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 2 

ABSTRACT 20 

IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the 21 

senescence secretome, it can promote tumorigenesis and cell proliferation but also exert 22 

tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, 23 

plays important roles in function, growth and neuroendocrine responses of the anterior 24 

pituitary gland.  The multiple actions of IL-6 on normal and adenomatous pituitary function, 25 

cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in 26 

the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low 27 

mitotic index and rarely became malignant. Premature senescence occurs in slow growing 28 

benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and 29 

tumorigenesis is well represented in pituitary tumor development, as it has been 30 

demonstrated that paracrine IL-6 effects may allow initial pituitary cell growth, while 31 

autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and 32 

malignant transformation. IL-6 is instrumental in promotion and maintenance of the 33 

senescence program in pituitary adenomas.  34 
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INTRODUCTION 35 

Cytokines perform essential roles during infection, cancer and inflammation where they 36 

regulate cellular proliferation, differentiation and survival or death (Dinarello 2007; Dranoff 37 

2004).  38 

In particular, interleukin 6 (IL-6) is a multifunctional cytokine that has been implicated in the 39 

pathogenesis of a variety of diseases, including cancer (Hunter & Jones 2015; Yao, et al. 40 

2014). In addition, together with other cytokines and factors, IL-6 has been identified in 41 

senescence secretome. However, not all the components of the secretome seem to contribute 42 

to the antitumor effects of oncogene-induced senescence (OIS). In fact, the presence of 43 

functional protumorigenic and prometastatic factors in the secretome of some senescent cells 44 

indicates that they may contribute to tumor progression in a cell nonautonomous manner 45 

(Coppe, et al. 2008a). 46 

The dichotomous role of IL-6 in senescence and tumorigenesis is well represented in pituitary 47 

tumor development. Pituitary tumorigenesis appears to be regulated by extrinsic and intrinsic 48 

factors. It has been demonstrated that paracrine IL-6 effects may allow initial pituitary cell 49 

growth (required for senescence bypass) (Arzt, et al. 1999; Arzt 2001; Graciarena, et al. 50 

2004), while autocrine IL-6 in the same tumor triggers senescence and restrains aggressive 51 

growth and malignant transformation (Sapochnik, et al. 2016). 52 

This review provides an insight into the current understanding of the role of IL-6 in the 53 

regulation of pituitary pathogenesis, focusing in the autocrine action of IL-6. Pituitary cell 54 

growth regulation by IL-6 reinforces the role of cytokines as factors controlling pituitary cell 55 

division, and the findings of the IL-6 role in OIS suggest that endogenous IL-6 might be 56 

involved in development of pituitary adenoma senescence, which may contribute to explain 57 

the benign nature of these frequent tumors.  58 

 59 

 60 

 61 
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BIOLOGY AND FUNCTIONS OF IL-6 62 

IL-6 was first characterized according to its ability to promote the population expansion and 63 

activation of T cells, the maturation of B cells into antibody-producing cells, and regulation of 64 

the acute-phase response (Andus, et al. 1987; Hirano, et al. 1986; Hirano 2014; Klimpel 1980; 65 

Woloski & Fuller 1985; Yasukawa, et al. 1987; Yoshizaki, et al. 1984). However, it is now 66 

known that IL-6 affects vascular disease, lipid metabolism, insulin resistance, mitochondrial 67 

activities, the neuroendocrine system and neurophysiological behavior (Bethin, et al. 2000; 68 

Hodes, et al. 2014; Jones, et al. 2011; Kraakman, et al. 2015; McInnes & Schett 2007; 69 

Rohleder, et al. 2012; Schett, et al. 2013). Accordingly, IL-6 is a pleiotropic cytokine with 70 

multiple physiological and pathological functions, produced by almost all stromal cells and 71 

cells of the immune system. 72 

The expression of IL-6 is controlled at multiple levels to prevent overshooting systemic 73 

conditions. Several factors have been described as regulators of IL-6 mRNA either at 74 

transcriptional, as the IL-6 promoter contain motifs for the binding of AP-1, cyclic AMP, 75 

C/EBPβ, Sp1, CREB, STAT3 and NF-κB (Gerlo, et al. 2008; Kishimoto 2005; Lee, et al. 1987; 76 

Matsusaka, et al. 1993; Spooren, et al. 2010), or post-transcriptional level. This last includes 77 

