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We prove that, for a charged spherically symmetric body, twice the radius is always strictly greater than
the charge of the body. We also prove that this inequality is sharp. Finally, we discuss the physical
implications of this geometrical inequality and present numerical examples that illustrate this theorem.
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I. INTRODUCTION

Consider a body with angular momentum J and electric
charge Q. Let R be a measure of the size of the body. The
following inequality is expected to hold for all bodies:

Q4

4
þ c2J2 ≤ k2

c8

G2
R4; ð1Þ

whereG is the gravitational constant, c is the speed of light,
and k is an universal dimensionless constant. These kinds
of inequalities for bodies were presented in [1]. They were
motivated by similar kinds of inequalities valid for black
holes (see the review article [1] and the references therein).
The question of the “minimum size” for a charged object
(i.e., the case J ¼ 0) was first studied in [2]. Some
preliminary results were obtained in [3] for the case
Q ¼ 0, and in [4] for the case J ¼ 0.
Heuristic physical arguments that support the inequality

for the case Q ¼ 0 were presented in [5] and, in that
reference, a version of this inequality was also proved for
constant density bodies, using a suitable definition of size.
Khuri [6] has proved it in a much more general case, using
the same measure of size as in [5]. However, these
inequalities are not expected to be sharp.
Recently, Khuri [7] has proved a general version of

inequality in the case J ¼ 0 using a similar (but not
identical) measure of size to the one used in [5] and [6].
As in the previous case, this result is not expected to
be sharp.
In these references the inequalities have been studied in

the two separated casesQ ¼ 0 and J ¼ 0. The full inequal-
ity (1) was presented for the first time in [8] using a
completely different kind of heuristic arguments: they are
motivated by the Bekenstein bounds for the entropy of a
body. An important property of inequality (1) is that there is
only one universal constant k to be fixed. Also, a rigidity
statement for inequality (1) was conjectured in [8]: the
equality is achieved if and only if the entropy of the body is
zero. In general relativity, this statement appears to imply
that the equality cannot be achieved for a nontrivial body.

The precise mathematical formulation of inequality (1)
involves several difficulties. Perhaps the most severe one
is the definition of the size R for a body in a general
spacetime. An appropriate definition of R is both difficult
to find and nonunique. Spherically symmetric spacetimes
represent an exception: the area radius of the boundary of
the body is a canonical definition ofR. The purpose of this
work is to study inequality (1) in spherical symmetry (in
particular, this implies J ¼ 0). We will prove several
important properties of inequality (1) which currently
cannot be proved in a more general setting. This will also
allow us to present the correct setting of the inequality in
the general case.
First of all, we determine the universal constant k to be

k ¼ 2: ð2Þ

Second, we prove that inequality (1) is sharp and strict:
the equality cannot be achieved for a nontrivial body.
Moreover, the equality is achieved in the asymptotic limit
where the radius, charge, and mass of the body tend to
zero. This is completely consistent with the argument
presented in [8]: the equality implies that the entropy of
the body is zero. In particular, a black hole cannot reach the
equality in (1) since it always has a nonzero entropy, and
hence there is a gap between inequalities for bodies
and similar inequalities for black holes (which reach
equality for extreme black holes). This gap is given by a
difference of a factor of 2 in both inequalities. The
existence of this gap is perhaps the most relevant result
presented in this article.
Finally, we prove that the correct setting for this inequal-

ity is an isolated body that is not contained in a black hole.
Inside a black hole, the inequality can be violated. The
appropriate definition for a body in this context is, then, a
region of asymptotically flat initial data that is not inside a
horizon.
The plan of the article is the following. In Sec. II we

present our main result given by Theorem 1 and we also
discuss in detail its physical implications. In Sec. III
we prove Theorem 1. In Sec. IV we present numerical
examples that illustrate the assertions in Theorem 1.
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Finally, in Appendix we summarize the useful properties of
the spherically symmetric initial data set. In the following
we use geometrized units where G ¼ c ¼ 1.

