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PACS 64.60.Bd – General theory of phase transitions
PACS 61.72.Bb – Theories and models of crystal defects
PACS 98.80.Cq – Particle-theory and field-theory of the early Universe (including cosmic

pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Abstract – We study the process of defect formation during a continuous phase transition in an
off-critical system. We focus on the spinodal-assisted nucleation regime, where the continuous
amplification of density fluctuations induces the pseudo-nucleation of the equilibrium phase.
The collision of the different propagating domains produces a domain structure with average
domain size and density of defects strongly dependent on the cooling rate. The distribution of the
topological defects is in good agreement with the cosmological Kibble-Zurek model proposed to
determine the creation of topological defects during a symmetry-breaking phase transition.

Copyright c© EPLA, 2009

Introduction. – Symmetry-breaking phase transitions
are a quite common phenomenon encountered in a large
number of fields, including condensed matter, statical
and particle physics [1–3]. One of the most impressive
phase transitions is, perhaps, the formation of the early
Universe. It has been proposed by different theories that
just after the Bing Bang the Universe underwent several
phase transformations that selected the current broken-
symmetry state, with its particular interactions and
elementary particles. As originally pointed out by Kibble
in 1976, one of the possibilities to test those theories would
be to look at the primitive topological defects associated
with the symmetry-breaking phase transitions in the early
Universe [3]. Due to relativistic causality, cosmological
phase transitions inevitably lead to the formation of
topological defects [4]. In this context, important ques-
tions about the mechanism of defect formation and their
dynamics have naturally emerged. In order to estimate
the initial density of defects at the early Universe, Kibble
estimated the correlation length ξ in a symmetry-breaking
phase transition [3]. One decade after Kibbles’s model,
Zurek argued that during a continuous phase transition
ξ should be dominated by non-equilibrium aspects of the
phase transition [5]. As a consequence of the critical slow-
down (the divergence of the relaxation time as the system
approach to the critical temperature), a continuously

(a)E-mail: dvega@criba.edu.ar

cooled system would not be able to equilibrate and become
out of equilibrium. In 1985 Zurek proposed to test the
theory of cosmological phase transitions in condensed-
matter systems [5]. Since then, the Kibble-Zurek theory
has been tested in a wide variety of physical systems [4],
including liquid helium [6,7], liquid crystals [8,9], super-
conductors, Josephson junctions [10] and convection
patterns [11]. Thus, the Kibble-Zurek model is a universal
theory for the dynamics of defect formation whose appli-
cations range from the transitions in the grand unified
theories of high-energy physics to the phase transitions
observed in different condensed-matter systems [5].
Although equilibrium properties of topological defects

in different condensed-matter systems has been well
established during the last century [1], still little is known
about the dynamic mechanisms leading to their formation
at the onset of phase transitions. It should be noted
that the interest in the distribution and features of the
topological defects is not only of importance from a basic
point of view. An incredible variety of materials employed
in everyday life are obtained through symmetry-breaking
phase transitions. During these transitions the formation
of defects is completely unavoidable. Since these defects
have a profound effect over the mechanical, transport
and optical properties, its control have an enormous
technological importance.
Recently, we have shown that the Cahn-Hilliard

approach can be used as a toy model to test the process of
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spinodal-assisted nucleation. Even though the process of
phase separation was conducted in the spinodal region, it
was found that the structure of density fluctuations acts
like a precursor for the formation of ordered structures
with long-range orientational and translational order,
resembling the crystalline structures found in the nucle-
ation and growth regime [12]. Then, this is an ideal model
to test the current theories of defect formation.
In this work we study the process of defect formation

through a Cahn-Hilliard model with competing short- and
long-range interactions in a region of the phase diagram
where the dynamics is controlled by the critical slowing-
down. In our case, the equilibrium low-temperature phase
is constituted by domains with crystalline structure. We
focus in the spinodal-nucleation region, where the continu-
ous relaxation of the order parameter produces the nucle-
ation and propagation of the equilibrium phase.

