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Abstract—Multi-core processors are ubiquitous in all market segments
from embedded to high performance computing, but only few applica-
tions can efficiently utilize them. Existing parallel frameworks aim to sup-
port thread-level parallelism in applications, but the imposed overhead
prevents their usage for small problem instances. This work presents
Micro-threads (Mth) a hardware-software proposal focused on a shared
thread management model enabling the use of parallel resources in
applications that have small chunks of parallel code or small problem
inputs by a combination of software and hardware: delegation of the
resource control to the application, an improved mechanism to store and
fill processor’s context, and an efficient synchronization system. Four
sample applications are used to test our proposal: HSL filter (trivially
parallel), FFT Radix2 (recursive algorithm), LU decomposition (barrier
every cycle) and Dantzig algorithm (graph based, matrix manipulation).
The results encourage the use of Mth and could smooth the use of
multiple cores for applications that currently can not take advantage of
the proliferation of the available parallel resources in each chip.

Index Terms—Parallel architectures, Multicore processing, Parallel pro-
gramming, Multithreading
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1 INTRODUCTION

The state of the art processors support 16 or 32 simultaneous
threads of execution per CPU socket. The improvements in pro-
cessor architectures come from optimizing its design according
to the specified functionality based on different considerations
such as: performance, consumption, production cost and area.
Parallelism can be found at three levels: instruction-level par-
allelism (ILP), thread-level parallelism (TLP), and data-level
parallelism (DLP).

In spite of the advances in processor computing potential,
the operating systems maintain a traditional way of adminis-
tering these resources. The scheduling policies do not show the
same level of improvement compared with processor technol-
ogy.

Moreover, only a subset of applications can make efficient
use of multiple threads [2]. There are some available tools
to support TLP in applications. OpenMP is a framework fo-
cused on scientific computing. Cilk is an extension to sup-
port data and task parallelism. Pthreads emerged as a C
language threads programming interface specified by the IEEE
POSIX 1003.1c standard to deal with the proprietary libraries.
Pthreads has a simple interface that allows the programmer
complete control of the threads involved in the application. The
programmer has to create and synchronize threads manually,
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specially regarding to shared memory access. Pthreads gives
the programmer a strong control, but the scheduling and other
details are managed by the operating system runtime, which
usually adds overhead and thus precludes the use of this
mechanism when small parallel tasks have to be managed.
The flexibility offered by Pthreads allows the programmer
to expose more parallelism, but on the other hand it requires
more programming effort and skills.

These techniques are represented on right side of the Fig. 1,
which presents parallelization techniques usually employed for
parallel shared memory applications. The left side of Fig. 1
shows some complex techniques to improve ILP, these tech-
niques are limited to an instruction window size of the order of
hundreds of instructions [8].

Fig. 1. The current parallelization techniques can efficiently expose par-
allelism at ILP level or TLP, but the gap between these two mechanisms
are not treated by any existing framework or programming model. Our
proposal aims to provide support to exploit parallelism at this scope.

This work presents Micro-threads (Mth ) a hardware-software
proposal focused on a shared thread management model. The
objective is to allow the efficient execution of fine-grain parallel
applications enabling the use of parallel resources in small
chunks of code that could be executed in parallel. Our pro-
posal does not require the intervention of runtime or operating
system, the parallel execution is directly controlled by the appli-
cation with hardware support. This proposal could smooth the
use of multiple cores for applications that currently can not take
advantage of the proliferation of the available parallel resources
in each chip.

The speedup of a parallel program using multiple proces-
sors is limited by the time needed for the sequential fraction of
the program. Moreover, the parallel implementation introduces
additional overhead that constrains the achievable paralleliza-
tion: if not enough work is available to be performed by a
processor, the parallel implementation should take more time
than the sequential. The mechanism used to spawn threads
incurs additional overhead, including thread creation, deallo-
cation and any scheduling costs [9].

Mth aims to minimize the overhead related with threads
administration (creation, management and synchronization)
enabling the use of parallel resources in applications that have
small chunks of parallel code or small problem inputs by a com-
bination of software and hardware: delegation of the resource
control to the application, an improved mechanism to store and
fill processor’s context, and an efficient synchronization system.