Arid 5a (Masuda, et al. 2013), TNFα and IL-1β (Gruys, et al. 2005) as positive regulators, and 78 

regnase-I (Iwasaki, et al. 2011), bromodomain-containing protein 4 (BRD4) (Barrett, et al. 79 

2014), micro RNAs (miR)-26a (Yang, et al. 2013), -142 (Sun, et al. 2013), -146a (He, et al. 80 

2014), -146b (Xiang, et al. 2014), -187 (Rossato, et al. 2012), -200s (Dou, et al. 2013) and -81 

329 (Garg, et al. 2013) as negative regulators (Figure 1). 82 

IL-6 is a glycosylated secreted protein of nearly 25KDa, which varies depending on different 83 

N-linked glycosylation and species. Although not necessary for its function, IL-6 glycosylation 84 

might be important for stability or half-life of the protein. It has a characteristic structure made 85 

up of four long alpha-helices, which are arranged in a way that leads to an up-down-down 86 

topology found in all IL-6 type cytokines (Scheller, et al. 2011). 87 
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The secretion and availability of IL-6 is ubiquitous and it can bind to various types of cells in 88 

different tissues. IL-6 acts on cells as a dimer by binding to a specific IL-6 receptor (IL-6R) 89 

complex composed of two IL-6Rα chains (also known as IL-6Rα, gp80 or CD126) and the 90 

resultant IL-6/IL-6Rα complex associates with two signal-generating receptor beta chain 91 

subunits, named gp130 (also known as IL-6Rβ or CD130), at three distinct receptor-binding 92 

sites (Kojima, et al. 2013). In contrast to gp130, IL-6Rα is only expressed on a limited number 93 

of cell types, which actually facilitates the selective activation of several target cells (Rose-94 

John, et al. 2006; Scheller & Rose-John 2006). Upon binding to the receptor and gp130, IL-6 95 

induces various functions by activating cell signaling events (Mihara, et al. 2012). IL-6 triggers 96 

signal transduction via two different pathways (Kumari, et al. 2016) (Figure 1). The classic 97 

signaling, in which IL-6 binds to its transmembrane 80kDa receptor IL-6Rα, and the trans-98 

signaling in which IL-6 binds to the soluble secretory form of IL-6Rα (sIL-6Rα) to form a 99 

complex that increases the circulating half-life of IL-6 and promotes its bioavailability (Peters, 100 

et al. 1996; Rose-John & Heinrich 1994). In both cases, once IL-6 binds to the receptor (with 101 

the same affinity), the complex binds to transmembrane gp130. Since gp130 is ubiquitously 102 

expressed, IL-6R expression determines whether a cell is responsive to classic signaling or 103 

trans-signaling. Although most soluble receptors are antagonist and compete with their 104 

transmembrane receptor, sIL-6Rα is an agonist of IL-6Rα (Wolf, et al. 2014). Classical IL-6R 105 

signaling seems to control central homeostatic processes (regulation of the neuroendocrine 106 

system), activates anti-inflammatory pathways and promotes the regeneration of tissue, while 107 

IL-6 trans-signaling activates pro-inflammatory pathways and plays an important role in many 108 

diseases and cancer (Kumari et al. 2016; Wolf et al. 2014). sIL-6Rα is generated by 109 

alternative splicing of IL-6 mRNA or by “shedding”, a limited proteolysis of extracellular region 110 

of the membrane-bound IL-6R carried out by transmembrane zinc-dependent proteases 111 

ADAM17 and ADAM10 (Chalaris, et al. 2011; Jones, et al. 2001; Jones et al. 2011; Yoshida, 112 

et al. 1996). Like sIL-6Rα, a soluble form of gp130 (sgp130) is also present in circulation at 113 

relative high concentrations during inflammation and cancer (Kovacs 2001; McFarland-114 
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Mancini, et al. 2010; Rose-John 2012). Although classic signaling is not affected by sgp130, 115 

trans-signaling is inhibited by sgp130 binding to the IL-6-sIL-6R complex. 116 

Once IL-6-IL-6R complex is formed, JAK kinases go through a conformational change, 117 

bringing the two JAKs close enough to phosphorylate each other and became activated. 118 

Signal transducer and activator of transcription 3 (STAT3) and STAT1 are recruited to the 119 

phosphorylated YXXQ motifs in gp130 and phosphorylated by JAK kinases, at the Y705 and 120 

