
Volume 4. Issue 11. Pages 1449-1614. 2009 
ISSN 1934-578X (printed); ISSN 1555-9475 (online) 

www.naturalproduct.us 



 

 
 

 
 
 
 
 
 

 
 
 

INFORMATION FOR AUTHORS 
 
Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site 
http://www.naturalproduct.us. 
 
Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is 
accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, 
transmission or storage may result in either civil or criminal liability. 
 
The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by 
any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third 
party; for purposes of advertising or promotion; or to create collective or derivative works.  Such permission requests, or other inquiries, should be addressed 
to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single 
articles for internal study or research purposes.  
 
To Subscribe:  Natural Product Communications is a journal published monthly. 2009 subscription price: US$1,695 (Print, ISSN# 1934-578X); US$1,395 
(Web edition, ISSN# 1555-9475); US$2,095 (Print + single site online). Orders should be addressed to Subscription Department, Natural Product 
Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for 
nonreceipt of issues will be honored if made within three months of publication of the issue.  All issues are dispatched by airmail throughout the world, 
excluding the USA and Canada.  

NPC Natural Product Communications
 

EDITOR-IN-CHIEF         
 

DR. PAWAN K AGRAWAL           
Natural Product Inc.  
7963, Anderson Park Lane, 
Westerville, Ohio 43081, USA 
agrawal@naturalproduct.us 
 
EDITORS 
 

PROFESSOR ALESSANDRA BRACA  
Dipartimento di Chimica Bioorganicae Biofarmacia, 
Universita di Pisa, 
via Bonanno 33, 56126 Pisa, Italy 
braca@farm.unipi.it  
 

PROFESSOR DEAN GUO 
State Key Laboratory of Natural and Biomimetic Drugs, 
School of Pharmaceutical Sciences, 
Peking University, 
Beijing 100083, China 
gda5958@163.com 
 

PROFESSOR J. ALBERTO MARCO 
Departamento de Quimica Organica, 
Universidade de Valencia, 
E-46100 Burjassot, Valencia, Spain 
alberto.marco@uv.es 
 

PROFESSOR YOSHIHIRO MIMAKI 
School of Pharmacy, 
Tokyo University of Pharmacy and Life Sciences, 
Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan 
mimakiy@ps.toyaku.ac.jp 
 

PROFESSOR STEPHEN G. PYNE 
Department of Chemistry 
University of Wollongong 
Wollongong, New South Wales, 2522, Australia 
spyne@uow.edu.au 
 

PROFESSOR MANFRED G. REINECKE 
Department of Chemistry, 
Texas Christian University, 
Forts Worth, TX 76129, USA 
m.reinecke@tcu.edu 
 

PROFESSOR WILLIAM N. SETZER 
Department of Chemistry 
The University of Alabama in Huntsville 
Huntsville, AL 35809, USA 
wsetzer@chemistry.uah.edu 
 

PROFESSOR YASUHIRO TEZUKA 
Institute of Natural Medicine 
Institute of Natural Medicine, University of Toyama,  
2630-Sugitani, Toyama 930-0194, Japan 
tezuka@inm.u-toyama.ac.jp 
 

PROFESSOR DAVID E. THURSTON  
Department of Pharmaceutical and Biological Chemistry,  
The School of Pharmacy,  
University of London, 29-39 Brunswick Square,  
London  WC1N 1AX, UK 
david.thurston@pharmacy.ac.uk 

ADVISORY BOARD 
 
Prof. Berhanu M. Abegaz 
Gaborone, Botswana 
 

Prof. Viqar Uddin Ahmad 
Karachi, Pakistan 
 

Prof. Øyvind M. Andersen  
Bergen, Norway 
 

Prof. Giovanni Appendino 
Novara, Italy 
 

Prof. Yoshinori Asakawa 
Tokushima, Japan 
 

Prof. Lee Banting 
Portsmouth, U.K. 
 

Prof. Anna R. Bilia 
Florence, Italy 
 

Prof. Maurizio Bruno 
Palermo, Italy 
 

Prof. Josep Coll  
Barcelona, Spain 
 

Prof. Geoffrey Cordell  
Chicago, IL, USA 
 

Prof. Samuel Danishefsky  
New York, NY, USA 
 

Prof. Duvvuru Gunasekar 
Tirupati, India 
 

Prof. A.A. Leslie Gunatilaka  
Tucson, AZ, USA 
 

Prof. Stephen Hanessian  
Montreal, Canada 
 

Prof. Kurt Hostettmann  
Lausanne, Switzerland 
 

Prof. Martin A. Iglesias Arteaga  
Mexico, D. F, Mexico 
 

Prof. Jerzy Jaroszewski  
Copenhagen, Denmark 
 

Prof. Leopold Jirovetz 
Vienna, Austria 
 

Prof. Teodoro Kaufman  
Rosario, Argentina 
 

Prof. Norbert De Kimpe  
Gent, Belgium 
 

  
 
 

