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Bending mode fluctuations and structural stability of graphene nanoribbons
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We analyze the thermal fluctuations of a narrow graphene nanoribbon. Using a continuum membranelike
model in the harmonic approximation, we study the height-height correlation functions and the destabilization
modes corresponding to two different boundary conditions: fixed and free edges. For the first case, the thermal
spectrum has a gap and the correlations along the ribbon decay exponentially. Thermal fluctuations produce
only local perturbations of the flat situation. However, the long range crystalline order is not distorted. For free
edges the situation changes as thermal excitations are gapless. The low energy spectrum decouples into a bulk
and an edge excitation. The bulk excitation tends to destabilize the crystalline order producing a homogeneous
rippling. Furthermore, we can relate the edge mode to a precluding perturbation leading to scrolled edges, as
seen in suspended graphene samples. We also analyze the implications of our results in the thermal conductivity
of graphene nanoribbons.
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I. INTRODUCTION

The interplay between lattice deformations and electron
dynamics is an important ingredient to take into account
in order to understand and control the electronic properties
of future graphene devices. On one side, an external strain
applied to graphene produces a pseudomagnetic field whose
effect was first predicted theoretically1 and then determined
experimentally.2 This could be the starting point of a field
called straintronics, namely the control of the electronic
properties by applying mechanical strain. On the other hand,
the intrinsic corrugation observed since the early experiments
in suspended graphene samples affects the electron mobility.
Fluctuations over this corrugation, called flexural phonons,
have been proposed to be the source of the intrinsic limit
in the electron mobility3 and, certainly, the control of these
corrugations is an important point to address.

When the dimensionality is reduced, height fluctuations
are amplified due to the known tendency to instabilities in
low dimensions. We expect thick ribbons with quasi-one-
dimensional geometry to have stronger thermal fluctuations
than two-dimensional systems. These fluctuations can have
important effects on the electronic transport and the mecha-
nism should be identified in order to control and manage the
electronic properties of graphene nanoribbons.

The goal of the present paper is to study thermal excitations
in graphene nanoribbons. We take a continuum model as a
starting point, allowing us to account for the long-wavelength
acoustic phonons. Our focus is to understand how the vibra-
tional modes are affected by different boundary conditions
and how these vibrations affect the static flat case. We analyze
these points by calculating the out-of-plane flexural phonons
and the height-height correlation functions for two different
situations: clamped and free edges.

Phonon thermal conductivity plays an exciting role in
graphene physics. Measurements4 show that graphene could
be one of the best heat conductors ever known, with thermal
conductivity K as high as 5000 W/mK at room temperature
in suspended samples. These results may open up new
applications for thermal control in nanoelectronics. Moreover,

the experimental values for K are not coincident,5 and there
is no agreement on what kind of phonons (in-plane or out-of-
plane) produce the dominant contribution to K .6 Our study
could shed light on the role of the bending modes in graphene
nanoribbons. We will discuss this point in the next sections.

This paper is organized as follows: In Sec. II we introduce
the Hamiltonian model by taking a continuum limit of a
tethered surface with bending energy. We also discuss how the
appropriate boundary conditions can be taken into account. In
Sec. III we present a general formalism based on a path integral
to obtain the correlation functions. In Secs. IV and V we
obtain the out-of-plane phononic spectrum and the correlation
functions, analyzing their consequences. Finally, in Sec. VI
we give our conclusions and perspectives.

