

els described in this section and includes a comparison with other

algorithm from the state of the art. Different performance metrics are

used to analyse the obtained results.

5 EXPERIMENTAL ANALYSIS

In this section we present a set of experiments to document the

HIBM-DE analysis. The performance is analysed through different

aspects. First, an overall study of the model inherent characteristics is

presented, based on scalability aspects, resources consumption, and

execution time. Later, a comparison against other distributed DE algo-

rithms is presented. The tests were performed on a cluster of 11

computers having 64 bits Intel Q9550 Quad Core 2.83GHz proces-

sors and 4 Gb DDR3 1333Mz RAM memory. Each experiment used

the number of computers needed so as to assign a single core to

each logical unit (master, worker, or monitor). The base software on

the cluster includes a 64 bits Debian 5 Lenny Operating System. Our

HIBM-DE algorithmic version is based on the DE sequential version10

and has been redesigned using the object oriented paradigm under

an implementation using the C++ programming language and MPICH

library35 for message passing communication. In our implementation,

each HIBM-DE component (master, worker, or monitor) is located into

a separate core. In this way, each of them can be exclusively focused to

the task to which it has been assigned.

5.1 Hierarchical island-based model for differential

evolution analysis

The algorithm performance was tested with a set of scalable

functions.36 Sphere and Schwefel are unimodal functions, and

Rosenbrock, Rastrigrin, Griewank, and Ackley are multimodal

functions.

To prevent exploitation of the search space symmetry and of the

typical zero value associated with the global optimum, the global opti-

mum is shifted to a value different from zero, and the function values

of the global optimum are nonzero. The average error is defined as

the difference between the global optimum value and the algorithm

obtained value. A zero error indicates that the algorithm has found the

global optimal solution. For the problems considered, the best results

are those that are closer to zero error.

5.1.1 The configuration

The termination criterion for all the executions was to reach 6000

generations. The SIBM-DE, CIBM-DE, and HIBM-DE were tested in

previous experimentations with the aim of tuning some sensitive

parameters. In the calibration, we focused on the mutation strategy, the

crossover probability (Cr), and the mutation factor (F). For HIBM-DE,
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FIGURE 5 Comparison between 2, 4, and 8 islands. Mean error (left graphics) and mean execution time (right graphics) from 30 independent runs
for Sphere and Rosenbrock functions. Population with 100 and 200 individuals

the strategies tested were DE/rand/1/bin and DE/best/1/bin, and better

error values were obtained using the second one.

The parameters Cr and F were calibrated to obtain the best possible

results for the functions considered. A static calibration for SIBM-DE

and CIBM-DE was previously performed.22 From the HIBM-DE cali-

bration, it was found that setting F=0.5 and Cr=0.3 provides, in gen-

eral, higher solutions quality for the test suite. The Intra-Mr parameter

was established to 500 generations. Also, different experimental
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FIGURE 6 Comparison between 2, 4, and 8 islands. Mean error (left graphics) and mean execution time (right graphics) from 30 independent runs
for Sphere and Rosenbrock functions. Population with 400 and 800 individuals

tests were performed, with the aim of analysing the CIBM-DE

behaviour when each island is configured with different parameters.26

However, this heterogeneous setting does not produce better results

than using the same settings for all the islands. In consequence, all

the islands in HIBM-DE were configured with the same parameters

values.
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5.1.2 Obtained results

The following results show the HIBM-DE behaviour with differ-

ent population sizes and different number of islands and workers

in each island. The problems dimension considered was 1000 with

a population made up with 100, 200, 400, and 800 individuals.

This configuration setting is appropriate to test the method poten-

tial for solving highly complex problems. In this experimentation we

present the obtained results with two functions from the test suit.

They are Sphere (unimodal, search range between [−100,100]) and

Rosenbrock (multimodal, search range between [−100,100]). Both

were selected to have one unimodal function and one multimodal

function.