Model. – There are many systems in nature where the
free energy includes short-range attractive and long-range
repulsive interactions. Examples includes Langmuir films,
magnetic garnets or block copolymers. In this case, if the
order parameter is conserved and in the neighborhood of
the critical point the dynamical response during a phase
transition can be phenomenologically described by the
following Cahn-Hilliard dynamics [13,14]:

∂ψ

∂t
=M∇2

{
δF

δψ

}
, (1)

whereM is a mobility coefficient and the free energy F (ψ)
is given by

F =

∫
dr3
[
U(ψ)+

D

2
(∇ψ)2

]

+
β

2

∫
dr′3G(r− r′)ψ(r)ψ(r′). (2)

Here ψ(r) is the order parameter field, G(r) is a solution
of ∇2G(r) =−δ(r), and U(ψ) =− 12τ(t)ψ2+ 13νψ3+ 14κψ4
is the typical Guinzburg-Landau asymmetric double well.
The parameters β, ν, κ and D are phenomenological
constants, and τ(t) provides a measurement of the depth of
quench as a function of time. In the spinodal region, the
double-well shape of U(ψ) favors the formation of peri-
odic profiles with well-defined wavelength and symmetry.
While in three-dimensional systems this model can led to
different crystalline structures like lamellae, hexagonally
packed cylinders, spheres arranged on body-centered cubic
lattice or a bicontinuous structure with Ia3d space-group
symmetry, in two dimensions the smectic or hexagonal
phases are the preferred low-temperature low-symmetry
phases. We can note that in the case of an instanta-
neous quench, eq. (1) leads to spinodal decomposition
for temperatures τ > τs = 2

√
βD, being τs the spinodal

temperature.
Here we study the dynamical process of defect forma-

tion during the continuous transition from an homoge-
neous high-temperature phase towards the equilibrium

hexagonal phase (ν �= 0). The thermal treatment employed
includes an instantaneous quench from the disordered
phase into the spinodal line. Then, the system is continu-
ously cooled inside the spinodal region at a given cooling
rate. For simplicity we employed a linear dependence of
the depth of quench with time: τ(t) = τs+Vqt. Through
this thermal treatment we completely prevent any nucle-
ation of the equilibrium phase via the nucleation and
growth mechanism. The initial state was modelled by
Gaussian random fluctuations of the order parameter and
the temporal evolution was obtained by solving eq. (1)
through a finite differences scheme. For comparison, we
have also analyzed the process of phase separation during
an isothermal treatment at depths of quench below the
spinodal (τ > τs). Although our simulations do not include
thermal noise during the temporal evolution, we have
found that the main findings of this work are independent
of the fluctuations1.

Linear instability analysis. – At short times the
order parameter ψearly ∼ 0 and the early-time evolution
of the system can be obtained through the linear approxi-
mation of eq. (1). Then, the stability of the homogeneous
high-temperature state can be studied by considering the
order parameter as ψearly =

∫
dkAk(t) exp(ik · r), where

Ak(t) is the initial amplitude of the k-mode. The time
dependence of Ak(t) is found by substituting ψearly into
eq. (1):

Ak(t) =Ak(0) exp

{∫ t
0

dt′[−Dk4+ τ(t′)k2−β]
}
. (3)

Then, similarly to isothermal decomposition, the contin-
uous cooling also results in the selective amplification of a
narrow band of growing modes (modes outside the ring
of unstable k’s are exponentially damped). The strong
selectivity of modes can be clearly observed in fig. 1,
where we plotted λ(k, t) =

∫ t
0
dt′[−Dk4+ τ(t′)k2−β] as a

function of t and k at different cooling rates. Note that
at a given time, when the system overpass the critical
quench (τ ∼ τs) the range of unstable modes (λ(k, t)> 0)
is smaller as the cooling rate is reduced. As will be shown
in the next sections, the width of the band of unstable
modes is very important because it defines the features of
the system at longer times. This strong mode selectivity
has a direct influence in both, the correlation length and
the density of topological defects.