II. THE MODEL AND THE BOUNDARY CONDITIONS

Single- and few-layer graphene are systems of atomic-scale
thickness. As such, a continuum elastic theory for thick plates
cannot be used straightforwardly. However, their mechanical
properties, the formation of ripples, and the phonon spectrum
as the basis of the electron-phonon interaction, are well
described by the elastic energy form of thick plates. The
clue to understanding this fact is that the bending rigidity
in graphene does not arise from compressions and dilations of
the continuum medium bounded by free surfaces. Therefore,
the bending rigidity parameter cannot be obtained from the
elastic parameters of the medium; instead, it is an independent
quantity.7 It is thought that the bending rigidity in graphene is
due to the bond-angle and bond-order terms associated with
the dihedral angles of the underlying C-C interactions.8

This distinction has a special significance in the presence
of edges, as the case of the ribbons that we consider in
this work. To make the discussion concrete, we start from
a simplified tethered surface with bending energy, which has
been introduced in the studies of membranes.9 The model
Hamiltonian is

Ebend = −κ̄
∑
〈i,j〉

(ni · nj − 1), (1)
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where ni is the normal unit vector at the ith site of the lattice
and j is its nearest neighbor. We use κ̄ as the bending rigidity
parameter in the lattice model. For small deviations from the
flat configuration, we can parametrize the position of a point
on the surface as

r(x,y) = [x,y,h(x,y)]. (2)

This is called Monge representation. h(x,y) is the height
variable and the normal unit vector can be calculated as

n(x,y) = ez − ∇h√
1 + (∇h)2

= (−∂xh, −∂yh,1)√
1 + (∇h)2

, (3)

where ez is the unit vector in the z direction. Replacing this last
expression in Eq. (1) and taking a continuum limit we obtain

Hbend = lim
cont

κ̄
∑
〈i,j〉

(1 − ni · nj ) = lim
cont

κ̄

2

∑
〈i,j〉

(ni − nj )2

= κ

2

∫
d2x

[(
∂2
xh

)2 + (
∂2
yh

)2 + 2(∂x∂yh)2
]
. (4)

Here κ ∝ κ̄9,10 and we have kept terms up to order of O(h2).
This is precisely the harmonic approximation of the bending
Hamiltonian in terms of h(x,y). One can see the explicit
geometric contributions of Eq. (4) if we write it down in the
following way:

Hbend = κ

2

∫
d2x[(∇2h)2 − 2Det(∂i∂jh)]. (5)

The first term is proportional to the square of the mean
curvature and the last one to the Gaussian curvature, both
written in the harmonic approximation. In terms of these
curvatures, Eq. (5) is known as the Helfrich form of the bending
energy of a liquid membrane.11 In particular, the Gaussian
curvature is a total derivative term which has been neglected
in previous studies on the stability of graphene membranes.
However, it plays an important role in the search for the
appropriate boundary conditions of our ribbon geometry.

If, instead of Eq. (1), we had begun with the elasticity
problem of a thin plate, the bending energy would have
assumed the same expression as Eq. (5).12 However, in this
last case, the bending rigidity would not be an independent
parameter but a function of the elastic modulus of the plate as
κ = Y l3

12(1−σ 2) , with l its thickness, Y is the Young’s modulus,
and σ is the Poisson ratio. Also, the Gaussian curvature in
the second term of Eq. (5) would be multiplied by (1 − σ ).
Regarding the discussion at the beginning of this section, we
see that there is a formal connection between the theory of
thin elastic plates and the one of two-dimensional membranes.
The last one can be obtained from the other one by taking the
bending rigidity as an independent parameter and by setting
σ = 0.

When expressing (∇2h)2 in the form of hOh, we find
another total derivative term. Then, Eq. (5) can be written
as

Hbend = κ

2

∫
d2x

[
h
(
∂4
x + ∂4

y + 2∂2
x ∂2

y

)
h

+ ∂x

(
∂xh∂2

xh − h∂3
xh − 2h∂2

y ∂xh
)

+ ∂y

(
∂yh∂2

yh − h∂3
yh + 2∂xh∂y∂xh

)]
. (6)

Until now we have not specified the integration domain and the
physical boundary conditions for our problem. We consider a
long and narrow ribbon of width W and length L running along
the y direction. The domain of integration is therefore given by
−W/2 � x � W/2 and −L/2 � y � L/2 with W � L. We
use periodic boundary conditions in the y direction. Therefore,
the surface term corresponding to the last line of Eq. (6)
vanishes. Finally, we obtain the following bending energy for
the ribbon:

Hbend = κ

2

∫ L
2

− L
2

dy

∫ W
2

− W
2

dx
[
h
(
∂4
x + ∂4

y + 2∂2
x ∂2

y

)
h
]

+
∫ L

2

− L
2

dy
{
∂xh(x,y)

[
∂2
xh(x,y)

]
−h(x,y)

[
∂3
xh(x,y) + 2∂2

y ∂xh(x,y)
]}

x=±W/2, (7)

where the last symbol means that the term in braces is the
difference between this expression evaluated at x = W

2 and at
x = −W

2 . Therefore, the integral runs along the edges of the
ribbon. A cancellation of this term could take place in two
different situations. Consider a ribbon with clamped edges
along the y direction. In this case we have

h

(
x = ±W

2
,y

)
= 0, ∂xh

(
x = ±W

2
,y

)
= 0. (8)

The terms multiplying h(x = ±W
2 ,y) and ∂xh(x = ±W

2 ,y) can
be interpreted as the force and the torque on the edge of the
ribbon.12 Setting these terms to zero means having free edges,
and the boundary conditions are then

(
∂3
x + 2∂2

y ∂x

)
h

(
x = ±W

2
,y

)
= 0,

(9)

∂2
xh

(
x = ±W

2
,y

)
= 0.

Note that those are the situations (clamped and free) considered
in Ref. 13 to obtain the phonon dispersion relation of a
nanoribbon. In this reference, the theory of an elastic thin
plate is used instead and the following boundary conditions
are considered for free edges:

[
∂3
x + (2 − σ )∂2

y ∂x

]
h

(
x = ±W

2
,y

)
= 0,

(10)(
∂2
x + σ∂2

y

)
h

(
x = ±W

2
,y

)
= 0.

For σ = 0, Eq. (10) is the same as Eq. (9) as we already
remarked. So far we have not discussed about the elastic
stretching energy of the ribbon. This is because, in the
harmonic approximation, the in-plane modes that correspond
to the stretching energy are decoupled from the out-of-plane
ones, allowing us to study these situations separately. In the
next section we will compare the height-height correlation
function and the mean square of the height corresponding
to the two different boundary conditions given by Eqs. (8)
and (9).
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III. GENERAL FORMALISM FOR CORRELATION
FUNCTIONS

For both clamped and free boundaries, the surface term in
Eq. (6) vanishes, and the partition function of the system can
be written as a path integral of the form

Z =
∫

Dh exp

{
− κ

2kT

∫ L
2

− L
2

dy

×
∫ W

2

− W
2

dx
[
h

(
∂4
x + ∂4

y + 2∂2
x ∂2

y

)
︸ ︷︷ ︸

O

h
]}

, (11)

integrating over all the paths that fulfill the boundary con-
ditions (8) or (9). It is convenient to expand the path in the
basis of the eigenfunctions of the operator O. Due to the
periodic boundary condition in the long direction, we can
separate its y dependence. The eigenfunctions assume the form
f n

m(x)eiqmy , where qm = 2πm
L

, and f n
m are the eigenfunctions

of the following problem:
[
q4

m + ∂4
x − 2q2

m∂2
x

]
f n

m(x) = λ2
m,n f n

m(x). (12)

This situation is quite similar to the one analyzed in Ref. 13
to solve the classical dynamics for the out-of-plane normal
modes. We define the dimensionless variables q̄m = Wqm, λ̄ =
λW 2, x̄ = x

W
, and ȳ = y

W
. The solutions of Eq. (12) can be

written as

f n
m(x̄) =

4∑
i=1

di eβi x̄ , (13)

with

βi(m,n) = ±
√

q̄2
m ± λ̄m,n. (14)

After replacing Eq. (13) in the boundary conditions (8) or
(9) we obtain a linear 4 × 4 problem whose solutions give
λ̄ as a function of q̄, and the coefficients di to construct the
normalized eigenfunctions. We will elaborate on this route in
the next section.