Y701 tyrosine residues, for STAT3 and STAT1 respectively (Hirano, et al. 1997; Hirano, et al. 121 

2000). The activated STAT3 and STAT1 dimerize with each other, making STAT3 or STAT1 122 

homodimers and STAT3/STAT1 heterodimers. These activated STAT dimers enter the 123 

nucleus and bind to the specific DNA sequences in the regulatory regions of their target genes 124 

(Darnell 1997). STAT3 plays multiple roles depending on the cell context. It is well described 125 

the involvement of STAT3 in proliferation and cell survival by activating c-myc, cyclin D1, bcl2, 126 

bclxl or mcl1 (Hirano et al. 1997; Hirano et al. 2000), in tumorigenesis (Bowman, et al. 2000; 127 

Yu, et al. 2009) and in growth arrest and differentiation (Hirano et al. 1997; Hirano et al. 2000; 128 

Nakajima, et al. 1996). To prevent overstimulation, the mechanism to turn off cytokine-129 

mediated signal transduction involves Src-homology 2 domain-containing phosphatase 130 

(SHP2), which induce desphophorylation of JAK, gp130 and STATs (Lehmann, et al. 2003); 131 

protein inhibitors of activated STATs (PIAS) which inhibits STAT1 signaling by the interaction 132 

with the DNA binding of activated STAT1 (Liu, et al. 1998); and suppressor of cytokine 133 

signaling (SOCS), which act as classical feedback inhibitors acting on the JAKs and thereby 134 

inhibit the phosphorylation of gp130, STATs and JAKs themselves (Naka, et al. 1997; Starr, et 135 

al. 1997). Although JAK/STAT is the most described IL-6 signaling pathway, there are two 136 

other major pathways activated by IL-6: mitogen-activated protein kinase (MAPK)-extracellular 137 

signal-regulated kinase (ERK) and phosphatidyl-inositol-3-kinase (PI3K)-AKT pathways 138 

(Heinrich, et al. 2003) (Figure 1). 139 

 140 

 141 
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THE DUAL ACTION OF IL-6: TUMOR VS SENESCENCE 142 

Cellular senescence is now recognized as a potent tumor suppressive mechanism that arrests 143 

the growth of cells at risk for malignant transformation (Braig, et al. 2005; Chen, et al. 2005; 144 

Collado, et al. 2005; Courtois-Cox, et al. 2006; Michaloglou, et al. 2005; Narita & Lowe 2005; 145 

Ventura, et al. 2007; Xue, et al. 2007). Recent studies show that senescent cells develop 146 

altered secretory activities, i.e. secrete proinflammatory cytokines, proteases and other 147 

proteins, that may induce changes in the tissue microenvironment, relaxing its control over cell 148 

behavior and promoting tumorigenesis (Acosta, et al. 2008; Coppe et al. 2008a; Coppe, et al. 149 

2008b; Green 2008; Krtolica, et al. 2001; Kuilman, et al. 2008).  150 

The senescent phenotype is not limited to an arrest of cell proliferation. In fact, a senescent 151 

cell is a potentially persisting cell that is metabolically active and has undergone widespread 152 

changes in protein expression and secretion, ultimately developing the senescence-153 

associated secretory phenotype (SASP). Proliferating cells enter senescence in response to 154 

physiological signals during embryonic patterning and organogenesis, pathophysiological 155 

signals related to ageing or imminent malignant transformations, or exogenous causes of 156 

damage (Muñoz-Espín & Serrano 2014). The SASP includes several families of soluble and 157 

insoluble factors. These factors can affect surrounding cells by activating various cell-surface 158 

receptors and corresponding signal transduction pathways that may lead to multiple 159 

pathologies, including cancer. However, SASP role in tumor progression remains unclear and 160 

can be beneficial or deleterious, depending on the biological context (Lecot, et al. 2016). 161 