TABLE 1 Results obtained with HIBM-DE, having a population of 100
and 200 individuals

NP (ind.) Model Metric Sphere Rosenbrock

100 HIBM-DE 2-2 minimum 1.54e-02 1.49e+04

mean 1.82e-02 1.77e+04

std-dev ± 2.27e-03 ± 1.89e+03

HIBM-DE 2-4 minimum 3.05e-01 6.09e+04

mean 3.70e-01 7.51e+04

std-dev ± 4.28e-02 ± 8.19e+03

HIBM-DE 4-2 minimum 1.08e-02 1.05e+04

mean 1.27e-02 1.22e+04

std-dev ± 1.19e-03 ± 7.99e+02

HIBM-DE 4-4 minimum 2.15e-01 3.72e+04

mean 2.58e-01 4.67e+04

std-dev ± 1.96e-02 ± 3.45e+03

HIBM-DE 8-2 minimum 1.02e-02 1.06e+04

mean 1-22e+02 1.17e+04

std-dev ± 9.69e-04 ± 8.39e+02

HIBM-DE 8-4 minimum 2.10e-01 3.67e+04

mean 2.39e+01 4.27e+04

std-dev ± 1.35e-02 ± 3.21e+03

200 HIBM-DE 2-2 minimum 2.32e-03 7.70e+03

mean 2.78e-03 8.64e+03

std-dev ± 2.90e-04 ± 6.70e+02

HIBM-DE 2-4 minimum 5.12e-03 8.09e+03

mean 6.46e+03 9.03e+03

std-dev ± 5.34e-04 ± 1.12e+03

HIBM-DE 4-2 minimum 1.87e-03 6.61e+03

mean 2.37e-03 7.33e+03

std-dev ± 2.28e-04 ± 2.92e+02

HIBM-DE 4-4 minimum 4.50e-03 7.08e+03

mean 5.27e-03 7.68e+03

std-dev ± 3.21e-04 ± 3.50e+02

HIBM-DE 8-2 minimum 1.95e-03 6.53e+03

mean 2.20e-03 7.12e+03

std-dev ± 1.35e-04 ± 2.51e+02

HIBM-DE 8-4 minimum 4.70e-03 6.85e+03

mean 5.23e-03 7.52e+03

std-dev ± 2.51e-04 ± 2.69e+02

Lowest obtained value (minimum), average (mean), and standard deviation
of the objective values found (std-dev), obtained for 30 independent runs

Figures 5 and 6 show the mean error and mean execution time

obtained with HIBM-DE, scaling the islands number in 2, 4, and 8

islands. Figure 5 shows the results having a population made up with

100 and 200 individuals. Figure 6 shows the values obtained having a

population of 400 and 800 individuals. Thirty independent runs were

performed for each function and model. The lowest obtained value

(minimum), the average (mean), and the standard deviation of the objec-

tive values found (std-dev) are shown in Tables 1 and 2.

Perhaps the most popular use of the scalability concept reflects the

ability of a parallel system to use an increasing number of processing

units, trying to achieve an execution time reduction. This characteris-

tic, applied to metaheuristics, can be seen as speeding up the search

TABLE 2 Results obtained with HIBM-DE, having a population of 400
and 800 individuals