II. MAIN RESULT

The geometrical inequality between size and charge is
appropriately formulated in terms of an initial data set for
the Einstein equations. For the present results, we restrict
ourselves to spherically symmetric initial data where the
three-dimensional Riemannian manifold is taken to be R3.
We call them regular spherically symmetric initial data.
We also assume that the data are asymptotically flat. These
kinds of data have been extensively studied in a series of
articles by Guven and Ó Murchadha [9–11]. In Appendix
we summarize their basic properties and definitions.
Let ∂B be a sphere centered at the origin with area radius

R. That is, the area of ∂B is given by 4πR2. The ball
enclosed by ∂B is denoted by B.
For a sphere ∂B we define the null expansions θþ and θ−

by (A32). A region between two concentric balls is said to
be untrapped if θþθ− > 0 on that region. The region it is
said to be trapped if θþθ− < 0. The outer boundary of a
trapped region on asymptotically flat data is called a
horizon and it satisfies θþθ− ¼ 0. The area radius of the
horizon is denoted by R0.
Theorem 1.—Consider a regular spherically symmetric,

asymptotically flat initial data set. Assume that there exists
a ball B with finite radius R such that, outside B, the data
satisfy the electrovacuum constraint equations. Assume
also that in B the dominant energy condition holds. Let Q
be the total charge of B, where we assume Q ≠ 0. Then,
(i) If the exterior region outside B is untrapped, the

inequality

2R > jQj ð3Þ

holds.
(ii) If there is a horizon outside B, then the radius R0 of

the horizon satisfies the inequality

R0 ≥ jQj: ð4Þ

The equality in (4) is achieved for the horizon of the
extreme Reissner-Nordström black hole.

Moreover, we have the following.
(a) Inequality (3) is sharp in the following sense: there

exists a sequence of initial data that satisfy the entire
hypothesis of item (i) and such that, in the limit, the
equality in (3) is achieved. In this limit, the radius,
the charge, and the total mass of this sequence tend
to zero.

(b) The hypothesis of asymptotic flatness is necessary:
there are examples of initial data which are not
asymptotically flat but which otherwise satisfy the

entire hypothesis in (i) for which inequality (3) is
violated.

(c) In case (ii) there are examples where the radiusR of
the ball B (which is inside the horizon) violates the
inequality 2R > jQj.

Let us discuss the scope and the physical implications of
this theorem. As mentioned in the Introduction, the original
motivation to conjecture an inequality of form (3) for
bodies comes from the analogous kind of inequalities valid
for black holes, namely, in our present setting, inequality
(4). In Ref. [12] it has been shown that inequality (4) is
valid for general horizons (i.e., no symmetry assumptions),
it is a purely quasilocal inequality (i.e., no asymptotically
flat assumption is needed) and the equality is achieved for
extreme black holes. Since black holes are the “most
concentrated objects,” one would expect naively that for
a fixed charge, the minimum possible radius in an inequal-
ity of form (3) is achieved for a black hole. Remarkably,
Theorem 1 shows that it is not true: for a fixed chargeQ, the
minimum possible radius is jQj=2 (and not jQj as in the
case of a black hole). Example (a) shows that this minimum
radius is achieved in the asymptotic limit where the radius,
the charge, and the total mass of the body (which is not
inside a black hole) tend to zero. Nontrivial bodies always
satisfy the strict inequality (3). This is consistent with the
discussion presented in [8]: the equality in (3) implies that
the entropy of the body is zero. Black holes (and also
extreme black holes) have nonzero entropy; hence, there
should be a gap between inequalities (3) (for bodies) and
(4) (for black holes) since the latter saturate for extreme
black holes. Theorem 1 shows that this gap is a factor 2.
The canonical definition of a radius in spherical sym-

metry is the areal radius R. There exists, however, another
possible choice for the radius of a ball B: the geodesic
distance to the center. However, this radius has the
disadvantage that it cannot be used, in general, for a black
hole to obtain these kinds of inequalities. The black hole
inequalities involve the area of the horizon or quantities that
depend, as the area, only on the geometry of the horizon
(for example, the shape of the horizon; see [13,14]). The
interior of the black hole does not appear to have any
physical meaning in this context. In particular, the geodesic
distance and also the radius used in [5–7] depend on the
interior geometry of the body and hence, in principle, they
cannot be applied to black holes. In Theorem 1, for the
first time, the same radius definition is used for both bodies
and black holes. Finally, we note that for some families of
spherically symmetric initial data it can be proved that the
geodesic radius is greater than the areal radius (see [10,15])
and hence, for those cases, inequality (3) is also satisfied for
the geodesic radius.
As we mentioned above, for a black hole, inequality (4)

can be proved without using any asymptotic assumption. It
depends only on the local geometry near the horizon. This
fact may suggest that a similar result can be proved for a