Pre-transitional state. – The time spanned since
the system goes through the spinodal line until the non-
linearities start to dominate the dynamics allows us to
define an incubation time ti where the kinetic is dictated
by the linearized approximation of eq. (1). For slow cooling
rates the competing interactions select a narrow range
of unstable modes and the early order parameter can
be expressed as a random superposition of modes with

1Here thermal fluctuations only renormalize the depth of quench
without affecting the relaxational mechanisms and scaling laws.
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Fig. 1: (Color online) λ(k, t) at three different cooling rates. At
a given time scale, there is a strong k selectivity at slow cooling
rates. The plane represents the isothermal spinodal.

a roughly fixed wave vector amplitude k0, but random
amplitudes, phases and directions. That is, since λ(k, t) is
sharp peaked at k0 we can further approximate ψearly as
ψearly(r, t)∼

∫
dΣAk0(t) exp(ik0 · r).

Then, when the length scale selectivity is very strong
thermal fluctuations with wavelength scales outside the
ring of unstable modes, determined by the dominating
wave vector k0, are exponentially suppressed. During this
early period of time the order parameter can be reasonably
well described by ψearly until the linearized approximation
of eq. (1) breaks down.
In a previous paper we have shown that the length scale

selectivity conducted by the spinodal process during an
isothermal treatment led to the formation of a filamentary
network of density fluctuations that resemble the scarred
states found in other physical systems [12]. From quan-
tum chaos and related fields it is well known that the
random superposition of sinusoidal waves with constant
wavelength amplitude results in a filamentary network of
fluctuations [15]. These ridged structures are a general
wave phenomenon and they are present in systems where
the dynamics is represented as a random superposition of
modes. Since in our model we can have a strong length
scale selectivity, we can expect the emergence of similar
patterns to those observed in isothermal treatment, i.e., a
network of ridges with large amplitude fluctuations.
Figure 2(a) shows a typical pre-transitional state

observed during the incubation time for a system slowly
cooled into the spinodal region. As previously pointed
out, this pattern resembles those found during isother-
mal decomposition [16]. Then, similarly to isothermal
treatments, here we can expect that by increasing the
cooling rate the pattern of the early density fluctuations
becomes strongly affected by the increase in the number
of unstable modes. We have observed that during the
incubation period the long-range correlations produced
by the ridges disappear when the system is cooled at a

Fig. 2: (Color online) a) Filamentary network of density
fluctuations. b) Pseudo-nucleation of the equilibrium phase as
seen through the oreintational field (color scale on the left).
c) Domain structure at long times.

high cooling rate. This effect onto the network of ridges
is a mere consequence of the increase of the band of
unstable modes during the incubation time [16]. Thus,
for rapid cooling the early fluctuations form a disordered
network without long-range correlations.

Pseudo-nucleation mechanism. – As a consequence
of the continuous amplification of ψ, as time proceeds,
the non-quadratic terms in U(ψ) acquires a larger rela-
tive importance and the linearized approximation involved
solving eq. (1) breaks down. This linearization is valid
during the incubation time, just after the onset of the spin-
odal instability and before the mean field 〈ψ2〉 becomes
large enough to trigger the non-linear effects. Although
this non-linear effects are triggered uniformly through the
system, at slow cooling rates the presence of the filamen-
tary network of ridges controls the pseudo-nucleation of
the stable phase. Since in our case the mechanism of nucle-
ation and growth is completely inhibited by the thermal
treatment, the inhomogeneities in the nucleation of the
equilibrium phase are dictated by the strong length scale
selectivity.
The presence of the ridged structure observed if fig. 2(a)

indicates that although there is a continuous amplifica-
tion of the order parameter in the whole system, it ampli-
fies faster at regions with initially larger fluctuations, i.e.,
ridges. Then, since the non-linearities define the crystalline
symmetry of the equilibrium phase, preferentially ampli-
fied ridges trigger the nucleation of well-ordered domains
that rapidly propagates throughout the system. In our
case, the phase of equilibrium is constituted by an array
of hexagonally packed domains.
Previously it was found that the equilibrium phase is