 
Prof. Hartmut Laatsch 
Gottingen, Germany 
 

Prof. Marie Lacaille-Dubois  
Dijon, France 
 

Prof. Shoei-Sheng Lee  
Taipei, Taiwan  
 

Prof. Francisco Macias  
Cadiz, Spain 
 

Prof. Anita Marsaioli  
Campinas, Brazil 
 

Prof. Imre Mathe  
Szeged, Hungary 
 

Prof. Joseph Michael  
Johannesburg, South Africa 
 

Prof. Ermino Murano 
Trieste, Italy 
 

Prof. Virinder Parmar  
Delhi, India 
 

Prof. Luc Pieters  
Antwerp, Belgium 
 

Prof. Om Prakash 
Manhattan, KS, USA 
 

Prof. Peter Proksch  
Düsseldorf, Germany 
 

Prof. Satyajit Sarker  
Wolverhampton, UK 
 

Prof. Raffaele Riccio  
Salerno, Italy 
 

Prof. Monique Simmonds  
Richmond, UK 
 

Prof. Valentin Stonik  
Vladivostok, Russia 
 

Prof. Hiromitsu Takayama  
Chiba, Japan 
 

Prof. Karen Valant-Vetschera 
Vienna, Austria 
 

Prof. Peter G. Waterman 
Lismore, Australia 
 

Prof. Paul Wender  
Stanford, USA 

 

HONORARY EDITOR 
 

PROFESSOR GERALD  BLUNDEN 
The School of Pharmacy & Biomedical Sciences, 

University of Portsmouth, 
Portsmouth, PO1 2DT U.K. 

axuf64@dsl.pipex.com 



 
 
Preparation and Absolute Configuration of  
(1R,4R)-(+)-3-Oxo-, (1S,4S)-(-)-3-Oxo- and  
(1R,3S,4R)-(+)-3-Acetyloxy-5-oxo-1,8-cineole 
 
María del H. Loandos,ª Margarita B. Villecco,ª Eleuterio Burgueño-Tapia,b  
Pedro Joseph-Nathanc and César A. N. Catalánª,* 
 
ªINQUINOA-CONICET and Instituto de Química Orgánica, Facultad de Bioquímica Química y 
Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, S. M. de Tucumán, T4000INI Argentina 
 

bDepartamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico  
Nacional, Prolongación de Carpio y Plan de Ayala, Col. Santo Tomás, México, D.F., 11340 México 
 

cDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto  
Politécnico Nacional, Apartado 14-740, México, D.F., 07000 México 
 
ccatalan@fbqf.unt.edu.ar 
 
 
Received: August 27th, 2009; Accepted: October 5th, 2009 

 
 
  
Enantiomerically pure (1S,4S)-(-)-3-oxo-1,8-cineole (-)-2 and (1R,4R)-(+)-3-oxo-1,8-cineole (+)-2 were prepared for the      
first time and their absolute configurations assigned by vibrational circular dichroism (VCD) measurements. Thus, treatment  
of cineole 1 with chromyl acetate gave rac-2 which after sodium borohydride reduction and acetylation provided racemic       
3-endo-acetyloxy-1,8-cineole, rac-4. Enantioselective hydrolysis using porcine liver esterase (PLE) gave a mixture of             
3-endo-hydroxy-1,8-cineole (-)-3 and 3-endo-acetyloxy-1,8-cineole (+)-4. After chromatographic separation, (-)-3 was 
oxidized to (+)-2, while (+)-4 was hydrolysed to (+)-3 and then oxidized to (-)-2. The absolute configuration of either ketone 2 
was established by VCD spectroscopy in combination with density functional theory (DFT) calculations at the 
B3LYP/DGDZVP level of theory, from where it followed that the (+)-2 enantiomer corresponds to (1R,4R)-1,3,3-trimethyl-5-
oxo-2-oxabicyclo[2.2.2]octane and the (-)-2 enantiomer to the (1S,4S) molecule which is also in agreement with the absolute 
configuration deduced by the Mosher method for the starting chiral alcohols. Some literature inconsistencies are clarified. In 
addition, the enantiomerically pure monoester (1S,3S,4R,5R)-(-)-3-acetyloxy-5-hydroxy-1,8-cineole 6 and the ketoester 
(1R,3S,4R)-(+)-3-acetyloxy-5-oxo-1,8-cineole 7 were prepared from meso-diacetate 5 by enantioselective asymmetrization also 
using PLE. 
 
Keywords: (+)-3-oxo-1,8-cineole, (-)-3-oxo-1,8-cineole, (+)-3-acetyloxy-5-oxo-1,8-cineole, absolute configuration, 
vibrational circular dichroism, enantioselective hydrolysis, enantioselective asymmetrization, porcine liver esterase (PLE).  
 
 
 
1,8-Cineole 1 (systematic name 1,3,3-trimethyl-2-
oxabicyclo[2.2.2]octane), hereafter referred to as 
cineole, also known as eucalyptol or cajeputol, is a 
monoterpene oxide widely distributed in the plant 
kingdom. It is the main constituent of most 
Eucalyptus oils [1a-d] and several other essential oils 
[1e]. Due to its decongestant, antitussive and 
antibacterial properties [2a,b], the value of 
Eucalyptus oils for medicinal purposes is based 
largely on the cineole content [2c,d]. Cineole is 
chemically rather inert and consequently the 
literature on its chemistry is scarce and mostly related 
to the cleavage of the ether bridge to give p-menthane 
derivatives [3-7]. So far, we have developed the only 

chemical method available with good yield with 
direct regiospecific functionalization of 1 by 
oxidation with chromyl acetate [5,6] which affords 
racemic 3-oxocineole 2 owing to the symmetry of 1. 
 