ANGLADA, DAIN, and ORTIZ PHYSICAL REVIEW D 93, 044055 (2016)

044055-2



body B. Namely, making a hypothesis in the interior of
the ball B (regularity and dominant energy condition) and
in a neighborhood of the boundary ∂B (the boundary is
untrapped). However, example (b) shows that this is not
possible.
Example (c) shows that, inside a black hole, the ball B

with fixed charge Q can be compressed to a radius R that
violates inequality (3). Hence, the hypothesis that the
exterior region is untrapped is necessary. Examples (b)
and (c) both show that the correct setting for inequality (3)
in general (i.e., without any symmetry assumption) is the
following: on an asymptotically flat initial data, we con-
sider a region that is not contained in a black hole. This
region is the appropriate definition of an “ordinary body” in
this context. These are precisely the hypotheses used in the
results presented in [6,7]. We also note that these hypoth-
eses are required for the validity of the Bekenstein bounds
for the entropy (see [16,17] and the references therein).
In the spirit of the general results obtained in [6,7] about

the existence of a black hole due to the concentration of
angular momentum and charge, from Theorem 1 we deduce
the following corollary.
Corollary 1.—Consider a regular spherically symmetric,

asymptotically flat initial data set. Assume that there exists
a ball B with a finite radius R such that outside B
the data satisfy the electrovacuum constraint equations.
Assume also that in B the dominant energy condition holds.
Let Q be the total charge of B. If

2R ≤ jQj; ð5Þ
then there are trapped surfaces enclosing B. Example
(c) shows that this corollary is not empty. We will see
that, in this example, the data are not time symmetric and
not maximal.

III. PROOF OF THEOREM 1

The proof is divided naturally into three parts, given by
the following sections: III A, III B, and III C. The exterior
region of the ball is, by assumption, an asymptotically flat,
spherically symmetric solution of the electrovacuum
Einstein equations. Hence, by Birkhoff’s theorem, this
region is described by the Reissner-Nordström metric,
which depends only on two parameters: the mass and
the charge. This simple characterization of the exterior
region is the key simplification introduced by the
assumption of spherical symmetry. However, it turns out
that we do not need the full strength of Birkhoff’s theorem
in the proof. We only need to compute the null expansions
of the spheres in terms of the mass and the charge. In
Sec. III A, for the sake of completeness, we present a proof
of this result. In the spirit of Theorem 1, this proof is
constructed purely in terms of the constraint equations, in
contrast to a standard proof of Birkhoff’s theorem where
the full Einstein equations are used.

In Sec. III B we prove inequalities (3) and (4). The key
ingredient, introduced by Reiris in [14], is the monotonicity
of the Hawking energy (equivalent to the Misner-Sharp
energy in spherical symmetry) on untrapped regions.
Finally, in Sec. III C we construct the three important

examples (a), (b), and (c). These examples are constructed
using charged thin shells.

A. The exterior region

Consider the constraint equations (A25) and (A26) in
the exterior region of the ball B. The electrovacuum
assumption and the spherical symmetry imply j ¼ 0,
μM ¼ 0, and ρ ¼ 0. We first solve Maxwell constraint
equations (A28) in the exterior region. For the electric field,
we obtain

E ¼ Q
r2
; ð6Þ

where Q is the total charge of the ball given by (A31). For
the magnetic field we obtain a similar solution, but since we
assume that there are not magnetic charges, the magnetic
field vanishes. Then we have