NP (ind.) Model Metric Sphere Rosenbrock

400 HIBM-DE 2-2 minimum 1.21e-03 6.40e+03

mean 1.41e+03 7.01e+03

std-dev ± 1.47e-04 ± 4.58e+02

HIBM-DE 2-4 minimum 1.12e-03 5.83e+03

mean 1.25e-03 6.43e+03

std-dev ± 7.27e-05 ± 3.29e+02

HIBM-DE 4-2 minimum 1.07e-03 6.14e+03

mean 1.28e-03 6.65e+03

std-dev ± 8.41e-05 ± 3.40e+02

HIBM-DE 4-4 minimum 9.99e-04 5.62e+03

mean 1.14e-03 6.05e+03

std-dev ± 7.90e-05 ± 2.17e+02

HIBM-DE 8-2 minimum 8.91e-04 5.86e+03

mean 1.23e-03 6.39e+03

std-dev ± 8.81e-05 ± 2.28e+02

HIBM-DE 8-4 minimum 9.77e-04 5.62e+03

mean 1.09e-03 5.983+03

std-dev ± 6.07e-05 ± 2.12e+02

800 HIBM-DE 2-2 minimum 8.70e-04 5.47e+03

mean 1.14e-03 6.44e+03

std-dev ± 1.25e-04 ± 7.01e+02

HIBM-DE 2-4 minimum 6.45e-04 5.29e+03

mean 7.53e-04 5.78e+03

std-dev ± 6.83e-05 ± 2.68e+02

HIBM-DE 4-2 minimum 8.49e-04 5.46e+03

mean 1.09e-03 5.99e+03

std-dev ± 1.34e-04 ± 2.30e+02

HIBM-DE 4-4 minimum 5.94e-04 4.91e+03

mean 6.92e-04 5.61e+03

std-dev ± 4.59e-05 ± 3.27e+02

HIBM-DE 8-2 minimum 8.53e-04 5.24e+03

mean 1.01e-03 5.93e+03

std-dev ± 7.05e-05 ± 2.07e+02

HIBM-DE 8-4 minimum 5.83e-04 5.13e+03

mean 6.60e-04 5.43e+03

std-dev ± 4.33e-05 ± 1.66e+02

Lowest obtained value (minimum), average (mean), and standard deviation
of the objective values found (std-dev), obtained for 30 independent runs
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process. But another important use of this term is related to the effec-

tive utilization of the computational resources, trying to solve in parallel

a larger instance of the problem, at a proportional or similar execution

time. One aspect to consider in this analysis concerns the scalability of

increasing the number of islands in the model. The goal is to explore a

broader search area, with the expectation of obtaining better results

quality. From this point of view, it can be seen from each graphic of

Figures 5 and 6 that the increment of islands produces better results

quality. This is because each island incorporates a new search space,

since each population is configured with a different seed. In reference

to this, it can be noticed a slight increase in the average execution

time. This fact is associated to the overhead produced by the commu-

nications needed to exchange information among the islands, but this

increment can be considered negligible with respect to the gain in the

solution quality.

Comparing the results considering the population size, it is possible

to see that the results quality is better when the search space is broader,

although at a higher execution time. It can be seen that better mean

error is obtained with populations made by 800 individuals (Figure 6).

Analysing the behaviour of the model with respect to scalability of

workers per island (see the mean time graphics of Figure 5 or Figure 6),

it can be seen that doubling the number of workers per island leads

to a reduction of the execution time. This reduction is approximately

half the time of execution. This is expected because of the problem

subdivision and the intra cooperation among the involved workers.

As it can be observed from the mean error graphics, based on a com-

parison between Figure 5 and Figure 6, the configuration of the number

of workers per island is a parameter sensitive to the population size.

When the populations are small, better results are found having a con-

figuration of few workers per island. Figure 5 considers populations

made up with 100 and 200 individuals, and it is possible to see that

better results are found with 2 workers per island. Adding more work-

ers per island produces too small subpopulations, causing the reduction

of the search space managed by each worker. This negatively affects

the diversity or variability within a subpopulation and produces lower

results quality, since there is a grater probability that the search process

gets stagnated. Also, lower standard deviation values are found when

using 2 workers per island (see Table 1). Therefore, in this case, using a

small number of workers per island is the best choice. In addition, when

the population size is increased, better results are found with more

workers per island, since each worker will manage larger subpopula-

tion. Figure 6 shows that for a population made up with 400 and 800

individuals, better error values are obtained using 4 workers per island.

Also, lower standard deviation values are found in this case (see Table 2).

Having a greater amount of individuals implies a broader search space

area and leads to better results quality.

The above analysis suggests that HIBM-DE offers configuration flex-

ibility, providing benefits according to what is sought, that is, obtain-

ing the best results quality, minimizing the computing time, or maybe

achieving a balance between both characteristics. An appropriate tun-

ing of these parameters may allow to fully exploit the potential of the

model. The study of tuning techniques is part of our immediate future

work, where different static and dynamic strategies will be considered

for automatic tuning of these features, with the aim of incorporating

them to the HIBM-DE implementation.

5.2 Comparison with other distributed DE

algorithms

This section presents the comparative study of HIBM-DE and other DE

parallel distributed algorithms from the state of the art, and with the

sequential version of DE. Section 5.2.1 presents a performance analy-

sis of HIBM-DE against two parallel models for DE, which have been

previously described in Sections 3.2 and 3.3. Section 5.2.2 presents the

comparison of HIBM-DE with the DMDE algorithm, briefly described in

Section 3.1. The analysis was performed considering different config-

uration possibilities for HIBM-DE. A discussion of the obtained results

for each comparison is also presented.