In contrast, naturally occurring oxygenated 
derivatives have been reported sporadically, mainly 
as metabolites from living organisms fed on cineole 
containing food [8-11] such as in the urine of some 
mammals as brush-tail opossums, male koalas [9a-d], 
rabbits [9e], and humans after oral administration    
of medication containing 1 [12]. Microbial 
hydroxylation of 1 using Bacillus cereus [8c]         
and Pseudomonas flava [8b] yielded optically pure  
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Figure 1. Chemical structures of cineole derivatives 1-7. 

 
hydroxycineole derivatives, while biotransformation 
of 1 by a Rhodococcus species, in addition to 
hydroxycineole derivatives, yielded optically     
active 2-oxocineole [13,14] of undetermined  
absolute configuration or enantiomeric purity. 
Acetyloxycineoles have been identified as the 
odorous components of the rhizomes of greater 
galangal and their enantiomeric purities determined 
by chiral GC [15a,b].  
 
The racemates of cis- and trans-2- and 3-
acetyloxycineoles, and the corresponding alcohols 
were synthesized by Kubota et al. [15b]. The 
absolute configuration of the eight possible 
enantiomers was determined using the (S)-(+)-O-
methylmandelate esters but notably, not a single 
optical rotation was reported. Later,  Luzzio et al. 
[16] prepared alcohol (-)-3 by PLE-mediated 
hydrolysis of rac-3 determining its absolute 
configuration as 1R,3R,4S by comparison of the 1H 
and 13C NMR data of the (S)-(+)-O-methylmandelate 
ester with those reported by Kubota [15b]. The   
NMR data of (R)-α-methoxy-α-(trifluoromethyl)-
phenylacetate (MTPA) ester (Mosher esters) of both 
(-)-3 and (+)-3 were also reported [16] but 
remarkably, the signals are not assigned and the 
absolute configuration of the structures drawn for (-)-
3 and (+)-3, and their derivatives, are enantiomeric to 
that found in the literature. 
 
The endo-exo nomenclature employed to name 
cineole derivatives seems confusing [6,9e,15c,16]. 
The pyrane ring of the 2-oxabicyclo[2.2.2]octane 
system has priority over the cyclohexane ring, and 
consequently the endo-exo descriptors must be 
referred to the -O-CMe2- bridge. Thus, we prepared 

enantiomerically pure (1S,4S)-(-)-3-oxo-1,8-cineole 
(-)-2 and (1R,4R)-(+)-3-oxo-1,8-cineole (+)-2 by 
oxidation of the (+)-3 and (-)-3 alcohols, respectively, 
which were obtained by resolution of racemic 3-
endo-acetyloxy-1,8-cineole rac-4 with porcine liver 
esterase (PLE) as previously described [16,17] 
(Figure 1). The absolute configuration of the ketones 
was established from vibrational circular dichroism 
(VCD) measurements in comparison to density 
functional theory (DFT) calculations [18]. 
 
On the other hand, enantiomerically pure monoester 
(1S,3S,4R,5R)-(-)-3-acetyloxy-5-hydroxy-1,8-cineole 
6 was prepared from meso-diacetate 5 by 
enantioselective asymmetrization also using PLE. 
Oxidation of 6 with pyridinium chlorochromate 
afforded (1R,3S,4R)-(+)-3-acetyloxy-5-oxo-1,8-
cineole 7 (Figure 1). All these compounds are useful 
chiral intermediates for the preparation of other 
cineole derivatives as well as p-menthane derivatives 
of known absolute configuration by regioselective 
opening of the ether bridge [4,6]. Although ketone 2 
has not yet been found in nature, it can be predicted 
rather confidently that it will be found as a microbial 
metabolite [8b,13,14]. 
 
Regioselective oxidation of 1 using chromyl     
acetate afforded rac-2 [6] that when analyzed          
by chiral GC showed 49.98±0.05% of (+)-2            
(Rt 10.45 min) and 50.02±0.05% of (-)-2 (Rt 11.53 
min; see Experimental). Attempts to isolate            
the enantiomerically pure ketones by HPLC        
using a Chirex 3014 column [(S)-valine and          
(R)-1-(α-naphthyl)-ethylamine; Phenomenex] were 
unsuccessful. Then, rac-4 was obtained from rac-2 as 
described [6]. The GC trace using a chiral column 
(see experimental) showed 50.04±0.12% of (-)-4 (Rt 
23.4 min) and 49.97±0.12% of (+)-4 (Rt 23.9 min) 
demonstrating the accuracy of the analytical 
methodology. Enantioselective hydrolysis using pig 
liver esterase (PLE) at pH 7.00 [16,17] produced a 
mixture of (-)-3 along with unaffected (+)-4 which 
were readily separated by column chromatography on 
Si gel. The progress of the enantioselective 
hydrolysis was monitored by GC-MS after incubation 
during 6, 12, 18 and 24 h showing that the reaction at 
37ºC was essentially complete after 12 h. Chiral GC 
analysis of the unaffected acetate after 12 h showed, 
in three separate runs, the presence of (+)-4 (96.0-
98.5%) and (-)-4 (1.5-4.0%). After 18 h the remaining 
acetate was enantiomerically pure (>98.5%) [19] 
while the employed chiral GC column was 
ineffective to resolve the enantiomers of alcohol 3. 
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Table 1. NMR Data for (-)-3 and (R)- and (S)-MTPA Esters of (-)-3 in CDCl3 (data for the MTPA moiety are not included). 
 

* a, trans and b, cis to the oxygen bridge ┼ Long-rangeW-coupled to H-6b, as evidenced by spin-spin decoupling and COSY.+Coupled to H-4 as evidenced by COSY.  
 