μ ¼ Q2

8πr4
; ð7Þ

and hence the constraint equations (A25) and (A26) reduce
to

KrðKr þ 2KlÞ −
1

r2
ðr02 þ 2rr00 − 1Þ ¼ Q2

r4
; ð8Þ

K0
r þ

r0

r
ðKr − KlÞ ¼ 0: ð9Þ

From Eq. (9) we obtain

r0Kl ¼ ðKrrÞ0: ð10Þ

We multiply equation (8) by r4r0 and use relation (10) to
obtain

r0r4Kr
2þr42KrðKrrÞ0−r03r2−2r3r0r00 þr0r2−r0Q2¼0:

ð11Þ

We rearrange the terms in Eq. (11) to finally get

ððKrrÞ2 − r02Þr2r0 þ ðr2 −Q2Þr0
þ ðððKrrÞ2Þ0 − 2r0r00Þr3 ¼ 0: ð12Þ

Define the function fðlÞ by

f ¼ r2

4
θþθ− ¼ r02 − ðKrrÞ2; ð13Þ
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where θþ and θ− are the null expansions defined by (A32).
Note that the first term in (12) is proportional to f. We
calculate f0:

f0 ¼ 2r0r00 − ððKrrÞ2Þ0: ð14Þ

We find that f0 is proportional to the last term of (12).
Then, using (13) and (14), we write (12) in the following
form:

−r2r0f − r3f0 þ ðr2 −Q2Þr0 ¼ 0 ð15Þ

We group the first two terms in (15) as a total derivative to
finally obtain

−r2ðfrÞ0 þ ðr2 −Q2Þr0 ¼ 0: ð16Þ

Equation (16) can be integrated explicitly. The function f
is given by

f ¼ 1 −
2C
r

þQ2

r2
; ð17Þ

where C is a constant.
Up to now, the calculations have been local. If we

assume that the exterior region is asymptotically flat, then
the constant C that appears in the function f is the total
mass (the Arnowitt-Deser-Misner mass) of the initial
data. A simple way to obtain this relation is by using
the Misner-Sharp energy defined by

E ¼ r
2

�
1 −

r2

4
θþθ−

�
: ð18Þ

Using the definition of f, we write E in the form

E ¼ r
2
ð1 − fÞ ¼ C −

Q2

2r
: ð19Þ

From this expression we calculate the constant C in terms
of E and Q:

C ¼ E þQ2

2r
: ð20Þ

Awell-known property of the energy E is that, at infinity, it
is equal to the mass M of the initial data (see [18]):

M ¼ lim
r→∞

E: ð21Þ

Then, taking this limit in Eq. (19) we finally obtain C ¼ M,
and hence the final expression for E is given by

E ¼ M −
Q2

2r
: ð22Þ

We have computed the product of the null expansions
θþθ− in terms of the parameters M and Q:

f ¼ r2

4
θþθ− ¼ 1 −

2M
r

þQ2

r2
: ð23Þ

This formula, together with the formula for E given by (22),
is the only property of the exterior region that will be used
in the following steps of the proof.

B. The inequality

In this section we will prove inequalities (i) and (ii).
We have proved in the previous section that the product of
the null expansions [i.e., the function f defined by (23)] is
characterized by only two parameters: the mass M and the
charge Q. We treat separately the cases where M ≥ jQj
and M < jQj.

1. M ≥ jQj case
Assume that the surface of the ball is located at the value

l0 of the geodesic distance to the center, that is, R ¼ rðl0Þ.
The exterior region is defined by rðlÞ, with l ≥ l0.
IfM ≥ jQj, then f has two real roots (or one double root

in the case of equality) at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; r− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
:

ð24Þ
Note that rþ ≥ r−.
For the exterior region, we have two possibilities: either

there exists at least one point l1 (with l1 ≥ l0) such
that rðl1Þ ¼ rþ or there is no such a point. Consider the
first case. Since f ¼ 0 at rþ, the exterior region is not
untrapped, and hence we are in case (ii) of the theorem. The
horizon of the data is located as follows. If there is only one
point l1 such that rþ ¼ rðlÞ, we take this point. If there are
many points that achieve the value rþ, we take the most
exterior one; i.e., if rðl1Þ ¼ rðl2Þ ¼ rþ and l1 > l2, we take
l1. Let l1 be such a point. The asymptotic flatness
assumption implies that

lim
l→∞

rðlÞ ¼ ∞: ð25Þ

Then rðlÞ > rþ for l > l1 [if not, this will contradict the
assumption that l1 is the most exterior point with
rðlÞ ¼ rþ]. Hence, there are no trapped surfaces in the
region l > l1. Then we have shown that rðl1Þ is the horizon
of the data. The area radius of the horizon is rþ. Hence we
have