Figure 2 shows a comparison between shows a comparison
between different threading mechanisms: Pthreads, OpenMP,



Cilk and Mth. For this test, a vector is filled with random
numbers obtained using a linear congruential generator. This
example helps to determine the task size to be treated to
overcome the overhead. The size of the array ranges from 26

to 223 elements. Two platforms are used: i) ARM in GEM5, ii)
Intel i7-920; showing the speedup related to single-core.

Figure 2 reveals that the speedup increases with the size of
the problem for all the mechanisms. In the case of Mth, the
parallel version using two threads reaches the ideal speedup
with slightly more than 1000 elements, while more than 104

elements are needed to balance the overhead in the case of four
threads. The others require more than 106 elements with two
cores, while the size of the array should be near 107.
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Fig. 2. Overhead of Pthreads, Cilk, OpenMP and Mth. Speed-up for 2
and 4 cores in different platforms generating random numbers.

1.1 Related Work

Price and Lowenthal [9] focus on the study of different fine-
grain threading packages. In spite of analyzing outdated pack-
ages, the conclusions about the potentiality of efficient use of
fine-grain parallelism are still relevant.

Zhong et al. [11] propose a new architecture for exploiting
different classes of parallelism and shows that there are oppor-
tunities for exploiting fine-grain parallelism.

Madriles et al. [6] propose a design to use single-threaded
applications and, through speculative threads supported by
hardware, support single-threaded code. The compiler is a key
component responsible for distributing instructions to cores.

Kumar et al. [5] present a full hardware scheduling solu-
tion, while Sanchez et al. [10] presents a combined hardware-
software approach to build fine-grain schedulers providing
direct exchange of asynchronous messages.

Fillo et al. [4] present M-Machine, a completely new proces-
sor architecture. It exposes parallelism for fixed size problems,
and includes register-register communication and direct mes-
sage to exploit instruction and data parallelism. Our proposal
uses some of the elements presented in these works, but its
main contribution is modifying minimally an existing processor
(i.e. ARM) to be able to exploit parallelism even when dealing
with small chunks of instructions.

2 PROPOSAL

A process is associated with a set of threads of execution (i.e.
micro-threads). Each micro-thread maintains information about
the state of the processor from an architectural point of view
(i.e. the system view offered to the programmer). The processes
are managed and controlled by the operating system, but it
does not have control over the associated micro-threads that
are administered by each process.

2.1 System Organization
The architectural idea is proposing light modifications to ex-
isting processors to add hardware support for Mth while
maintaining support for the standard behavior. In our proposal,
the total available cores are grouped generating a two level
hierarchy. Figure 3 shows the organization of the system. The
first level of the hierarchy is composed by the Θ-cores, which
are clusters of few cores. Inside each Θ-core, one core is selected
as the main core (mC), which controls the rest of them (internal
cores, iC). There are no architectural differences between the
cores, distinguishing one is only to organize the system.
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Fig. 3. Mth can be combined with existing frameworks to extract paral-
lelism which can not be exploited nowadays. Each core has its own L1
cache, a current and mirror register files and a set of bits for synchro-
nization. A Θ-core groups a set of cores connected to a memory bus
and shares a L2 cache.

Each Θ-core has the same amount of internal cores (in Fig. 3
three internal cores), but this is not a requirement imposed by
the design. This organization allows having different Θ-cores
with different computing power and consumption. Moreover,
it can be further extended to include specialized Θ-cores with
hardware support for specific instructions or operations.

All cores have a L1 cache and are connected to the main
memory through a L2 cache. The internal Θ-core administration
is managed using a bus which connects all the cores.

The operating system dispatches each ready-to-execute pro-
cess to an idle Θ-core. The application (and programmer) has
the control of available resources, can manage the available
threads (corresponding to the iCs), controlling what is executed
in each one without the interaction of the operating system.

2.2 Architecture Extensions
Two major extensions are included on each processor:

(i) A new mirror register file used to save the context of a
process and a set of synchronization bits.

(ii) Specific instructions to control and manage the cores.
The mirror register file provides a temporary place to save

the context of the next task during the setup process. It does not
increment the complexity of the architecture (no need of new
ports for interconnections), it only requires a simple mechanism
to copy values from the mirror to the current register. It needs
to contain only the information to create an execution context
(program counter, stack and some parameters). Not all the
registers in the system need to have a mirror register, in our im-
plementation we use only the integer registers. The architecture
provides an instruction to write values in the mirror register file
in any processor. This instruction could be easily implemented,
without interfering with the task currently being executed. To
synchronize the tasks, 1-bit registers are included (b0 to b15).
In the current implementation, the new instructions work as a
fence, preventing other instructions to be fetched while they are
being executed, creating a bubble of 10 cycles:

• mth_run <cpu>: Starts a processor execution. It copies
the mirror register file to the current register file. The



values in the mirror register are configured during the
setup and are persistent between calls to mth_run.