The absolute configuration of (-)-3 was confirmed 
with the aid of the Mosher methodology [20,21]    
and molecular modeling calculations. Compound     
(-)-3 was treated with (R)- or (S)-α−methoxy-α-
(trifluormethyl)phenylacetic acid to obtain its (R)-
MTPA and  (S)-MTPA esters, respectively. Analysis 
of the 1H NMR data of the MTPA esters showed that 
ΔδH(S-R) for H-2b and Me-9 was +0.14 and -0.11 
(Table 1), respectively. This 1H NMR anisotropic 
effects were in agreement with the minimum energy 
conformation of (R)-MTPA (3R) and (S)-MTPA (3S) 
esters of (1R,3R,4S)-3 (Figure 2), from which can be 
deduced that in 3R the phenyl group mainly shields 
H-2b, whereas, in 3S the shielded group is Me-9. The 
minimum energy conformations were generated 
following a protocol which started by a Monte Carlo 
search at the MMFF94 [23] level. A total of 7 and 8 
conformers were found for (R)-MTPA and (S)-
MTPA, respectively, within a ΔE = 2 kcal/mol in the 
initial 10 kcal/mol range. All conformers were 
submitted to geometry optimization using DFT [18] 
calculations at the B3LYP/6-31G(d) level of theory 
(see Table 3) from which the 3R and 3S (Figure 2) 
were obtained as the most stable ones. The 1H and 
13C NMR data for both Mosher esters derived from  
(-)-3 are listed in Table 1. 
 
Pyridinium chlorochromate (PCC) oxidation of (-)-3 
cleanly produced ketone (1R,4R)-(+)-2 while the 
enantiomeric ketone (1S,4S)-(-)-2 was obtained by 
PCC oxidation of alcohol (+)-3 obtained after 
alkaline hydrolysis of acetate (+)-4. Chiral GC 
analysis showed 97.0% enantiomeric excess (ee) for 
(+)-2 and 93.9% ee for (-)-2. 
 
In order to gain independent evidence of the absolute 
stereochemistry of 2, the theoretical VCD spectrum 

       
 

                        3R                                               3S 
 

   
 

                  6R                                                      6S 
Figure 2. DFT B3LYP/6-31G(d) minimum energy conformation for (R)-
MTPA (3R) and (S)-MTPA (3S) esters of (-)-3, and for (R)-MTPA (6R) 
and (S)-MTPA (6S) esters of (-)-6. 
 
of (1S,4S)-2 was obtained following a protocol which 
started by calculation of the global minimum energy 

conformation, followed by a Monte Carlo [22] search 
at the MMFF94 [23] level of theory. The Monte 
Carlo search using the global minimum as the 
starting point afforded a single conformer in the 
initial 10 kcal/mol range. This conformer was 
submitted to geometry optimization using DFT [18] 
calculations at the B3LP/6-31G(d) level of theory to 
obtain an accurate molecular model of (1S,4S)-2. 
After structure optimization, the IR and VCD 
frequencies were calculated at the B3LYP/DGDZVP 
level of theory, which in a basis set optimized for 
DFT methods [24] that has been used successfully in 
recent studies [25]. Detail comparison of the 
calculated and experimental IR frequencies provided  

an anharmonicity factor of 0.98. Comparison of the  
 

  
(-)-3 

 
(-)-3 (R)-MTPA 

 
(-)-3 (S)-MTPA 

ΔδS-R  values 

Position* δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC  
1  70.2  69.9  69.9  
2a 2.06, dd (13.6,10.3) 43.2 2.21, dd (14.3, 10.3) 40.1 2.20, dd (14.1, 10.5) 39.9 - 0.01 
2b 1.69, ddd (13.6, 6.0, 3.3┼)  1.67, m  1.81, ddd (14.1, 6.3, 3.0┼)  + 0.14 
3 4.14 ddd (10.3, 6.0, 2.1+) 70.9 5.23, ddd (10.3, 6.1, 2.1+) 75.3 5.24, ddd (10.5, 6.3, 2.1+) 75.1  
4 1.54, m 40.8 1.75, m 37.9 1.68, m 37.6 - 0.07 
5a 2.03, m 21.4 2.12, m 21.2 2.12, m 21.1  
5b 1.34-1.40, m   1.54, m  1.53, m   
6a 1.58, m 30.1 1.64, m 30.0 1.65, m 29.9  
6b 1.34-1.40, m  1.45, m  1.48, m   
7 1.11, s 26.9 1.10, s 26.6   1.12, s 26.6  
8  73.4  72.9  72.8  
9 1.43, s 30.8 1.12, s 30.1 1.01, s 29.9 - 0.11 
10 1.24, s 30.5 1.22, s 30.0 1.18, s 29.9 - 0.04 
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Table 2. NMR Data for (-)-6, (R)- and (S)-MTPA Esters of (-)-6, and (+)-7 in CDCl3 (data for the MTPA moiety are not included) 
 

* a, trans and b, cis to the oxygen bridge 
┼ Long-range W-coupled to H-6b, as evidenced by spin-spin decoupling and COSY. 
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Figure 3. Comparison of observed (a) (1R,4R)-(+)-2 and (b) (1S,4S)-(-)-
2, and (c) calculated DFT B3LYP/DGDZVP VCD spectra of (1S,4S)-2. 

experimental VCD spectra of (+)- and (-)-2 with the 
calculated DFT B3LYP/DGDZVP VCD plot for  
(1S,4S)-2 (Figure 3) directly allows to assign the 
1S,4S absolute configuration to the (-)-enantiomer, in 
agreement with the conclusion obtained by Mosher 
methodology. 
 