pseudo-nucleated at those points with the larger order
parameter fluctuations and lower symmetry, that is,
at the branching points of the network of ridges [12].
During the incubation time, the low symmetry around
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the branching points induces the preferential appearance
of the non-linearities in the dynamics and then, the
nucleation of seeds with the right symmetry. In fig. 2(a)
we have emphasized the presence of one of this precursors
for the pseudo-nucleation of the equilibrium phase.
While in the seeds there is a continuous amplification
of the order parameter until saturation, the front of
the growing crystals propagates through the system at
a time-temperature–dependent velocity. Although the
process of pseudo-nucleation can be analyzed through the
order parameter ψ, it is more convenient to analyze it
through the orientational field. Standard image processing
techniques were employed to identify the center of each
disk in the hexagonal pattern. Then, a Delaunay trian-
gulation is used to determine the inter-bond orientation
between near-neighbor disks θ(r) [16,17]. In figs. 2(b)
and (c) we plotted the orientational field of the crystalline
structure θ(r) at two different time scales (the color code
employed to identify θ(r) is shown on the left of fig. 2(b)).
In fig. 2(b) we can observe the pseudo-nucleation and
propagation of orientationally uncorrelated domains,
while in fig. 2(c) the collision between the different
propagation domains leads to a frozen domain struc-
ture with a domain size controlled by the cooling rate.
While the order parameter at those regions where the
non-linearities have not been triggered is small and
still dictated by the linear response, in the interior of
the propagating seeds the order parameter is close to
saturation (equilibrium). Then, these coherent structures
can propagate freely through the system until they collide
with other growing domains. Since the orientation of
distant growing crystals is uncorrelated, the collision
between the different domains leads to a structure of
domains with a characteristic domain size ξ (fig. 2(c)).

Domain collision and Kibble-Zurek mechanism
for defect formation. – At the time scale of the
incubation time the linearized approximation of eq. (1)
breaks down and the dynamics rapidly becomes frozen
as a consequence of the continuous cooling. At this time
scale the collision between domains produces Peierls-like
barriers that prevent the equilibration of the system [17]
and the domain structure remains completely frozen. This
freezing-out of the systems dynamics can be related to
the Zurek time tz [5]. Figure 3 shows the Zurek time (or
induction time) as a function of the cooling rate. While
for isothermal conditions the kinetics in the neighborhood
of the spinodal is dominated by the critical slowing-down,
with incubation times diverging as τ−1r , here the Zurek
time tz (tz ∼ ti) is controlled by Vq. The onset of the
non-linear dynamics during continuous cooling can be
determined through 〈ψ2〉= 1/Ω ∫

Ω
ψ(r)2 dr as the time at

which 〈ψ2〉 reach half of its value of saturation (although
other values can be used, once triggered, the process of
grain propagation is so fast that the scaling of tz with
Vq is quite insensitive to this particular choice). The
inset of fig. 3 shows 〈ψ2〉 as a function of time. In this

Fig. 3: (Color online) Zurek’s time and temperature as a
function of Vq. The inset shows through 〈ψ2〉 the onset of non-
linear dynamics.

figure it can be observed that 〈ψ2〉 rapidly reaches its
saturation value after the non-linear dynamics comes into
play (at t∼ tz). The onset of the non-linear dynamics
can be also determined through the amplification factor
λ(k, t). In this case, non-linearities are triggered at a time

dictated by Vqt
2 ∼ 1, i.e., t∼ V −1/2q . Figure 3 shows that

tz follows a scaling law with a scaling exponent close
to 1/2 (tz ∼ V −0.44q ), in good agreement with the scaling
predicted according to the breaks down of the linearized
approximation.
As a consequence of the formation of perfectly ordered

domains the totality of the topological defects is located
at the interfaces of the domains. This feature marks an
important difference with other systems where it is quite
difficult to prevent the formation of local distortions and
defects in regions other than interfaces. Any mechanism
in the nucleation and growth regime involves seeds with a
different symmetry than that corresponding to equilibrium
or the presence of anisotropies that deeply affect the
degree of order of the growing domains.
In our system the topological defects are constituted by

positive and negative vortexes (disclinations in the jargon
of liquid crystals) [1]. For positive (negative) vortexes
the orientational field θ twist to a non-trivial value of∮
∆θ=+π/3 (