Once we have solved this problem, the expression for
h(x,y) can be expanded as

h̄(x̄,ȳ) =
∑
m,n

αm,n f n
m(x̄) eiq̄mȳ , (15)

where h̄(x̄,ȳ) ≡ h(Wx̄,Wȳ)
W

. Applying the corresponding change
of variables, the path integral (11) will run now on the
coefficients αm,n and the height-height correlation function
〈h̄(x̄1,ȳ1)h̄(x̄2,ȳ2)〉 can be obtained as usual by adding a source
term of the form

∑
αm,nεm,n to the exponent and then taking

the derivative with respect to εm,n. The result is

〈h̄(x̄1,ȳ1)h̄(x̄2,ȳ2)〉 = kT

κL̄

∑
m,n

ei(ȳ1−ȳ2)q̄m
f n

m(x̄1)f n
m(x̄2)

λ̄2
m,n

. (16)

In the previous equation we assumed that the eigenfunctions

are normalized in such a way that
∫ 1

2

− 1
2
|f n

m(x̄)|2dx̄ = 1.
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FIG. 1. (Color online) Dispersion curves given by the functions
λ̄(q̄) for the clamped ribbon. We show the first seven branches of the
spectrum which, in fact, has an infinite number of them. In the inset
we show a zoom of the low energy spectrum for the first two branches.

IV. CORRELATION FUNCTIONS FOR
CLAMPED RIBBONS

Imposing the conditions of Eq. (8) over h̄(x̄,ȳ) expressed in
terms of f n

m(x̄) according to Eq. (13), we obtain a 4 × 4 matrix
M(λ̄,q̄) that multiplies the vector of coefficients (d1,d2,d3,d4),
and whose result must be zero. Explicitly

M =

⎛
⎜⎜⎜⎜⎝

e
a
2 e− a

2 cos
[

b
2

]
sin

[
b
2

]
e− a

2 e
a
2 cos

[
b
2

] − sin
[

b
2

]
a e

a
2 −a e− a

2 −b sin
[

b
2

]
b cos

[
b
2

]
−a e− a

2 a e
a
2 −b sin

[
b
2

] −b cos
[

b
2

]

⎞
⎟⎟⎟⎟⎠ ,

(17)

where a = √
q̄2

m + λ̄m,n and b = √
λ̄m,n − q̄2

m are real vari-
ables. By requiring that Det[M] = 0 we obtain the values
of λ̄m,n for each q̄m. The index n = 0, 1, 2, 3, . . . used so
far enumerates the dispersion curves, which are shown in
Fig. 1. These boundary conditions allow us to simplify the
determinant of the matrix M, which can be factorized in two
terms:

Det[M] = −8

(
a cosh

[
a

2

]
sin

[
b

2

]
− b cos

[
b

2

]
sinh

[
a

2

])

×
(

b cosh

[
a

2

]
sin

[
b

2

]
+ a cos

[
b

2

]
sinh

[
a

2

])
.

(18)

Under these circumstances the matrix M is reduced to a
simpler form and the eigenfunctions f n

m(x̄) can be calcu-
lated explicitly. When the first term vanishes, we obtain
the n = 1, 3, 5, . . . branches of the spectrum with the odd
eigenfunctions, which read

f n
m(x̄) = Cn

(
− cos[b/2]

cosh[a/2]
cosh[ax̄] + cos[bx̄]

)
, (19)

and when the second term vanishes, we obtain the n =
0, 2, 4, . . . ones with the even eigenfunctions, which can be
written as

f n
m(x̄) = Cn

(
− sin[b/2]

sinh[a/2]
sinh[ax̄] + sin[bx̄]

)
. (20)
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FIG. 2. (Color online) Square of the normalized eigenfunctions
f n

m(x̄) for the first three branches of the spectrum in the clamped
ribbon. These calculations are made for q̄ = 6π .