• mth_mov <reg_src> <reg_dst> <cpu_dst>:
Moves a value stored in reg_src from the current
processor into reg_dst (mirror) in the processor
cpu_dst (different from current one). The movement
can be done without interfering in the execution of
cpu_dst.

• mth_end: Stops the processor execution. This instruc-
tion is executed from the current processor which will
be stopped. This processor will stay in this state until a
new mth_run is executed to start a new task.

• mth_set <bit> <cpu_dst> <state>: Set or clears
the state of a bit in a specific core to synchronize tasks.

• mth_syn <bit_dst> <cpu_dst> <state> <end>:
synchronizes based on the value of a 1-bit register. If
<state> differs from the current value of bit_dst,
it changes the value and continues. If the value is the
same, the task blocks. When the optional argument
<end> is present, the task stops after this instruction.

task code for processor 1

mth1:

    mth_syn b8, 0, 1, end
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Fig. 4. The main task (mth0) executing in core 0 configures the other
core to execute mth1. This new task is launched and a synchronization
step is performed with the main task.

Figure 4 shows two tasks executing in a Θ-core using ARM
and its instruction set. The main task (mth0) executing in core
0 configures the registers for the other task (mth1) in the other
iC (core 1), then launches the execution of the second task and
synchronizes with it:
(1) Clears the bit b8 of the synchronization register in main core.
(2) Loads the address of mth1 in r0.
(3) Loads from r0 the address of mth1 to the PC of the mirror register

of the other core.
(4) Starts the execution of mth1.
(5) Both tasks mth0 and mth1 execute.
(6) Synchronization step: mth0 tries to clear b8. As this bit is in clear

state, it stalls until b8 is set.
(7) Synchronization step: mth1 tries to set b8 in the main core. As this

bit is in clear state, it can proceed. This instruction also ends mth1.
(8) After synchronizing with mth1, this instruction can be executed.

2.3 Programming Model

From an abstract point of view, the programming model is
similar to Pthreads with two main differences:

i) cost of creating a new thread: it reduces dramatically the cost
of thread creation. Hardware support plays a key role in
supporting this operation and decreasing the time needed
to start a new thread. The thread launch consists in moving
a set of registers from the mirror register file to the main
one, avoiding the intervention of the operating system.

ii) synchronization is performed actively: the cores have the abil-
ity to wait for some clock cycles while a task is completed.
This would allow decreasing the time used in waiting for
some event, but the application should be programmed in
such a way that a core does not have to wait for long times.

Leaving the control of the cores to the application leads to a
fine tuning that can help in reducing the power consumption:
having a hardware support mechanism to turn on and off a
core, opens the door to use the internal cores only on demand.

Fig. 5. Examples used to test Mth: on the left, the computation of
minimum path in a graph. On the right side, LU decomposition. The
parallelization strategy and the synchronization points are shown.

3 EXPERIMENTS

To test our proposal, GEM5 simulator [1], ARM architecture
and arm-linux-gnueabihf compiler with maximum opti-
mizations are used. A new Mth module is added to GEM5
framework. This module stores the process state information,
the mirror register banks and the synchronization registers.
The new instructions are implemented as synchronous oper-
ations (i.e. executes serially and flushes the pipeline). Out-
of-order (arm_detailed, Cortex-A9) and in-order (minor,
Cortex-A8) models are used in the examples [3]. We introduce
next the applications used in this study:

• HSL Filter: represents a trivial parallel application that
transforms from RGB to HSL color spaces by a set
of successive comparison preventing the use of vecto-
rial instructions. The parallelization strategy consists of
splitting of pixels to process in all the available cores.

• FFT Radix2: consists in recursive independent calls over
a data vector. In each call, the vector is split. After the
second call, a new task is launched in parallel.

• LU decomposition: The right side of Fig. 5 shows the
procedure [7]. Each submatrix is processed following
the index k. The internal cycles compute each submatrix
storing the results in a, the second one copies the results
to U matrix. The parallelization strategy is based on
treating both internal cycles in different cores, while the
copy is performed serially.