Senescence is a delayed stress response involving multiple effector mechanisms and has 162 

been recently described not only as a static endpoint, but also as a dynamic process of 163 

phenotypic establishment (Baker & Sedivy 2013; Young, et al. 2013). This distinction 164 

becomes more relevant in acute types of senescence, such as OIS, where the initial 165 

phenotype of OIS is a highly proliferative state, which mimics transformation, but this mitotic 166 

burst is gradually replaced by senescence (Young, et al. 2009). 167 

In particular, it has been shown that OIS is specifically linked to the activation of an 168 
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inflammatory transcriptome, including pleiotropic cytokine IL-6 (Coppe et al. 2008a; Coppe, et 169 

al. 2010; Kuilman & Peeper 2009). IL-6 has been identified as a key component of the 170 

senescence secretome, which enables senescent cells to communicate with their 171 

microenvironment. The role of IL-6 and other SASP factors could support tumorigenesis and 172 

cell proliferation, but also may exert tumor suppressive functions and trigger an immune 173 

response, thereby favoring tumor cell clearance and cancer regression (Cichowski & Hahn 174 

2008). Certainly, the secretory profile and function of the SASP are highly dependent from the 175 

cell type and context. Besides its paracrine mitogenic action, IL-6 was shown to actively 176 

contribute to the senescence process by reinforcing cell cycle arrest in an autocrine feedback 177 

loop: is required for the execution of OIS in a cell-autonomous mode (Kuilman et al. 2008; 178 

Sapochnik et al. 2016). IL-6 depletion causes the inflammatory network to collapse and 179 

abolishes senescence entry and maintenance. This may suggest that IL-6 pools required for 180 

OIS and for promoting oncogenicity or cell proliferation (Ancrile, et al. 2007; Sparmann & Bar-181 

Sagi 2004) are inherently different.  182 

It was suggested that the nature of the IL-6 target cell decides whether IL-6 acts as tumor 183 

suppressor or promoter (Kuilman et al. 2008; Yun, et al. 2012). The genetic makeup of the IL-184 

6 target cell, whether normal or transformed, could contribute to specifying the biological 185 

response to IL-6.   186 

 187 

PATHOPHYSIOLOGICAL ROLE OF IL-6 IN THE PITUITARY 188 

In the adenohypophysis, hypothalamic stimulatory and inhibitory factors, together with 189 

feedback signals derived from target organs, converge with the auto-/paracrine factors, to 190 

induce transcriptional regulation, translation, and secretion of the pituitary hormones. 191 

Collectively, these regulatory mechanisms manage an accurate and dynamic gland 192 

homeostatic process (Perez-Castro, et al. 2012). 193 

The physiological importance of the role that cytokines play in modulating the neuroendocrine-194 

immune interconnection is extensively reflected in the anterior pituitary gland (Arzt et al. 1999; 195 
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Perez-Castro et al. 2012). The gp130 cytokines of the IL-6 family constitute a well-known 196 

example, since they play important roles in function, growth and neuroendocrine responses of 197 

the gland. The expression of specific receptors for the different gp130 cytokines, as well as 198 

the cytokines themselves, are expressed in the anterior pituitary cells, providing basis for the 199 

regulation of hormone secretion and cell growth. During acute or chronic inflammation or 200 

infection, systemic, hypothalamic, or hypophyseal gp130 cytokines may act on anterior 201 

pituitary cells, integrating the neuro-endocrine response. Elevated levels of cytokines alter the 202 

physiological hormone production to adapt the endocrine system to the needs of the organism 203 

to respond adequately to pathogens.  204 

Pituitary tumors are mostly benign, non-metastatic and monoclonal neoplasms constituted by 205 

cells of the adeno-pituitary gland, which generally cause small lesions and present a slow 206 

growth (Dworakowska & Grossman 2009; Kopczak, et al. 2014; Lake, et al. 2013; Melmed 207 

2011, 2015; Scheithauer, et al. 2006). The pathophysiological consequences of a pituitary 208 

adenoma are related to over-production of particular pituitary hormones or due to tumor 209 

compression and damage to the normal pituitary and vital structures surrounding it (Yu & 210 

Melmed 2010). 211 

Multiple extracellular and intracellular signals determine pituitary cell proliferation. Changes in 212 

the expression or function of several cytokines and growth factors have been described to 213 

participate in pituitary adenoma development (Perez-Castro et al. 2012), as it is well known 214 

that normal pituitary cells are under the auto-/paracrine action of these factors. Altered levels 215 

of transforming growth factor alfa and beta protein families, epidermal growth factor, fibroblast 216 

growth factor family, bone morphogenetic protein 4 and IL-6/gp130family, have been 217 

observed in pituitary tumors (Dworakowska & Grossman 2012; Jiang & Zhang 2013; Jones, et 218 

al. 1994; Paez-Pereda, et al. 2003; Perez Castro, et al. 2000; Perez-Castro et al. 2012). It was 219 

described that matrix metalloproteinase, secreted by pituitary cells, contribute also to the 220 

control of cell proliferation during tumorigenesis (Paez-Pereda, et al. 2005). 221 