The quantities Cn, as remarked at the end of Sec. III, represent
normalization constants. Plots for (f n

m(x̄))2 with n = 0, 1, 2
and q̄m = 6π are shown in Fig. 2. As pointed out in Ref. 13,
there is a gap in the spectrum and the zero energy mode does
not exist for q̄m = 0. This is related to the fact that global
translations are not allowed because the ribbon is clamped at
the edges. The gap in the first branch behaves as 
 ∼ 22.3

W 2

(in the original units) approaching the zero value for the
infinite square sheet. We expect the height-height correlations
at different points to decay exponentially and this is indeed the
case. In Fig. 3 we show the value of κ

kT
〈h̄(0.25,ȳ)h̄(0.25,0)〉

running along the y direction and evaluated numerically from
Eq. (16). The contribution from the first three branches is
shown. As the gap increases we go to branches with higher
energy, the contributions of the corresponding correlations
become increasingly smaller. A fast decay of the correlations
is observed in a distance of the order of W . In fact, we
can estimate the characteristic correlation length with the

0 0,5 1 1,5 2

y

0
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0,002

κ/
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T
) 

<
h(

0.
25

,0
) 

h(
0.

25
,y

)>

n=0 branch
n=1 branch
n=2 branch
Approximation

FIG. 3. (Color online) Height-height κ

kT
〈h̄(0.25,ȳ)h̄(0.25,0)〉

correlation as a function of the distance in the long direction, for
the clamped ribbon. The contributions of the three first branches
are shown separately. The dashed line represents the approximation
given by Eq. (22). The length of the ribbons is L = 1000 and its width
W = 100.

following approximations. The first branch of Fig. 1 can be
fitted by a function of the form λ̄0(q̄) 	

√
a0 + a1q̄2 + a2q̄4,

with a0 = 500, a1 = 24, and a2 = 0.972. If we neglect the
weak dependency of the eigenfunctions on q̄m in Eq. (16),
the y dependency of the correlation is given by the following
Fourier transform:

〈h̄(x̄1,ȳ)h̄(x̄2,0)〉
	 f 0

m(x̄1)f 0
m(x̄2)

∫ +∞

−∞

dq̄

2π

eiq̄ȳ

a0 + a1q̄2 + a2q̄4
, (21)

which can be solved analytically, giving

〈h̄(x̄1,ȳ)h̄(x̄2,0)〉 	 f 0
m(x̄1)f 0

m(x̄2)e−qI ȳ

× [α sin(qRȳ) + β cos(qRȳ)], (22)

where α = 0.00499, β = 0.00271, and qR + iqI = 2.273 +
i4.185 is a zero of the denominator of Eq. (21). The decay
of the correlation is clearly dominated by the exponential
term. Its characteristic scale, i.e., the correlation length, is
ξ = W/4.185 (in the original units).

We see that it is possible to control the extension of the
height-height correlation by changing the width of the ribbon.
If we associate this thermal fluctuation with the rippling, these
results imply that the characteristic size of the rippled region
grows linearly with the width of the ribbons. In Fig. 4 we show
the values of 〈h̄2(x̄,ȳ)〉 for the first three branches of Fig. 1. The
dominant contribution coming from the first branch produces
a maximum distortion at the center of the ribbons. The other
branches produce periodic distortions according to the shape
of the eigenfunctions f n

m(x̄), as shown in Fig. 2. The number
of nodes is exactly n + 2 including those at the edges.