R0 ¼ rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
≥ jQj: ð26Þ
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This proves inequality (4) of Theorem 1. Note that for
extreme Reissner-Nordström (i.e.,M ¼ jQj), the equality is
achieved in (26).
Consider now the second case. If there are no points l1,

with l1 ≥ l0 such that rðl1Þ ¼ rþ, then by (25) we find that
rðlÞ > rþ for all l ≥ l0. The exterior region is untrapped
and we are in case (i) of Theorem 1. We have proved that

R ¼ rðl0Þ > rþ ≥ jQj: ð27Þ

We emphasize that a stronger version of inequality (3)
is satisfied for that case since, in (27), the factor 2 is
absent.
Note that in the previous argument we have not men-

tioned the radius r−, but we have instead used r− ≤ rþ. For
example, the ball B could be in the region 0 < r < r−,
which is untrapped. However, since r− ≤ rþ and we have
condition (25), in that case there will always be a point l1 in
the exterior region such that rðl1Þ ¼ rþ.

2. M < jQj case
The case M < jQj is the most relevant one and it was

proved by Reiris [14]. In what follows, we essentially
reproduce Reiris’s proof. The crucial ingredient is that
the Misner-Sharp energy (18) is monotonic on untrapped
regions (see [18,19]). If we assume that in the region l1 ≤
l ≤ l2 the dominant energy condition is satisfied and
θ− > 0, θþ > 0, then

Eðl1Þ ≤ Eðl2Þ: ð28Þ

We first prove the following result, which is interesting
in itself.
Lemma 1.—Consider a regular ball B, such that the

dominant energy condition is satisfied on B. If on the
boundary ∂B of the ball B we have θ− > 0, θþ > 0, then
the Misner-Sharp energy of the boundary is non-negative,

Eð∂BÞ ≥ 0: ð29Þ

Note that we are not assuming that the ball is embedded in
an asymptotically flat data. This is a quasilocal result that
depends only on the interior of the ball.
Proof of Lemma 1.—Denote by l0 the geodesic radius of

the ball B, that is, R ¼ rðl0Þ. To prove (29), we argue as
follows. There are two cases: the interior of B is either
untrapped or not. Consider the first case. Since we hold that
θ− > 0, θþ > 0 on the boundary, if the interior is untrapped
(i.e., θþθ− > 0), we obtain that θ− > 0, θþ > 0 in B. It is
well known that in the limit l → 0 the Misner-Sharp energy
is non-negative (see, for example, [20], Sec. 6.1.2). Since in
the region B we have θ− > 0, θþ > 0, we can use (28) with
l1 ¼ 0 and l2 ¼ l0 to obtain

0 ≤ Eð0Þ ≤ Eðl0Þ: ð30Þ

For the second case, we have, by assumption, that near the
boundary θþθ− > 0. Hence, if the interior region of B is not
untrapped, there should be a radius rðl1Þ in the interior of B
such that θþθ− ¼ 0. From expression (18) we learn that the
energy on rðl1Þ is non-negative,

0 ≤ Eðl1Þ ¼
rðl1Þ
2

: ð31Þ

In the region l1 ≤ l ≤ l0 we have θ− > 0, θþ > 0, and
hence we can use (28) to obtain

0 ≤ Eðl1Þ ≤ Eðl0Þ: ð32Þ

▪
We continue with the proof. Note that since we have

assumed M < jQj, the exterior region is untrapped, and
hence we are in case (i) of Theorem 1. Moreover, since
the data are asymptotically flat for a large r, we find that
θþ > 0 and θ− > 0 and hence, since the exterior region is
untrapped, we obtain θþ > 0 and θ− > 0 in the whole
exterior region. We can explicitly compute the Misner-
Sharp energy E of the boundary of the ball B using
formula (22) and using Lemma 1 we obtain