In particular, the putative oncogenic role of the gp130 protein has been demonstrated in 222 

lactosomatotroph GH3 tumor cells, which do not develop into tumors in nude mice after gp130 223 
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downregulation, indicating that one or more of the gp130 cytokines might play a role in 224 

pituitary tumorigenesis (Castro, et al. 2003). The expression of almost all of the gp130 225 

cytokines and their corresponding receptors was detected either in normal or tumoral pituitary 226 

(Hanisch, et al. 2000; Jones et al. 1994; Perez Castro, et al. 2001).  227 

Pituitary tumors do not progress like other solid tumors, which start with hyperplasia, pass a 228 

state of benign adenoma and end up with an aggressive carcinoma (Colao, et al. 2010; Farrell 229 

& Clayton 1998; Melmed 2008). Pituitary cells are among the few epithelial cell types that 230 

rarely undergo malignant transformation. Given that premature senescence occurs in slow 231 

growing benign or early stage tumors but not in late stage or malignant tumors and that 232 

pituitary adenomas have exhibited stable growth after decades of observation (Levy & 233 

Lightman 2003; Melmed 2011), the unique growth of these benign adenomas has been linked 234 

with this tumor suppressive mechanism. OIS has been implicated in the arrest of pituitary 235 

tumors as in several other types of benign tumors. It has been shown in human and murine 236 

melanocytic nevi (Goel, et al. 2009; Michaloglou et al. 2005), human dermal neurofibromas 237 

(Courtois-Cox et al. 2006), human schawnnomas (Simonetti, et al. 2014) and human pituitary 238 

adenomas (Alexandraki, et al. 2012; Chesnokova, et al. 2007; Chesnokova, et al. 2008; 239 

Donangelo, et al. 2006; Lazzerini Denchi & Helin 2005; Sapochnik et al. 2016), but not in 240 

malignant adenocarcinomas. Cell senescence has a functional relevance in vivo, as a 241 

physiological mechanism limiting tumorigenesis in many diseases. Premature pituitary tumor 242 

cell senescence appears to bypass pro-proliferative signals, thereby stopping cell proliferation, 243 

while preserving vital homeostatic pituitary functions in order to maintain cell viability (Arzt, et 244 

al. 2009; Melmed 2011).  245 

IL-6 is produced by tumoral cells themselves but is also delivered to the adenoma cells 246 

through IL-6-producing folliculo stellate (FS) cells, which surround or invade the pituitary 247 

tumors (Farnoud, et al. 1994; Hofler, et al. 1984; Renner, et al. 1997; Renner et al. 1998; 248 

Ueta, et al. 1995; Vajtai, et al. 2007). IL-6 mRNA and protein levels were also detected in cell 249 

cultures of all types of pituitary adenomas (Arzt et al. 1999; Borg, et al. 2003; Jones et al. 250 
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1994; Sapochnik et al. 2016). Pituitary IL-6 production can be increased by many compounds 251 

such as IL-1 (Spangelo, et al. 1991), TNFα, pituitary adenylate cyclase-activating polypeptide 252 

(Arzt et al. 1999) and by lipopolysaccharides (Tichomirowa, et al. 2005) and it is inhibited by 253 

glucocorticoids (Pereda, et al. 2000). Intrapituitary IL-6 regulated both by neuroendocrine and 254 

the immune system, plays a critical role in the pituitary as a neuroendocrine-immune 255 

integrator. 256 

Paracrine IL-6 promotes the growth of pituitary cells that could lead to the development of 257 

pituitary adenomas. It acts as a stimulatory growth factor (Arzt et al. 1999; Arzt 2001) and also 258 

promotes the secretion of vascular endothelial growth factor and matrix metalloproteinases 259 

from surrounding FS cells (Gloddek, et al. 1999; Renner et al. 1998), producing not only the 260 

expansion of tumoral cells but also vessel formation and extracellular matrix remodeling 261 