Let us discuss the possible use of the previous results to
clarify the relative contribution of the in-plane and flexural
phonons on the intrinsic heat conductivity of graphene. The
gap in the phonon spectrum for the clamped ribbons implies
that, indeed, no acoustic phonons exist, which leads to a strong
reduction of K . However, as shown in Ref. 13, this gap is
actually very small for realistic values of W . In fact, for W =
30 nm, the gap is 
OP = 7.9 μeV. As the translation symmetry

0 0,1 0,2 0,3 0,4 0,5

x

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

κ/
(k

T
) 

<
(h
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2 >

n=0 branch
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FIG. 4. (Color online) Mean square of the height κ

kT
〈h̄(x̄,ȳ)2〉 as

a function on x̄, the distance to the center, for the clamped ribbon.
We show the contributions of the first three branches. The length of
the ribbons is L = 1000 and its width W = 100.
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is broken in all directions, there is also a gap for the in-plane
phonons. It has been estimated in Ref. 13 to be 
IP = 1 meV
for a ribbon of the same width, much higher than 
OP. For
temperatures sufficiently lower than RT we expect the out-of-
plane phonons to be excited but not the corresponding in-plane
modes. If future determinations of K(T ) in clamped samples
show a reduction at low temperature, we would conclude that
these phonons are not quite relevant for thermal conductivity
as claimed in previous works.14

V. CORRELATION FUNCTIONS AND STABILITY OF
RIBBONS WITH FREE EDGES

In a recent paper15 one of the authors studied the thermal
fluctuations and the stability of a graphene ribbon with periodic
boundary conditions in both directions, in order to avoid
edge effects. It was found, from both analytical calculations
and Monte Carlo simulations, that there is a critical relation
between the width and the length of the system (called R2D-1D)
in which the dependence of 〈h̄2(x̄,ȳ)〉 with the system size
changes. When the width decreases and the relation with
the length becomes smaller than R2D-1D, thermal oscillations
are more pronounced than in the opposite case. The system
behaves as one-dimensional and there is a higher tendency to
a crumpled instability than in square samples.

Moreover, the results of Ref. 15 (which include anharmonic
terms) do not take into account possible excitations of
the edges. To consider this kind of excitations in a more
realistic description, we analyze the out-of-plane modes
of a ribbon with free boundary conditions, as given by
Eq. (9). Following similar steps as in the previous section,
but with the corresponding boundary conditions, we obtain
the dispersion relation of the out-of-plane modes which are
shown in Fig. 5. Differently than in the clamped ribbon,
as translational invariance is not broken, we find a gapless
dispersion with two acoustic branches of zero energy at q̄ = 0.
Qualitatively, we find a similar spectrum as the one in Ref. 13
where a finite Poisson ratio is considered and the boundary
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FIG. 5. (Color online) Dispersion relation giving the functions
λ̄(q̄) for the free ribbon. We show the first seven branches of the
spectrum. In the inset we show a zoom of the low energy spectrum
for the two first branches.
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FIG. 6. (Color online) Square of the normalized eigenfunctions
f m

n (x̄) corresponding to the first (upper panel), second (middle panel),
and third branch (lower panel) of Fig. 5. We also show for comparison
the square of eigenfunctions for ribbons with finite Poisson ratio
σ = 0.1 and σ = 0.25.

conditions given by Eq. (10) are used. However, there are some
important differences that appear with a careful inspection
of the two lowest energy branches and their corresponding
eigenfunctions. First of all, note that a function of the form
h(x,y) = Ceiqy , in which C is a constant, fulfills condition (9)
but not (10). This is a solution of the eigenproblem(12) with a
constant eigenfunction and dispersion relation λ̄(q̄) = q̄2, and
this is precisely the eigenfunction corresponding to the lowest
energy branch of a system with periodic boundary conditions
in the x direction, as analyzed in Ref. 15. We identify this as a
bulk mode, corresponding to the first branch in Fig. 5.