Eð∂BÞ ¼ M −
Q2

2R
≥ 0: ð33Þ

That is,

R ≥
Q2

2M
: ð34Þ

We useM < jQj to deduce from (34) the desired inequality,

2R ≥ Q: ð35Þ

Finally, we prove that inequality (35) is strict; that is,
no material ball can achieve the equality in (35). We argue
by contradiction. Assume there exists a ball B such that
2R ¼ jQj. By assumption, the exterior region is untrapped,
and hence the function f is positive on that region. We have
two cases:M ≥ Q andM < jQj. For the first case, we have
already proved above that the stricter inequality (27) is
satisfied, and hence it is not possible to achieve 2R ¼ jQj
for that case. Consider the second case, M < jQj. We
compute the energy E at the boundary

Eð∂BÞ ¼ M −
Q2

2R
¼ M − jQj < 0; ð36Þ

where 2R ¼ jQj. Then the energy is negative, and this
contradicts Lemma 1.
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C. Examples

We construct in this section examples (a), (b), and (c) of
the initial data mentioned in Theorem 1. All of the
examples and much of the intuition which led to the very
formulation of Theorem 1 were extracted from the study of
charged thin shells performed by Boulware [21]. In that
reference the complete dynamics of charged thin shells in
the spacetime is characterized. However, in this section we
construct only initial data solving the constraints in a self-
contained manner. We make contact with the spacetime
picture just to favor the visualization.
We begin with example (a). Consider the following

spherically symmetric metric:

h ¼ dl2 þ r2ðlÞðdθ2 þ sin2θdϕ2Þ; ð37Þ

where the radial function rðlÞ is given by

rðlÞ ¼
�
l for l ≤ R;

rRNðlÞ for l ≥ R;
ð38Þ

whereR > 0 is an arbitrary constant and rRNðlÞ is the area
radius function corresponding to the Reissner-Nordström
metric with mass M and charge Q. That is, rRNðlÞ is the
solution of the following differential equation:

r0RNðlÞ ¼
�
1 −

2M
rRN

þ Q2

r2RN

�
1=2

: ð39Þ

The integration constant in (39) is fixed by the requirement
rRNðRÞ ¼ R, and hence the function rðlÞ defined by (38) is
continuous.
The initial data set is prescribed with metric (37) and

zero second fundamental form. Metric (37) describes a
charged thin shell of radiusR: the interior l ≤ R is flat and
the exterior is given by the Reissner-Nordström metric. The
metric depends on three parameters: ðR;M;QÞ. However,
these parameters are not free if we impose the dominant
energy condition on the metric. The dominant energy
condition for time symmetric data is equivalent to
R ≥ 0, where R is the scalar curvature of the metric. To
compute R, we first calculate the first and second deriv-
atives of the function rðlÞ defined in (38). For the first
derivative, we obtain

r0ðlÞ ¼ Θðl−RÞ
��

1−
2M
rRN

þ Q2

r2RN

�
1=2

− 1

�
þ 1; ð40Þ

where ΘðxÞ is the step function defined by ΘðxÞ ¼ 0 for
x < 0 and ΘðxÞ ¼ 1 for x > 0. For the second derivative,
we have

r00ðlÞ ¼ δðl −RÞ
��

1 −
2M
rRN

þ Q2

r2RN

�
1=2

− 1

�

þ Θðl −RÞ
�

M
r2RN

−
Q2

r3RN

�
; ð41Þ

where δ is the Dirac delta function.
Using (40), (41), and expression (A22) for the scalar

curvature R of metric (37), we obtain

R ¼ 16πσδðl −RÞ þ Θðl −RÞ 2Q
2

r4RN
; ð42Þ

where we have defined

σ ¼ 1

4πR

�
1 −

�
1 −

2M
R

þ Q2

R2

�
1=2

�
: ð43Þ

The dominant energy condition R ≥ 0 implies σ ≥ 0, and
this imposes restrictions on the value of the parameters. A
convenient way to express this relation is the following.
Define the proper mass of the shell by