Symmetric 3,5-diketo-1,8-cineole and endo-meso-
3,5-dihydroxy-1,8-cineole were prepared as 
described [6]. Treatment of the diol with excess 
acetic anhydride in pyridine afforded the 
corresponding meso-diacetate 5 which was 
asymmetrized using PLE to give (1S,3S,4R,5R)-(-)-3-
acetyloxy-5-hydroxy-1,8-cineole 6 the absolute 
configuration of which was corroborated using the 
Mosher method [20,21] and molecular modeling. 
Analysis of the 1H NMR data of the MTPA esters 
showed that ΔδH(S-R) for H-6b and    Me-10 are +0.14 
and -0.07 (Table 2), respectively. The Monte Carlo 
protocol showed 12 conformers for (R)-MTPA and  
 

  
(-)-6 

 
(-)-6 (R)-MTPA 

 
(-)-6 (S)-MTPA 

ΔδS-R 
values 

 
(+)-7 

Position* δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC  δH (J in Hz) δC 
1  69.4      69.8  69.8   72.7 
2a 2.00, dd (13.8,10.5) 41.8 2.10, dd (14.4, 10.5) 39.9 2.11, dd (14.3, 10.5) 40.0  2.34, dd (14.4,10.4) 39.7 
2b 1.65-1.74, m  1.72, ddd (14.4, 5.4, 3.1┼)  1.68, ddd (14.3, 5.5, 3.2)   1.92, ddd (14.4, 6.5, 3.3)  
3 4.83, ddd (10.5, 5.4, 2.2) 71.1 4.97, ddd (10.5, 5.4, 2.0) 70.9 4.96, ddd (10.5, 5.5, 2.0) 70.8  5.07, ddd (10.4, 6.5, 2.0)  66.8 

4 1.94, t (2.2) 44.6 2.11, m 42.4 2.04, m 42.2 - 0.07 2.52, d (2.0) 56.8 
5 4.14, ddd (10.5, 6.0, 2.2) 68.8 5.17, ddd (10.4, 5.8, 1.7) 73.4 5.17, ddd (10.5, 5.8, 1.7) 73.4   208.7 
6a 1.98, dd (13.8, 10.5) 39.0 2.19, dd (14.3, 10.4) 39.8 2.19, dd (14.3, 10.5) 39.7  2.36, dd (19.0, 3.3) 48.3 
6b 1.65-1.74, m  1.61, ddd (14.3, 5.8, 3.1┼)  1.75, ddd (14.3, 5.8, 3.2)  +0.14 2.21, d (19.0)  

7 1.16, s 26.2 1.15, s 26.6 1.17, s 26.7  1.29, s 25.7 

8  72.2      73.3  73.2   73.3 
9 1.36, s 31.6 1.35, s 31.8 1.31, s 31.8 - 0.04 1.46, s 31.3 
10 1.45, s 31.6 1.10, s 31.8 1.03, s 31.7 - 0.07 1.13, s  29.5 
Acetyl 2.06, s 21.4 2.03, s 21.9 2.04, s 21.9  2.08, s 21.1 
  170.7  170.9  179.9   169.9 

Table 3. MMFF94 and DFT B3LYP/6-31G(d) relative energy, and DFT population for the most stable conformers of 
MTPA ester 3R and 3S. 

3R 3S 
Conformer ΔEMMFFa ΔEDFTb pDFTc Conformer ΔEMMFFd ΔEDFTe pDFTc 

a 0.00 2.27   1.7 a 0.00 2.55   0.86 
b 0.30 2.40   1.3 b 0.04 1.91   2.49 
c 0.36 1.67   4.5 c 1.12 2.70   0.70 
d 0.39 1.07 12.4 d 1.13 2.74   0.63 
e 0.69 2.25   1.6 e 1.19 1.55   4.70 
f 1.50 1.94   2.9 f 1.33 2.15   1.63 
g 1.73 0.00 75.6 g 1.93 0.78 16.68 
    h 2.07 0.00 65.70 

aObtained from the Monte Carlo analysis, in kcal/mol relative to 3Ra with EMMFF = 138.407 kcal/mol. bIn kcal/mol 
relative to 3Rg with EDFT = -864459.605 kcal/mol. cDFT population in % calculated from the Boltzmann distribution 
equation in relation their DFT energy values. dObtained from the Monte Carlo analysis in kcal/mol relative to 3Sa with 
EMMFF = 138.086 kcal/mol. eIn kcal/mol relative to 3Rg with EDFT = -864460.055 kcal/mol. 
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(S)-MTPA esters of (1S,3S,4R,5R)-6 within the initial 
ΔE = 2 kcal/mol in a 10 kcal/mol range. Geometry 
optimization using DFT [18] calculations at the 
B3LYP/6-31G(d) level of theory (Table 4) conducted 
to the (R)-MTPA (6R) and (S)-MTPA (6S) 
conformers (Figure 2) as the most stable in 
agreement with observed 1H NMR anisotropic 
effects. PCC oxidation of 6 afforded (1R,3S,4R)-(+)-
3-acetyloxy-5-oxo-1,8-cineole 7. The 1H and 13C 
NMR data of the latter compounds are listed in Table 
2. 
 
Experimental 
 

General Experimental Procedures: Optical rotations 
were measured on a SEPA-300 HORIBA 
polarimeter. NMR measurements were recorded on a 
Bruker 300 AVANCE spectrometer at 300 (1H)     
and 75 (13C) MHz in CDCl3 solutions containing 
TMS as internal standard. Melting points were 
determined on an Ernst Leitz 350 microscope. 
Porcine liver esterase (PLE), (R)- and (S)-α-methoxy-
α-trifluormethylphenylacetic acid were purchased 
from Sigma-Aldrich. Merck silica gel (230-400 
mesh, ASTM) was used for column chromatography 
(CC). Analytical TLC were performed on     
precoated Merk silica gel 60F254 plates. The aroma 
characteristics of each enantiomer were evaluated by 
smelling the pure compound.  
 