This is different than the situation we find when the bound-
ary conditions given by Eq. (10) are used. For comparison, we
show the square of the eigenfunctions corresponding to the
first branch in the upper panel of Fig. 6 for different values
of the Poisson ratio σ . We see that it is a constant function
corresponding to a pure bulk mode only for σ = 0, when a
two-dimensional membrane model is used. For finite values of
σ the eigenfunctions depend on the position over the ribbon
and do not represent a bulk mode anymore, otherwise the
dispersion relation of the second branch could be fitted by a
law λ̄(q̄) = q̄

√
a0 + a1q̄2 which disperses linearly near q̄ = 0

and then quadratically for large values of q̄. The square of
the eigenfunctions corresponding to this mode are shown in
the middle panel of Fig. 6. We see that the most important
distortion occurs when we approach to the edges. This mode
is therefore mostly an edge excitation and its behavior is
qualitatively similar for both σ = 0 and σ �= 0.

We arrive at an important conclusion: When a theory of
a two-dimensional membrane is used, which we assume is
the correct one for single- or few-layer graphene systems, the
low energy phonon spectrum is decoupled into two branches
with quite different physical interpretations. One corresponds
to a bulk excitation and the other one is mainly an edge
mode.

Let us explore the consequences for the mean square
amplitude of the height 〈h̄2(x̄,ȳ)〉. Differently than in clamped
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ribbons, there are two gapless branches that give rise to a
strong dependency with the length of the system ∼L and
a divergence when L → ∞. This can be interpreted as an
intrinsic instability of the system. However, it is known that
the harmonic approximation is not valid for small values of
q̄, in which the anharmonic coupling between the in-plane
and the out-of-plane modes15,16 can stabilize the ribbon (or
at least weaken the divergences). Moreover, the inclusion of
external strains which are ubiquitous in real samples, will help
to stabilize the system.17

One is tempted to connect this elastic instability with
the possible divergence of the thermal conductivity in two-
dimensional systems that has been widely debated in relation
to graphene samples.18,19 Furthermore, the elastic instability
already appears in the harmonic approximation where the
bending and in-plane modes are decoupled. An intrinsic size
dependency analysis of K within our continuum model would
necessarily include anharmonic terms which couple out and
in-plane modes. This calculation could be conducted on the
lines of the Appendix of Ref. 19 and deserves a separate
study.

The physical effect of the distortion of the ribbon will
be quite different depending on the contribution of each of
the two lower energy branches. The first one, with quadratic
dispersion relation, is a bulk mode. We expect the same
effect as the one analyzed in Ref. 15, i.e., to produce an
homogeneous rippling. More important for the goal of this
paper is the effect of the second branch. In Fig. 7 we show
the result for 〈h̄2(x̄,ȳ)〉 calculated using the eigenvectors and
eigenvalues corresponding to the second (upper panel) and the
third (lower panel) branch of Fig. 5. As in the previous figure,
we compare this result to ribbons with finite Poisson ratios
σ = 0.1 and σ = 0.25. We see again that the maximum of
〈h̄2(x̄,ȳ)〉 is at the boundary for each value of σ . Regarding
the contribution of the third branch, the correlation is strongly
reduced as there is a gap for these excitations. A minimum
around x̄ ∼ 0.28 is observed as well, corresponding to a node
in the eigenfunctions. The height-height correlation function
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third branch (lower panel) of Fig. 5. We also show, for comparison,
the corresponding quantities for a ribbon with finite Poisson ratios
σ = 0.1 and σ = 0.25. The length of the ribbons is L = 1000 and its
width W = 100.
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tained with the eigenfunctions and eigenvalues corresponding to the
second branch (upper panel) and the third branch (lower panel) of
Fig. 5. We also show, for comparison, the corresponding quantity for
ribbons with finite Poisson ratios σ = 0.1 and σ = 0.25. The length
of the ribbons is L = 1000 and its width W = 100.

is shown in Fig. 8 as a function of ȳ for fixed x̄ = 0.25.
Regarding the contribution of the third branch in the lower
panel, its behavior is similar to the one seen in the clamped
ribbon, as analyzed in the previous section. The correlation
function has very small values and decays exponentially with
the ȳ distance. However, the contribution of the second branch
is much more important and the correlation function decays
much more slowly. This is a consequence of the absence of
a gap for this mode. In fact, the value that this correlation
assumes will increase with the length of the ribbon. Note that
correlations in momentum space decay as ∝ 1

q2 at small q.
This may be compared with a 2D-infinite membrane, whose
correlations behave as ∝ 1

q4 and diverge more rapidly near
q = 0 than the ones of the ribbons.