5.2.1 Comparison of HIBM-DE, CIBM-DE, and SIBM-DE

In this subsection, we present a comparison of HIBM-DE against

SIBM-DE, CIBM-DE, and the sequential version of DE. We propose two

types of experiments: considering that HIBM-DE is a 2-level hierarchi-

cal model, it is possible to make a comparison taking into account the

amount of processing units of both levels or considering the amount

of workers when it is compared with other 1-level hierarchical mod-

els, such as SIBM-DE or CIBM-DE. The first experiment considers the

same number of computing units. This comparison will allow to anal-

yse the relation between HIBM-DE and the other models in quality

and execution time gains, when using the same amount of CPUs. The

second experiment presents a comparison of HIBM-DE and CIBM-DE

considering both models with the same amount of workers and having

a population with the same number of individuals in each island. This

comparison is useful to analyse the gains of HIBM-DE against a 1-level

hierarchical model like CIMB-DE. In these experiments, we use 6 func-

tions from. one study.36 For each function, the global optimum is shifted

to a value different from zero, and the function values of the global

optimum are nonzero.

Experiment 1. The first experiment is reflected in the graphics of

Figures 7 and 8. The configuration parameters for these experiments

were the same as those mentioned in Section 5.1. We present the exe-

cution of the models fixing the amount of computing units to 8 and

16 CPUs.

Figure 7 shows the results obtained with the models using 16 com-

puting units. It shows the mean error (left graphics) and mean execu-

tion time (right graphics) obtained from 30 independent runs. Table 3

includes the minimum obtained value, the average, and the standard

deviation values obtained from the objective function values. Each pop-

ulation was made up with 400 individuals. The sequential version of

DE (represented by “DE” in Figure 7) was executed on a single CPU.

There are 2 possible ways of configuring HIMB-DE using 16 computing

units, recalling that an island is composed by a specific number of work-

ers controlled by a master process, and all the masters are commanded

by a unique monitor process. The first test case considers 3 islands,

composed of 4 workers each island (HIBM-DE 3-4). The second test

case considers 5 islands, composed of 3 workers each island (HIBM-DE

5-2). The best mean error value of each graphic is highlighted in

bold type.

As it can be seen from Figure 7, HIBM-DE obtains better results qual-

ity compared to CIBM-DE, SIBM-DE, and the sequential version for

the Sphere, Rosenbrock, Griewank, and Ackley functions and obtains
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FIGURE 7 Sixteen computing units in each test case for the parallel models. Mean error (left -logarithmic scale) and mean execution time (right)
from 30 independent runs. HIBM-DE was configured with 3 islands and 4 workers per island (HIBM-DE 3-4) and with 5 islands and 2 workers per
island (HIBM-DE 5-2). Both CIBM-DE and SIBM-DE were configured with 16 computing units
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FIGURE 8 Eight computing units in each test case for the parallel models. Mean error (left - logarithmic scale) and mean execution time (right)
from 30 independent runs. HIMB-DE was configured with 2 islands and 2 workers per island (HIBM-DE 2-2). Both CIBM-DE and SIBM-DE were
configured with 8 computing units
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TABLE 3 Sixteen islands in each model