∮
∆θ=−π/3). Figures 4(a) and (b) show

the vortex found in our system, as seen through θ(r).
In this system most of these defects forms pairs of
vortex-antivortex dipoles arranged along the domain walls
(fig. 4(c)). In the state of lowest energy, these dipoles
are separated by an small distance (∼ 1/k0). Note that
while isolated vortexes produce highly energetic long-
range distortions in the orientational field (with a free
energy diverging as ln(r)) in our system the distortions
associated to the defects are short ranged and the excess
in the free energy is located at the domain walls. Then,
even the orientational distortions generated by the free
vortexes are short ranged. We have found isolated vortexes
(vortex not engaged in a dipole) at domain walls and triple
points, that is, at the point where three grains collide.
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Fig. 4: (Color online) Typical topological defects found in
the hexagonal system. a) Positive disclination. b) Negative
disclination. c) Dipole of vortexes (dislocation). Note that the
long-range orientational field of the vortexes becomes short
ranged when they are arranged into a dipole. d) Domain
structure and representative defects. The circles (squares)
indicate positive (negative) vortexes. At the bottom of this
figure we have emphasized an array of dipoles of vortexes.

In fig. 4(d) we have indicated representative defects found
at the domain walls and triple points.
Interestingly, as pointed out by Ray and Srivastava,

near-neighbor triple points can induce the formation of
correlated vortex-antivortex pairs separated by a distance
of the order of the domain size [18]. This correlation can
be observed in fig. 4 and its origin can be understood as
follows. Let p be a vortex located at the intersection of
three domains, like the vortex located at the intersection
between domains A, B and C in fig. 4. The presence of a
vortex at p originates a partial winding of θ from domain
B to domain C. This partial winding of θ between B and
C introduces a preferential winding to locate an antivortex
at q. Then, the existence of the partial winding at triple
points is the source of the vortex-antivortex correlations
observed in fig. 4.
Since the domains are perfectly ordered, a good approxi-

mation of the average domain size can be obtained through
the orientational correlation length ξ6. In our case,
this correlation length can be determined by fitting the
azimuthal averaged orientational correlation function
g6(r) = 〈exp[6i(θ(r)− θ(r′))]〉 through a single exponen-
tial: g6(r)∼ exp(−r/ξ6). Figure 5 shows the orientational
correlation function for a system slowly cooled into the
spinodal region. Note that although at short distances
g6(r) decays exponentially, at distances beyond the aver-
age domain size there is a small maximum in the orienta-
tional correlation function. The presence of this maximum
is related to the orientational correlations generated by
the collision of domains and can be correlated to the
vortex-antivortex correlations previously discussed.
In order to quantify the effect of the cooling rate on

the mechanism of defect formation, in fig. 6 we plot the

Fig. 5: (Color online) Orientational correlation function g6(r).
Note the presence of an small maximum (arrow) indicating
the appearance of orientational correlations between grains
separated by a distance ∼ 2ξ6 (inset).