Finally, let us briefly discuss the consequence of this
result for a distortion of a free standing sample. From early
measurements it has been observed that when graphene
samples are put in a scaffold configuration, the free edges
appear folded.20 The fact that a scrolled configuration can be
a stable deformation of a graphene edge has been previously
shown.21 It is stabilized by an interplay between the van der
Waals and bending energies. The edge modes we have found
in the present paper could be interpreted as precursive modes
for this highly distorted structure. That is to say, one possible
sequence of events might be: First, the edge oscillates rapidly
with increasing amplitude and second, it sticks to the rest of
the sample due to the attractive van der Waals force.

VI. CONCLUSION AND DISCUSSION

In this paper we have studied the out-of-plane phononic
spectrum and the height-height correlation functions of a
graphene nanoribbon. Two different configurations were
considered: clamped and free edges. When the ribbon is
clamped, there are no true acoustic branches but a gap in the
phononic spectrum. This gap leads to an exponential decay
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of the correlations and thermal excitations produce only local
distortions of the crystalline order. This looks quite similar to
the situation in usual three-dimensional solids. However, when
the lateral dimension W increases enough, the characteristic
correlation length also increases. This is coherent with the
fact that in a infinite square membrane, the height-height
correlation decays as a power law.16

When the edges are free, we find quite a remarkable decou-
pling between two different low energy phononic branches.
Both of them go to zero energy for q̄ → 0 and one of them
disperses quadratically for all values of q̄. The eigenvectors
associated to this branch do not depend on the transverse
coordinate of the ribbon. Therefore, in these modes the
system is unaware of the existence of edges. It is in fact a
bulk excitation, similar to a lower excitation of an infinite
membrane. The possible instability connected with this mode
could lead the system to an homogeneous rippling. The other
low energy branch disperses linearly for small values of q̄.
The corresponding eigenvectors have their maximum values
at the edges. It is a surface or edge mode, and an instability
is also associated with these modes. We claim that they could
be the precursive modes resulting in folded edges as seen
experimentally in suspended graphene samples.

We remark that this decoupling between a bulk and an
edge mode is specific for a membranelike model. In a
model for a continuum plate in which a finite thickness is
assumed, both modes are essentially edge modes. This model
could be relevant for other membranes made of conventional
semiconductors.22 For graphene, which is a one-atom thick
sheet, the decoupling between an edge and a bulk mode
will have a special significance. For instance, the presence

of defects or disorder at the edges will affect mainly the edge
modes but not the bulk ones.

The edge mode could play some role in the thermal
conductivity. Indeed, the prediction that the bending modes
would give a negligible contribution to K was related with its
small group velocity and its large Umklapp scattering rate.14

The edge mode has a linear dispersion relation and its group
velocity increases with respect to the bulk modes. Even so,
a complete study of the anharmonicities is necessary to give
precise results, assuming the same scattering rate for the bulk
and the edge modes, for which this last one should contribute
more than the former to the thermal transport in graphene
nanoribbons.

A possible extension of our work could be the study of
interactions between the vibrational modes and the conducting
electrons in nanoribbons. It has been shown that flexural
phonons play an essential role as a limiting mechanism for
the mobility in suspended graphene samples. We presume
similar effects in nanoribbons. Moreover, when the edges of
the ribbon are of zigzag type, localized electronic states near
the edges are expected.23 The phononic modes found in the
present work should interact considerably with these confined
electronic states. We expect them to have an important impact
in the transport properties of these nanoribbons.
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