(Renner et al. 1998). Notably, although this cytokine induced proliferation of GH3 262 

lactosomatotroph cells, it was also shown to inhibit normal pituitary cells (Arzt, et al. 1993). 263 

Inhibitory or stimulatory actions of IL-6 were observed in ACTH-, PRL-, GH-secreting and 264 

nonfunctioning adenomas, without association to the size or type of the tumor (Pereda, et al. 265 

1996). Activation of different signaling pathways by IL-6/gp130 complex, as discussed above, 266 

may explain the differences observed in IL-6 action on the anterior pituitary (Arzt 2001).  267 

 268 

AUTOCRINE IL-6 MEDIATES PITUITARY TUMOR SENESCENCE 269 

Different mechanisms and factors involved in the initiation and progression of pituitary 270 

adenomas have been described, including cell cycle deregulation, overexpression of growth 271 

factors, oncogenes and hormones, defective signaling pathways and an altered intrapituitary 272 

microenvironment (Clayton & Farrell 2004; Colao et al. 2010; Dworakowska & Grossman 273 

2009; Farrell 2006; Melmed 2011; Perez-Castro et al. 2012; Vandeva, et al. 2010), as well as 274 

inherited or somatic mutations in genes such as AIP (Vierimaa, et al. 2006), GPR101 275 

(Trivellin, et al. 2014) and USP8 (Reincke, et al. 2015). The recent characterization of pituitary 276 

stem cells (Fauquier, et al. 2008; Garcia-Lavandeira, et al. 2009; Garcia-Lavandeira, et al. 277 
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2015; Vankelecom & Gremeaux 2010) implies the possibility of defining their mechanisms 278 

involved not only in pituitary cell renewal but also in pituitary tumorigenesis. The presence of a 279 

side population containing cells with high efflux capacity and potentially enriched for tumor 280 

stem cells pituitary tumors have been described by several groups (Florio 2011; Gleiberman, 281 

et al. 2008; Mertens, et al. 2015). In line with that, it has been reported enhanced self-renewal 282 

as a mechanism of tumor initiation in pituitary adenomas (Andoniadou, et al. 2013; 283 

Donangelo, et al. 2014; Gaston-Massuet, et al. 2011; Hosoyama, et al. 2010). It has been 284 

proposed that the initial mutation that drives tumorigenesis occurs in a cell type (adult pituitary 285 

stem cells, SCs) that does not contribute cell autonomously to the tumor. SCs cells, which 286 

include FS, secrete factors (such as IL-6) leading to the transformation and proliferation of 287 

neighboring cells that generate a tumor (Andoniadou et al. 2013). 288 

FS cells are major agranular cells with a characteristic star-shaped morphology located in the 289 

parenchymal tissue of the anterior pituitary gland, representing 5-10% of all pituitary cells. 290 

Within the pituitary, FS cells form a three-dimensional anatomical cellular network surrounding 291 

hormone-secreting cells, connected to them via gap junctions (Renner et al. 1998). In the 292 

normal pituitary IL-6 is produced only by FS cells (Vankelecom, et al. 1989), whereas in 293 

pituitary adenomas IL-6 is produced by the pituitary tumor cells themselves (Jones et al. 294 

1994). Intrapituitary IL-6 is assumed to act in a paracrine manner to modulate endocrine cell 295 

function and growth in response to external stimuli. IL-6 itself influences hormonal output, i.e. 296 

stimulates the secretion of ACTH, GH, PRL, LH, and FSH (Ray & Melmed 1997; Renner, et 297 

al. 1996), from the anterior lobe in a paracrine manner. It has been demonstrated a transition 298 

zone between normal pituitary tissue and the adenoma that is extremely rich in FS cells 299 

(Farnoud et al. 1994). Paracrine IL-6 delivered by FS cells contributes to the development of 300 

an adenoma, by promoting tumor cell expansion because of the induction of VEGF release 301 

and extracellular matrix-modifying enzymes and tissue inhibitors of metalloproteinases 302 

expression (Matsumoto, et al. 1993), which cause extracellular matrix remodeling and vessel 303 

formation (Renner et al. 1998). After transformation of a normal pituitary cell to a tumor cell, 304 

the further development of the tumor is triggered by the interaction of the FS cells and the 305 
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tumor cells. In vitro studies have shown additional evidence of this. The rat somatotrophic 306 

pituitary MtT/S cells overexpressing (sense) or lacking (antisense) gp130 protein were 307 

coinoculated with the TtT/GF cell, a mouse FS-like cell line, in nude mice (Graciarena et al. 308 