Sphere Schwefel Rosenbrock Rastrigrin Griewank Ackley

HIBM-DE 3-4 minimum 9.73e-04 5.44e+02 5.79e+03 2.27e+03 6.45e-05 2.17e-02

mean 1.14e-03 5.51e+02 6.23e+03 2.99e+03 7.80e-05 3.39e-02

std-dev ± 8.18e-05 ± 2.56e+00 ± 3.99e+02 ± 3.67e+02 ± 5.65e-06 ± 9.32e-03

HIBM-DE 5-2 minimum 1.06e-02 5.49e+02 5.98e+03 1.87e+03 7.21e-05 1.98e-02

mean 1.22e-03 5.53e+02 6.43e+03 2.60e+03 8.44e-05 3.58e-02

std-dev ± 1.10e-04 ± 2.31e+00 ± 1.92e+02 ± 6.28e+02 ± 8.34e-06 ± 7.21e-03

SIBM-DE minimum 9.94e+02 5.46e+02 1.10e+08 4.28e+03 2.87e-01 8.78e+00

mean 1.18e+03 5.47e+02 1.73e+08 4.75e+03 3.78e-01 1.37e+01

std-dev ± 9.31e+01 ± 2.41e-01 ± 3.07e+07 ± 2.22e+02 ± 5.25e-02 ± 2.72e+00

CIBM-DE minimum 8.11e-03 5.63e+02 7.07e+03 2.31e+03 2.25e-03 1.86e+00

mean 1.11e-02 5.69e+02 8.09e+03 2.58e+03 3.25e-03 2.07e+00

std-dev ± 2.04e-03 ± 2.61e+00 ± 5.70e+02 ± 1.25e+02 ± 5.82e-04 ± 1.08e-01

DE minimum 4.38e+00 5.88e+02 5.58e+03 3.44e+03 2.11e-01 4.31e+00

mean 9.71e+01 5.95e+02 3.15e+06 4.02e+03 6.40e-01 5.51e+00

std-dev ± 4.40e+02 ± 2.95e+00 ± 2.75e+04 ± 3.23e+02 ± 2.61e-01 ± 7.61e-01

Lowest obtained value (minimum), average (mean), and standard deviation of the objective values found (std-dev), obtained for 30 indepen-
dent runs

TABLE 4 Eight computing units

Sphere Schwefel Rosenbrock Rastrigrin Griewank Ackley

HIBM-DE 2-2 minimum 1.21e-03 5.64e+02 6.40e+03 2.13e+03 7.53e-05 2.14e-02

mean 1.41e-03 5.69e+02 7.01e+03 4.69e+03 9.48e-05 1.31e-01

std-dev ± 1.47e-04 ± 2.99e+00 ± 4.58e+02 ± 3.26e+03 ± 7.63e-06 ± 2.54e-01

SIBM-DE minimum 1.43e+01 1.44e+01 1.70e+01 3.10e+01 3.23e+01 3.21e+01

mean 6.32e-01 5.47e+02 8.94e+04 3.71e+03 2.20e-03 2.98e+00

std-dev ± 2.72e-01 ± 2.25e+00 ± 4.34e-02 ± 6.08e+00 ± 6.49e+00 ± 6.13e+00

CIBM-DE minimum 9.45e-03 5.63e+02 7.35e+03 2.29e+03 2.60e-03 1.73e+00

mean 1.28e-02 5.70e+02 8.39e+03 2.67e+03 3.63e-03 2.13e+00

std-dev ± 1.69e-03 ± 3.15e+00 ± 4.82e+02 ± 1.53e+02 ± 4.83e-04 ± 1.36e-01

DE minimum 4.38e+00 5.88e+02 5.58e+03 3.44e+03 2.11e-01 4.31e+00

mean 9.71e+01 5.95e+02 1.79e+04 4.02e+03 6.40e-01 5.51e+00

std-dev ± 4.40e+02 ± 2.95e+00 ± 2.75e+04 ± 3.23e+02 ± 2.61e-01 ± 7.61e-01

Lowest obtained value (minimum), average (mean) and standard deviation of the objective values found (std-dev), obtained for 30 indepen-
dent runs

results from the same order for the rest of the functions. In addi-

tion, HIBM-DE obtains, in most cases, lower standard deviation val-

ues than the other models (see Table 3). One important issue to con-

sider is the execution time of the model, gaining several minutes com-

pared to CIBM-DE. Moreover, from the graphics, it is possible to see

that HIBM-DE configured with 3 islands, and 4 workers in each island

obtains a significant gain in the results quality and in the execution

times.

Figure 8 shows the mean error (left graphics) and mean execution

time (right graphics) obtained values. In this experiment, each pop-

ulation has 400 individuals, and 8 computing units were used. The

HIBM-DE was configured with 2 islands and 2 workers per island

(HIBM-DE 2-2). In computing units, this configuration is the one closer

to the 8 CPUs used for the other models, with a total of 7 compu-

tational units (3 units in each island, plus the monitor). As it can be

seen, the results are similar to those arising from the experiments with

16 computing units (Figure 7, Table 4).