Chiral GC-FID analysis: They were carried out 
using a Hewlett Packard 5890 Series II gas 
chromatograph equipped with a flame ionization 
detector (FID) and a chiral capillary column Cyclosil-
B (30 m x 0.25 mm i.d. x 0.25 μm film thickness) 

(J&W Scientific). Injector and detector temperature 
were maintained at 250°C and 270°C, respectively. 
Injection size 0.5 μL, split mode, nitrogen was used 
as carrier gas at a flow rate of 1.00 mL min−1. The 
oven was programmed as follows: (a) for acetates 
(+)-4 and (-)-4: 110°C to 135ºC at 0.5ºC min-1; Rt 
(+)-4: 23.89 min; Rt (-)-4: 23.36 min; (b) for ketones 
(+)-2 and (-)-2, and 3-acetyloxy-5-hydroxy-1,8-
cineole 6: 125ºC (20 min), 125 → 220ºC (10ºC min-

1), 220ºC (10 min); Rt (+)-2: 10.45 min; Rt (-)-2: 
11.53 min; Rt (+)-6: 33.63 min; Rt (-)-6: 33.80 min; 
(c) for (+)-3-acetyloxy-5-oxo-1,8-cineole 7: 125 → 
220ºC (2 ºC min-1), 220ºC (5 min); Rt (+)-7: 17.94 
min. Percentages (FID) were obtained from 
electronic integration measurements using an HP 
3395 integrator. 
 
GC-MS analysis: Mass spectra were recorded on a 
5973 Hewlett Packard selective mass detector 
coupled to a Hewlett Packard 6890 GC using HP-
5MS (5% phenylmethylsiloxane) capillary column 
(30 m x 0.25 mm i.d.; 0.25 μm film thickness). The 
injector, GC-MS interphase, ion source and selective 
mass detector temperatures were maintained at 
250°C, 275°C, 280°C and 150°C, respectively; 
ionization energy, 70 eV; injection size: 1.0 μL (split 
mode). Helium was used as carrier gas at a flow rate 
of 1.0 mL min−1. The oven was programmed as 
follows: 60°C (2 min), 60 →120ºC (1.5°C min-1), 
120°C (1 min), 120 → 200ºC (8ºC min-1), and then 
held at 200°C for 5 min.  
 
Preparation of Mosher esters: A solution of alcohol 
(42 μmol) in CH2Cl2 (2 mL) was treated with a 

Table 4. MMFF94 and DFT B3LYP/6-31G(d) relative energy, and DFT population for the 
most stable conformers of MTPA ester 6R and 6S. 

6R  6S 
Confor

mer 
ΔEMM

FFa 
ΔEDF

Tb 
pDF
Tc 

 Confor
mer 

ΔEMM
FFd 

ΔEDF
Te 

pDF
Tc 

a 0.00 2.26   1.8  a 0.00 1.60   3.5 
b 0.21 2.76   0.8  b 0.03 2.46   0.8 
c 0.38 2.40   1.4  c 0.10 2.57   0.7 
d 0.43 1.73   4.3  d 0.13 1.87   2.2 
e 0.52 1.63   5.1  e 0.90 2.61   0.6 
f 0.63 2.26   1.8  f 0.96 2.40   0.9 
g 0.85 2.79   0.7  g 1.11 2.75   0.5 
h 0.85 3.24   0.3  h 1.21 2.29   1.1 
i 1.50 2.27   1.7  i 1.90 1.63   3.3 
j 1.53 0.00 78.7  j 1.91 0.55 20.6 
k 1.57 1.98   2.8  k 1.96 0.00 52.1 
l 1.85 2.79   0.7  l 1.96 0.80 13.5 

aObtained from the Monte Carlo analysis, in kcal/mol relative to 6Ra with EMMFF = 
124.305 kcal/mol. bIn kcal/mol relative to 6Rg with EDFT = -1007454.64 kcal/mol. cDFT 
population in % calculated from the Boltzmann distribution equation in relation their DFT 
energy values. dObtained from the Monte Carlo analysis in kcal/mol relative to 6Sa with 
EMMFF = 124.153 kcal/mol. eIn kcal/mol relative to 3Rk with EDFT = -1007454.63 
kcal/mol. 
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solution of dicyclohexylcarbodiimide (78 mg, 378 
μmol), 4-(dimethylamino)pyridine (11.6 mg, 95 
μmol) and either (R)- or (S)-α-methoxy-α-
(trifluormethyl)phenylacetic acid (38.8 mg, 166 
μmol) in CH2Cl2 (2 mL) at room temperature for 24 
h. The reaction mixture was worked up as described 
for deodarols [26]. In each case, the Mosher ester was 
purified by flash column chromatography on silica 
gel using hexane-EtOAc mixtures as eluent. 
 