2004). At low cell concentration, MtT/S sense and control clones generated tumors of a 309 

smaller size than those derived from these same clones plus TtT/GF cells, showing a clear 310 

dependence on FS cells. In both cases, MtT/S antisense had an impaired tumor development. 311 

Moreover, vessel density was significantly lower in tumors derived from MtT/S antisense plus 312 

TtT/GF cells (Graciarena et al. 2004). In these interactive processes, paracrine IL-6 plays a 313 

prominent role by stimulating tumor cell proliferation, tumor neovascularization and 314 

extracellular matrix remodeling.  315 

OIS is linked specifically to the activation of an inflammatory transcriptome, which includes IL-316 

6, in a transduced human melanocytes model (Kuilman et al. 2008). Upon secretion by 317 

senescent cells, IL-6 acts promitogenically in a paracrine fashion, but regulates OIS in a cell-318 

autonomous mode, indicating that IL-6 can function as an autocrine or paracrine tumorigenic 319 

factor. In line with that, oncogenic stress triggered also the induction of the CDK inhibitor 320 

p15INK4B, which was dependent on the presence of both IL-6 and C/EBPβ. Taking into account 321 

that the stable proliferative arrest in G1 phase of the cell cycle characteristic of senescence is 322 

through activation of the p53/p21Cip1 and pRb/p16 INK4a pathways and, consequently, 323 

overexpression of cdk inhibitors like p15INK4b, this result establishes a link between OIS-324 

activated interleukin signaling and the cell-cycle machinery, suggesting that IL-6 acts in 325 

concert with its receptor and p15INK4b to cause cell-cycle arrest in response to oncogenic 326 

stress. Thus, IL-6 not only triggers OIS but also maintained it (Kuilman et al. 2008). The 327 

protective role of IL-6 in OIS, as discussed below, occurs naturally in pituitary adenomas as a 328 

dynamic and slow mechanism, that results in a benign tumor with stable growth arrest. 329 

Interestingly, in other endocrine tumors like thyroid nodules, it has been reported IL-6 (and its 330 

receptor) expression (Ruggeri, et al. 2002) and also OIS with an associated inflammatory 331 

secretome (Vizioli, et al. 2014), suggesting that a senescence process involving IL-6 might 332 
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also take place in thyroid tumor progression. 333 

The activation of cell cycle arrest machinery and the involvement of PTTG (Chesnokova et al. 334 

2007; Chesnokova et al. 2008), was also found in pituitary adenomas and more interesting, a 335 

differential lineage-specific pathway restricting and controlling pituitary cell cycle progression 336 

and triggering senescence was described (Chesnokova, et al. 2011). PTTG exhibits oncogene 337 

properties (Pei & Melmed 1997; Zhang, et al. 1999) and its expression results in the activation 338 

of DNA-damage signaling pathways, aneuploidy and chromosomal instability in vitro and in 339 

vivo (Kim, et al. 2005; Kim, et al. 2007; Vlotides, et al. 2007), ending in pituitary-specific 340 

senescent features (Chesnokova, et al. 2005; Chesnokova et al. 2007). Different to most 341 

human GH-producing pituitary adenomas in which PTTG overexpression is associated with 342 

p21-dependent senescence (Chesnokova et al. 2008), tumors arising from the gonadotroph 343 

lineage also exhibit high PTTG levels, but p21 is not expressed in gonadotroph-derived non-344 

functioning pituitary adenomas, which express p15INK4b and p16INK4a. This could be explained 345 

by the fact that activation of senescence effector pathways depends on cell and tissue 346 

context, the intensity and duration of the signal, and the nature of the damage (d'Adda di 347 

Fagagna 2008), which has led to define distinct senescence types (Muñoz-Espín & Serrano 348 