Experiment 2. The second experiment was performed using the 6

functions under consideration and involves a comparison of HIBM-DE

with a 1-hierarchy model. This experiment was made taking into

account the same amount of workers in each model. The HIBM-DE was

configured with 4 islands and 4 workers per island, making a total of

16 workers. Consequently, CIBM-DE was configured with 16 islands,

hence, having a total of 16 workers. We selected CIBM-DE as the

1-level hierarchy model to be compared, because this model has the

characteristic of finding good results quality. Figure 9 shows mean error

(graphic above) and execution time (graphic below) for the 6 bench-

mark functions. Table 5 includes the lowest obtained value (minimum),

average (mean), and the standard deviation (std-dev) of the objective

values found for 30 independent runs. It is important to highlight the

trade off between the error quality and the execution time: The mean

time graphic shows a significant difference in the execution times of

both models. The HIBM-DE achieves a reduction of more than 80% in

the execution time for all the functions compared against CIMB-DE,
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FIGURE 9 Comparison of Hierarchical Island-Based Model for Differential Evolution (HIBM-DE 4-4) and Classic Island-Based Model for
Differential Evolution (CIBM-DE) with 16 islands.

TABLE 5 Sixteen islands in each model

Sphere Schwefel Rosenbrock Rastrigrin Griewank Ackley

HIBM-DE 4-4 minimum 9.99e-04 5.41e+02 5.62e+03 2.14e+03 6.48e-05 2.26e-02

mean 1.14e-03 5.46e+02 6.05e+03 2.58e03 7.62e-05 3.46e-02

std-dev ± 7.90e-05 ± 2.65e+00 ± 2.17e+02 ± 2.61e+02 ± 6.05e-06 ± 8.01e-03

CIBM-DE minimum 8.11e-03 5.63e+02 7.07e+03 2.31e+03 2.25e-03 1.86e+00

mean 1.11e-02 5.69e+02 8.09e+03 2.58e+02 3.25e-03 2.06e+00

std-dev ± 2.04e-03 ± 2.61e+00 ± 5.70e+02 ± 1.25e+02 ± 5.82e-04 ± 1.08e-01

Lowest obtained value (minimum), average (mean), and standard deviation of the objective values found (std-dev), obtained for 30 indepen-
dent runs

with similar or better error accuracy, even when HIBM-DE involves

4 islands (against the 16 islands of CIMB-DE). In addition, HIBM-DE

obtains, in general, lower standard deviation values for the test func-

tions under study (see 5).

5.2.2 Comparison of HIBM-DE and DMDE

In this subsection, we present the comparative study of HIBM-DE

and DMDE. The main characteristics of DMDE have been previously

described in Section 3.1. We selected DMDE to perform the compar-

ison because this algorithm has already been compared against other

distributed DE algorithms, and it has demonstrated an excellent per-

formance of solutions quality and convergence speed for different

problems.33

The experiments performed try to follow the same configuration as

those proposed for DMDE in one study.33 The global optimum of the

functions used in the experiments is zero, and the function values of

the global optimum are zero. The dimension of the problems was set to

50. The method used for DE is DE/rand/1/bin. Thirty independent runs

were performed for each function.

The termination condition was to reach 106 number of function eval-

uations (NFE). The population size was set to 400 individuals, and the

model was configured with 4 islands and 5 workers per island. Thus,

each worker manages 80 individuals, such as in DMDE. The subpopula-

tions exchange a percentage of individuals every 100 generations. This

percentage was established through the experimental analysis based

on different values, and the best results led to choose the 15% as the

migration percentage, ie, the individuals were exchanged among the

islands at a Mr of 15% every 100 iterations. The inter-island migration

TABLE 6 Hierarchical Island-Based Model for
Differential Evolution: Crossover probability (Cr)
and mutation factor (F) values used with each
function

Function Cr F

Sphere 2.0e-01 1.0e-01

Rosenbrock 9.0e-01 3.0e-01

Rastrigrin 1.0e-02 1.0e-01

Griewank 2.0e-01 5.0e-01

Ackley 2.0e-01 1.0e-01
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frequency was also configured at 100 generations. The parameters Cr

and F were adjusted to each function according to Table 6.