General procedure for the PLE-catalyzed 
resolutions: The enzymatic reaction was carried out 
using a slightly modified known procedure [17] with 
a porcine liver esterase (PLE) (EC 3.1.1.1; Sigma Lot 
123K7033) suspension (2,500-2,600 units) in buffer 
phosphate solution (pH 7.00, 15 ml), which was 
added to the substrate (4.70 mmol) in a single portion 
and then incubated at 37ºC with magnetic stirring 
Aliquots (0.5 mL) were taken at 6, 12, 18 and 24 h. 
Each sample was salted out followed by addition of 
ethyl acetate (1 mL), and the suspension was 
vigorously stirred. After centrifugal separation, the 
organic layer was dried over anhydrous Na2SO4, 
filtered, the solvent was removed under reduced 
pressure and the residue was monitored by TLC and 
GC-MS. After incubation for 12 h, GC-MS analysis 
showed 45.8% of (1R,3R,4S)-(-)-3 and 54.2% of 
(1S,3S,4R)-(+)-4 since acetate 4 is more efficiently 
extracted from the aqueous phase than alcohol 3; 
percentages were taken directly from the area % 
report of the total ion chromatogram and are not 
corrected by detector factor response.  
 
(1R,3R,4S)-(-)-3-Hydroxy-1,8-cineole (-)-3 and 
(1S,3S,4R)-(+)-3-acetyloxy-1,8-cineole (+)-4: The 
general procedure was followed using 431 mg (2.03 
mmol) of (±)-3-endo-acetyloxy-1,8-cineole 4. After 
incubation for 12 h the mixture was salted out, 
extracted with ethyl acetate (3 x 20 mL), the organic 
extract was dried over anhydrous Na2SO4, filtered, 
the solvent was removed under reduced pressure and 
the residue containing the ester/alcohol mixture was 
chromatographed on Si gel with hexane-EtOAc 
mixtures as eluent to yield (1S,3S,4R)-(+)-3-
acetyloxy-1,8-cineole (+)-4 (185 mg, 43%) and 
(1R,3R,4S)-(-)-3-hydroxy-1,8-cineole (-)-3 (142 mg, 
41%), as crystalline solids (amounts and percentages 
are the average of three runs). Chiral GC analysis of 
the isolated ester showed the following composition 
(three separate runs): (+)-4, 98.5%, 98.2% and 
96.0%; (-)-4, 1.5%, 1.8% and 4.0% respectively. 
After incubation for 18 h the remaining acetate was 
almost enantiomerically pure (>98.5%). 

(1S,3S,4R)-(+)-3-Acetyloxy-1,8-cineole, (+)-4 
 

MP: 39-40ºC (from pentane). 
[α]D : +52.0 (c 1.00, CHCl3), 94% ee (reported [16]: 
MP 41-43ºC; [α]D : +55.8 ). 
 
(1R,3R,4S)-(-)-3-Hydroxy-1,8-cineole, (-)-3 
 

MP: 93.5-94ºC (from pentane). 
[α]D: -57.1 (c 1.00, CHCl3), 97% ee (calculated by 
chiral GC of ketone (+)-2 obtained after oxidation 
with PCC) (reported [16]: MP 90-92ºC; [α]D: -45.3). 
 
(1S,3S,4R)-(+)-3-Hydroxy-1,8-cineole, (+)-3 and 
(1S,3S,4R)-(+)-3-Acetyloxy-1,8-cineole, (+)-4: (150 
mg, 0.70 mmol) was refluxed for 2 h with 3% KOH 
in ethanol (3 mL). After cooling, the reaction mixture 
was diluted with brine (10 mL), acidified with 5% 
HCl and thoroughly extracted with CHCl3. After the 
usual workup and final purification by flash CC on 
Sil gel, (1S,3S,4R)-(+)-3-hydroxy-1,8-cineole (+)-3 
was isolated (115 mg, 95.6%), as a crystalline solid, 
MP: 93-94ºC (from pentane); [α]D:  +56.2 (c 1.00, 
CHCl3), 94% ee (calculated by chiral GC of the (-)-2 
ketone obtained after oxidation with PCC) (reported 
[16] MP: 90-92ºC [α]D: +49.8). 
 
(1R,4R)-(+)-3-Oxo-1,8-cineole, (+)-2 and (1S,4S)-  
(-)-3-Oxo-1,8-cineole, (-)-2: To a stirred suspension 
of pyridinium chlorochromate (PCC) (187 mg, 0.87 
mmol) in CH2Cl2 (2 mL) was added dropwise a 
solution of (1R,3R,4S)-(-)-3-hydroxy-1,8-cineole (-)-
3 (100 mg, 0.59 mmol) or (1S,3S,4R)-(+)-3-hydroxy-
1,8-cineole (+)-3 (100 mg, 0.59 mmol) in CH2Cl2 
(1.5 mL) at room temperature. The resulting 
suspension was stirred for 2 h, diluted with 
anhydrous ether (6 mL), the supernatant decanted, 
and the gummy residue extracted with ether (3 x 8 
mL). The organic extracts were reunited and filtered 
through a short pad of Florisil. After solvent 
evaporation, the residue was chromatographed 
through a silica gel column (hexane:EtOAc, 49:1) to 
yield (1R,4R)-(+)-3-oxo-1,8-cineole (+)-2 from (-)-3 
(84 mg, 85%) as a colorless oil, [α]D: +36.7 (c 5.00, 
CHCl3), 97% ee; and (1S,4S)-(-)-3-oxo-1,8-cineole   
(-)-2 from (+)-3 (79 mg, 80%), as a colorles oil, [α]D: 
-33.6 (c 5.00, CHCl3), 94% ee showing NMR and 
MS data identical to those reported [6]. 
 