• Dantzig: Shown in the left part of Fig. 5. It computes
the shortest path in a graph. In each iteration, one node
is added to the computation, all the paths to and from
the new node are computed and the existing paths are
recomputed. The parallelization consists in executing a
parallel task for each of these three tasks.

The general strategy aims to deal with the code trying to
mimic a guided compilation by annotated code. The algorithms
have no special tuning for Mth, only the launch of tasks and
synchronization steps are included to expose new parallelism.

4 RESULTS AND DISCUSSION

Figure 6 compares the speedup of OpenMP and Pthreads with
Mth while increasing the problem size for an in-order (InO)
and out-of-order (OOO) processors. A remarkable fact is that
the amount of data to compute in the examples is extremely
small. In the case of Fig. 6a, an image with 20 lines represents
1200 bytes of data. The problem size in Fig. 6b corresponds
to the vector size in double precision, while in Fig. 6c to
the dimension of a double precision square matrix. The last
example in Fig. 6d uses the size of the matrix obtained from
a graph with the specified amount of nodes. In the case of 20
nodes, the associated matrix has 400 bytes.
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Fig. 6. Performance evaluation of Mth proposal. In all the cases, highly
efficient results are obtained even with small problem instances.

In all the cases, near ideal speedups are obtained even in
the case of small input problem size. In the Fig. 6a, the ideal
speedup is obtained for two cores in almost all the range of
input data size and more than 80% of efficiency is achieved
using four cores.

FFT Radix2 (Fig 6b) exceeds 75% efficiency with only 64
elements. It presents an important sequential stage, only after
the second recursive call the other core is used. This prevents
reaching the ideal speed-up in all the range of tested input. The
input size is 2KB for 256 elements and the speed-up is 1.7X.

LU decomposition requires more input size to surpass 75%
of efficiency. Cases larger than 100×100 (corresponding to 78KB
of data), reaches 2X speed-up, and takes 8.56 × 108 cycles and
2.4 × 109 cycles for the out-of-order and in-order serial cases.

Dantzig presents data dependence between iterations. To
start with the new iteration, the previous ones must be finished.
With input size larger than 40 nodes (1.56KB of data), 1.7X and
more than 80% of efficiency are obtained in out-of-order. More
than 1.9X and 95% of efficiency are obtained using in-order.

for(istep=0;istep<S;istep++) {
  #pragma omp parallel sections
  {
    #pragma omp section
    {
      for(i=0;i<L/2;i++)
        getMd5(data+n∗i);
    }

    #pragma omp section
    {
      for(i=L/2;i<L;i++)
        getMd5(data+n∗i);
    }
  }
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Fig. 7. Impact of initialization and synchronization using two cores: Large
S means more work, lower L more synchronization.

Left part of Fig. 7 shows the OpenMP version of computing
md5 of array elements. L regulates the work in each thread,
while S increases the overall work to be done. Large S while
keeping low L means that the amount of parallel work is large
and a lot of synchronization is needed. The cost of initialization
impacts less for large workloads (large S). Mth presents 1.8X
speed-up in most of cases, the others can reach 1.8X only if S is
large enough.

Mth is slightly affected by synchronization for L=2 and S=2
(two iterations of each cycle), but shows more than 1.8X speed-
up for the rest. OpenMP and Pthreads have strong slowdown
and only get a low speed-up for S=64.

5 CONCLUSIONS

The speedup of a parallel program using multiple processors
is limited by the time needed for the sequential fraction of the
program and the parallel implementation introduces additional
overhead that constrains the achievable parallelization.

Micro-threads (Mth ) aims to minimize the overhead related
with threads administration (creation, management and syn-
chronization). It includes a new mirror register file used to
save the context of a process, a set of synchronization bits and
specific instructions to control and manage the cores. Moreover,
the programmer has complete control over the assigned group
of cores which allows the efficient scheduling of chunks of
parallel code.

Remarkable speedups and efficiency are obtained in all the
cases, even when dealing with instance size of the order of
hundreds of bytes. The obtained results encourage the use of
Mth and show that could smooth the use of multiple cores
for applications that currently can not take advantage of the
multiplication of the parallel resources in each chip. Moreover,
initialization and synchronization do not impact in its behavior
showing remarkable speed-up in the wide range of analyzed
cases.
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