2014). 349 

A recent work (Zhang, et al. 2015) has shown that the expression of IL-6 was significantly 350 

increased in aging pituitary tissues, i.e. senescent pituitary, in contrast to normal and tumoral 351 

rat pituitaries. Plasma IL-6 concentration was decreased in aging rats compared with normal 352 

rats, indicating that the paracrine activity of IL-6 was inhibited in aging rats. As discussed 353 

above, IL-6 has opposite dual effects on cell proliferation and growth (Arzt et al. 1993; Arzt et 354 

al. 1999; Renner et al. 1996). Taking into account that IL-6 participates in the progression of 355 

pituitary tumors, and its role in OIS, this cytokine appears as a candidate for an 356 

autocrine/paracrine regulator of pituitary adenoma control. The regulation of OIS by IL-6 has 357 

been recently shown using a pituitary tumor senescence cell model (MtT/S cell line) and an in 358 

vivo senescence model, human pituitary tumor samples (Sapochnik et al. 2016). In both 359 
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models, the absence of endogenous IL-6 produces a decrease in senescent biomarkers and, 360 

as expected, an increase in cell proliferation and invasion capacity. These findings indicate 361 

that the lack of IL-6 allowed tumoral cells to bypass senescence and consequently became 362 

tumorigenic. In pituitary tumors IL-6 contributes to maintain the senescent phenotype of these 363 

tumoral cells by its autocrine action. Comparing tumors developed by the silencing of IL-6 (i.e. 364 

the abolishment of senescence) with tumors resembling the natural situation in which both the 365 

paracrine proliferative IL-6 and the autocrine-inducing senescence are on, tumors expressing 366 

endogenous IL-6 present a more pronounced senescent phenotype. The dual action of IL-6 in 367 

the regulation of two opposite mechanisms occurs in different steps of pituitary tumor 368 

development (Figure 2). In the normal pituitary paracrine IL-6 delivered by FS cells do not 369 

affect normal cell growth but may act to induce proliferation of tumoral cell and, consequently, 370 

the development of an adenoma (Figure 2). However, autocrine IL-6 in the same tumor may 371 

induces and maintains senescence and contribute to control aggressive growth and malignant 372 

development of these cells (Figure 2). 373 

 374 

FUTURE PERSPECTIVES 375 

Senescence is considered an important tumor protection barrier that contributes to stop 376 

proliferation and further malignant transformation allowing the pituitary cell to remain viable 377 

and perform its homeostatic physiological function. The presence of senescent cells in the 378 

tumor and the consequently SASP are important biological factors that favors vital functioning 379 

of the pituitary gland for homeostatic control. Thus, pituitary adenomas constitute faithful in 380 

vivo models of senescence. The presence of senescent cells in the tumor and the relative 381 

abundance of different proteins produced by the senescent cells are important biological 382 

factors that could have significant prognostic implications for the fate of the disease. The 383 

involvement in the senescent process of several oncogenes and mutations recently described 384 

in the pituitary (Reincke et al. 2015; Trivellin et al. 2014; Vierimaa et al. 2006) remains an 385 

interesting open question. 386 
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IL-6 represents an important factor in the regulation of pituitary adenoma development, as 387 

promotes tumorigenesis by its paracrine action while restrains further proliferation by inducing 388 

and maintaining senescence in the same tumor. Which signaling pathways contribute to each 389 

action will certainly enrich to understand this phenomenon. Given its dual and opposite action 390 

in the pituitary pathophysiology, IL-6 is an interesting factor for further studies in the outcome 391 

of the disease.   392 
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FIGURES 

 

Figure 1. IL-6 regulation and signaling 

IL-6 expression and function is highly regulated by many factors that act at a transcriptional 

and posttranslational level. IL-6 binds to its receptor and then forms a heterotrimer with two 

gp130 subunits anchored to the plasma membrane. IL-6 signals by to two different pathways: 

classic IL-6 signaling is mediated via the membrane-bound IL-6R (left), whereas trans-

signaling acts via sIL-6R (right). Dimerization of gp130 results in the activation of STAT1/3, 

MAPK/ERK, and PI3K/AKT signaling pathways, which regulates different physiological and 

pathophysiological processes.  

 

Figure 2. Pathophysiological role of IL-6 in the pituitary: role of autocrine IL-6 in 

senescence 

IL-6 has a dual role in the anterior pituitary. It is secreted to the normal or adenoma cells by FS 

cells which, by its paracrine action, induce pituitary cell proliferation at the initial proliferative 

phase of pituitary adenomas. IL-6 is also secreted by the tumoral cells themselves which, by 

its autocrine action, stops proliferation and progression of pituitary tumors by inducing and 

maintaining senescence. 
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