Fig. 6: Correlation length ξ6 and N
−1
d as a function of the

cooling rate Vq. The inset shows k0ξ6 as function of τr for the
isothermal treatment and as a function of τz for the continuous
cooling.

orientational correlation length ξ6 and the density of free
vortex Nd as a function of the cooling rate Vq. Here, by
free vortex we mean defects not involved in a dipole.
Note that by increasing the cooling rate there is a

reduction in the average domain size and consequently,
an increasing density of topological defects. This figure
shows that both ξ6 and Nd follow a power law with the
cooling rate Vq. While ξ6 decreases with the cooling rate as

ξ6 ∼ V −1/3q , the density of defects increases as Nd ∼ V 1/3q .
This scaling relationships can be understood in terms of
Zurek’s arguments. During a continuous phase transition
the correlation length diverges with the critical parameter
as ξ ∼ τ−νr (here τr = τ/τs− 1, where τ is the depth of
the quench). However, due to the critical slowing-down
the time required to equilibrate the system also diverges
as ∼ τ−µr . Then, beyond a characteristic time the system
is not be able to equilibrate, falling out of equilibrium
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and freezing. The correlation length at this time will be
the average domain size and will scale with the cooling

rate as ξ ∼ V −ν/(µ+1)q . Here, through the induction time
tz we can determine the depth of quench at which the
dynamics becomes frozen (Zurek depth of quench τz) as
τz = Vqtz. Figure 3 also shows τz as a function of Vq.
We found that τz follows a power law with Vq with an
exponent close to 1/2. According to the data of fig. 3
and fig. 6, we have power laws consistent with tz ∼
V
−1/2
q and ξ6 ∼ V −1/3q . This implies that in our system
we have ν ∼ 2/3 and µ∼ 1, which is consistent with the
predictions of the renormalization group approach and
experiments [19] (in ref. [12] we have shown that during
an isothermal treatment the induction time for pseudo-
nucleation diverges with an exponent µ= 1).
In the inset of fig. 6 we compare the correlation length

obtained during isothermal treatment and continuous
cooling as a function the effective depth of quench. In
the case of isothermal treatment the depth of quench is
directly τr, while for continuous cooling we have employed
τz. During isothermal treatments we have found that the
correlation length follows the scaling with the reduced

temperature τr consistent with ξ6 ∼ τ−2/3r . In this case,
the critical slowing-down imposes that the incubation time
diverges as ∼ τ−1r . On the other hand, when the orienta-
tional correlation length is plotted against τz, it was found
that it also follows a power law with a slightly smaller
exponent ξ6 ∼ τ−0.6±0.02z . In addition, it is also noted that
similar correlation lengths are obtained through both ther-
mal treatments when they are evaluated at temperatures
that control the critical slowing-down (τr or τz for isother-
mal or continuous cooling, respectively). The small but
systematic difference between both thermal treatments
are a clear signature of the length scale selectivity. As
compared with isothermal treatments, during a continu-
ous cooling the initial stage of phase separation produces
a stronger length scale selectivity that increases the aver-
age domain size and consequently, reduces the density of
topological defects.
When the process of vortex formation is completely

random, we can expect that the correlation length and the
density of vortex become linked trough ξ6 ∼N−2d . However
in our system the majority of the free defects are vortexes
located at the domain walls and the density of defects
and correlation length must be related as ξ6 ∼N−1d . Here
this implies that Nd ∼ V 1/3q . In fig. 6 we have also plotted
the number of free vortexes as a function of the cooling
rate. Note that Nd ∼ V 0.31±0.02q , which is consistent with a
vortex density dominated by domain walls rather than by
triple points and in good agreement with the experimental
data of Casado et al. in a Bénard-Marangoni convection
system [11].

Conclusions. – In summary, we have observed that
the strong length selectivity may lead to the appearance
of an early network of density fluctuations that acts as

a precursor for nucleation. In qualitative agreement with
the Kible-Zurek picture for cosmological phase transitions,
once triggered, the domains propagate free of any orienta-
tional or translational distortions. Then, the totality of the
orientational defects are condensed along domain bound-
aries and their density is entirely controlled by the cool-
ing rate. Although the dominating defects are dipoles in
the ground state, there are also free vortexes located at
domain walls and triple points. However, the scaling of
the number of defects with the correlation length indicates
that the largest population of free vortexes are located at
domain walls.
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