Figure 10 shows the mean error values and mean execution time

obtained in the experimentation. Table 7 presents the obtained results

of the lowest obtained value (minimum), average (mean), and the stan-

dard deviation of the objective values found (std-dev), obtained from

30 independent runs.

It can be seen from the results that HIBM-DE obtains a very good

performance for these test problems. As it can be observed in Table 7,

HIBM-DE can find the global minimum in two of the functions (Sphere

and Griewank, particularly, it is important to note that HIBM-DE

reaches the global minimum for Sphere, whilst DMDE only reaches a

minimum in the order of e-25). Also, HIBM-DE provides the best min-

imal and average error values for the other 3 functions, reducing in 7

orders of magnitude the mean error for the Rastrigrin function (see

Figure 10).

Figure 11 shows the average convergence trends of the algorithms

for Ackley and Rastrigrin functions. The algorithms were run 30

times, and 6 points were recorded every time. For every point, the

results were obtained by averaging the fitness value. As it can be

FIGURE 10 Comparison of Hierarchical Island-Based Model for Differential Evolution (HIBM-DE 4-5) and Distributed Memetic Differential
Evolution (DMDE)

TABLE 7 Comparison between DMDE and HIBM-DE in terms of lowest obtained value (minimum), average (mean)
and standard deviation of the objective obtained values (std-dev) for 30 independent runs

Sphere Rosenbrock Rastrigrin Griewank Ackley

DMDE minimum 4.93e-25 2.84e+02 2.74e+02 0.00e+00 6.55e-13

mean 1.00e-23 3.47e+02 3.41e+02 8.21e-04 1.56e-12

std-dev ± 2.00e-24 ± 3.51e+00 ± 3.93e+00 ± 4.71e-04 ± 1.34e-13

HIBM-DE minimum 0.00e+00 5.08e-02 5.93e-10 0.00e+00 4.00e-15

mean 0.00e+00 4.13e+01 4.08e-05 0.00e+00 4.00e-15

std-dev ± 0.00e+00 ± 2.31e+01 ± 1.01e-04 ± 0.00e+00 ± 0.00e+00

FIGURE 11 Comparison DMDE and HIBM-DE. Mean objective function value obtained. For every point, the results were obtained averaging the
fitness value of 30 times
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observed, HIBM-DE achieves good convergence speed, superior to

DMDE. Beyond the gains obtained with HIBM-DE in quality, we also

highlight that the mean execution time of HIBM-DE is significantly

lower, achieving a reduction, on average, of more than the 92% com-

pared against DMDE.

6 CONCLUSIONS AND FUTURE WORK

A parallel approach to the DE algorithm named HIBM-DE was pre-

sented in this paper. The proposed method is based on an island model,

following a double-hierarchy master-worker scheme. On the one hand,

an intra-island migration is performed by the workers, which periodi-

cally communicate to each other to share individuals from their sub-

populations. On the other hand, an inter-island migration is performed

by the masters of each island, which promotes the population exchange

among different search spaces.

The experimental results show that HIBM-DE provides a flexible

configuration interface in which the islands can be composed by the

amount of workers needed to achieve the time reduction desired, and

the user may instantiate certain number of islands to achieve the results

quality needed. Moreover, the model has demonstrated to be compet-

itive with respect to other well-known parallel implementations of DE,

exhibiting good quality results and at lower execution time, achieving

a reduction of about 90% compared against other algorithms from the

state of the art. It is important to emphasise that the versatility and

adaptability of the model make it suitable for hard problems dealing

with time and/or search space scalability measures.

This type of hierarchical models have several parameters that must

be calibrated and adapted to the characteristics of the problem to be

solved. Although these hierarchical structures are flexible in the config-

uration of the components, there are inherent characteristics related

to the communication mechanism that must be synchronized and fixed

in a suitable way to exploit the method potentialities. As future works,

we plan to study different static and dynamic techniques for automatic

tuning of these characteristics, in order to facilitate the configuration

task to final users of HIBM-DE.
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