(±)-3,5-cis,cis-Diacetyloxy-1,8-cineole 5: The 
symmetric diketone 3,5-dioxo-1,8-cineole and the 
meso-diol 3,5-cis,cis-dihydroxy-1,8-cineole were 
prepared as previously described [6]. Meso-diol (506 
mg, 2.72 mmol), in anhydrous pyridine (6 mL), was 
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treated with recently distilled acetic anhydride (2.0 
mL, 21 mmol) and allowed to react overnight at room 
temperature with protection against moisture (CaCl2) 
and then heated at 70-75ºC (oil bath) for 2 h. The 
reaction mixture was cooled, treated with 10% HCl 
(50 mL) and thoroughly extracted with chloroform. 
The chloroform extracts were washed with a 
saturated solution of CuSO4, dried (Na2SO4), filtered 
and the solvent evaporated. The residue was flash 
chromatographed through a short Si gel column with 
chloroform-ethyl acetate 9:1 to yield 680 mg (93%) 
of meso-diacetate 5 as a crystalline solid, MP: 109-
110ºC (from hexane) showing MS, 1H- and 13C-NMR 
data identical to those reported [27]. 
 
(1S,3S,4R,5R)-(-)-3-Acetyloxy-5-hydroxy-1,8-
cineole, 6: Diacetate 5 was asymmetrized with PLE 
following the general procedure described above. 
From 400 mg (1.48 mmol) of 5 and after incubation 
for 12 h, 311 mg (92%) of (1S,3S,4R,5R)-(-)-3-
acetyloxy-5-hydroxy-1,8-cineole 6 were isolated as a 
colourless oil, [α]D = -1.56 (c 5.71, CHCl3) showing 
MS, 1H- and 13C-NMR data identical to those 
reported for the racemic compound [27]. Chiral GC 
of the asymmetrized hydroxy-acetate 6 using oven 
temperature program (b) showed a single peak with 
Rt 33.8 min while a racemic synthetic sample [27] 
displayed two almost baseline resolved peaks at 33.6 
min and 33.8 min. The absolute configuration of the 
asymmetrized hydroxy-acetate 6 was determined by 
the Mosher method [20,21] and, as could be 
anticipated, it resulted to be 1S,3S,4R,5R. The NMR 
data for the (R)- and (S)-MPTA esters of 6 are given 
in Table 2.  
 
(1R,3S,4R)-(+)-3-Acetyloxy-5-oxo-1,8-cineole 7: 
PCC oxidation of 6 (151 mg, 0.66 mmol) following 
the same procedure as just described to prepare (+)-2 
and (-)-2 afforded (1R,3S,4R)-(+)-3-acetyloxy-5-oxo-
1,8-cineole 7 (136 mg, 91% yield) as prisms. 
MP: 100-102ºC. 
[α]D: +84.7 (c 4.25, CHCl3).  
1H- and 13C-NMR: Table 2.  
MS (EI, 70 eV, direct inlet): m/z (%) 227 [M++ H] 
(38), 211 (43), 167 (8), 151 (11), 149 (4), 125 (28), 
109 (100), 108 (9), 83 (26), 82 (15), 81 (13), 79 (11), 
67 (13), 55 (6).  
Chiral GC analysis using oven temperature program 
(c) showed a single peak, Rt 17.94 min. 
 
VCD Measurements: VCD spectra were measured 
using a BioTools BOMEM chiralIR spectrophoto-
meter equipped with a single photoelastic modulator. 

Samples of each enantiomer were dissolved in 150 
μL of CCl4, placed in a BaF2 cell with a pathlength of 
75 μm and data were acquired at a resolution of 4 cm-

1 during 3 h. For (+)-2, 8.2 mg were used, while for  
(-)-2, 13.6 mg were measured. Baseline corrections 
were done either by substracting the spectra from the 
solvent or from a sample of 8.4 mg of (±)-2 in 150 
μL of CCl4. 
 
Molecular modeling: Geometry optimizations for   
(-)-3 and (-)-6 MTPA esters were carried out using a 
Monte Carlo protocol [22] at MMFF94 level. A total 
of 7, 8, 12, and 11 conformers for (-)-3 (R)-MTPA,  
(-)-3 (S)-MTPA, (-)-6 (R)-MTPA, and (-)-6 (S)-
MTPA esters, respectively, were found with a ΔE = 2 
kcal/mol in a 10 kcal/mol range. In order to obtain 
the most stable conformer, all structures were 
reoptimized by DFT [18] at the B3LYP/6-31G(d) 
level of theory using the Spartan’04 program 
routines. 
 
Geometry optimizations for (1S,4S)-2 was carried out 
using the MMFF94 force-field calculations. The 
EMMFF94 value was used as the convergence criterion, 
and a further search with the Monte Carlo protocol 
[22] was carried out with no restriction. Only one 
structure was located and re-optimized using DFT 
[18] at the B3LYP/6-31G(d) level of theory via 
Spartan’04W software routines. Final geometry 
optimization and calculation of IR and VCD 
frequencies for (1S,4S)-2 at the DFT 
B3LYP/DGDZVP level of theory was then 
performed using Gaussian 03W software. No solvent 
effects were included in the calculations. The DFT 
B3LYP/DGDZVP calculation required 14 h of 
computational time using a desktop personal 
computer with 2 GB RAM operated at 3 GHz. 
 
Odor characteristics 
Alcohols: 
(1R,3R,4S)-(-)-3: camphoraceous, sweet. 
(1S,3S,4R)-(+)-3: spicy (weak). 
Ketones 
(1R,4R)-(+)-2: sweet, cineole-like (weak). 
(1S,4S)-(-)-2: spicy. 
Acetates 
(1R,3R,4S)-(-)-4: woody. 
(1S,3S,4R)-(+)-4: camphor-like, smooth. 
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