M ¼ 4πR2σ: ð44Þ

Then, from (43) we obtain

M ¼ MþQ2 −M2

2R
: ð45Þ

The dominant energy condition is equivalent to M ≥ 0.
To make contact with [21], we note that since the data

are time symmetric, the proper time derivative of the
radius of the shell is zero in the initial data and hence the
4-velocity of the shell (uμ in Ref. [21]) is orthogonal to
the spacelike hypersurface that defines the data. Then,
using Eq. (A9) with tμ ¼ uμ, we conclude that the σ
defined by (43) is identical to the σ defined by Eq. (10) in
[21]. Hence, the proper mass M defined by (44) is
identical to the one defined in [21]. Note that the proper
mass M is conserved along the evolution (see [21]).
Relation (45) is the special case of Eq. (16) in [21] where
the time derivative of the radius is zero. We emphasize
that we have deduced relation (45) using only the
dominant energy condition and the constraint equations.
Expression (45) was obtained for the first time in [2]. In
[22] this expression was generalized in the form of an
inequality for spherical distribution of charged matter
momentarily at rest.
To construct example (a), we will further impose that

M < jQj. The complete spacetime corresponding to these
initial data was obtained in [21]. It is a shell that contracts to
a minimum radius R and then reexpands to infinity; see
Fig. 1. The exterior region corresponds to the superextreme
Reissner-Nordström spacetime.
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The sequence of initial data is constructed as follows. We
take the following sequence of parameters, where n ≥ 1 is a
natural number:

Rn ¼
1

n
; Qn ¼

2

n
−

1

n2
; Mn ¼

1

2n3
: ð46Þ

This sequence of initial data satisfies the dominant energy
conditions since Mn > 0. The total mass is computed
using formula (45). We obtain

Mn ¼
1

n3
þ 2

n
−

2

n2
−

1

8n5
: ð47Þ

Then we have

Mn −Qn ¼
8n2 − 8n3 − 1

8n5
< 0: ð48Þ

There are no trapped surfaces in the exterior region,
and hence we are in case (i) of Theorem 1. Finally, we
also have

Qn

2Rn
¼ 1 −

1

2n
: ð49Þ

From (49) we find that each member of the sequence
satisfies inequality (3), as they should since the data satisfy
the hypothesis of the theorem for case (i). Equation (49)
implies that the equality in (3) is achieved in the limit
n → ∞, and hence we have proved that inequality (3) is
sharp. Moreover, in the limit n → ∞, we have

lim
n→∞

Qn ¼ lim
n→∞

Rn ¼ lim
n→∞

Mn ¼ lim
n→∞

Mn ¼ 0: ð50Þ

The second example, (b), is constructed using the same
metric (37), but with a different choice of parameters. We
take M > 0 and

jQj > 2R: ð51Þ

From the definition ofM given by (44) and (43) we deduce
that R ≥ M. Using this inequality, formula (45), and
assumption (51), we deduce that

M > jQj: ð52Þ

In addition, we take R such that

R < r−; ð53Þ

where r− is given by (24). We take r1 such that R < r1 <
r− and consider metric (37) defined up to r1.
These data are, by construction, not asymptotically flat

since they have a boundary at r1. Inequality (3) is not
satisfied since we have imposed (51). In the exterior
region of B up to r1, there are no trapped surfaces.
These data are in region III of the Reissner-Nordström
spacetime; see Fig. 2.
Finally, we construct the third example, (c). This

example is based on the previous example, (b), but the
data is extended to reach spacelike infinity. The data are
shown in Fig. 3. Note that these data are nontime
symmetric. To construct the data, we proceed as follows.
Let r1 and r2 be two fixed constants that satisfy
R < r1 < r− < rþ < r2. The metric of the data is given
by (37), but now the function rðlÞ is prescribed as follows:

rðlÞ ¼
�
l for l ≤ R;
rRNðlÞ for l ≥ R;

ð54Þ

where rRNðlÞ is a solution of the differential equation

r0RNðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ ðKrrÞ2

q
; ð55Þ

where f is given by (23) and the function Kr is prescribed
as follows. The function f is negative in the region
r− < r < rþ. Its minimum value,

fmin ¼ 1 −
M2

Q2
; ð56Þ

FIG. 1. The dashed line represents the trajectory of the shell.
The shell has an infinite radius in the past i−. It contracts to a
minimum radius R and then reexpands to infinite radius at iþ.
The exterior region of the shell corresponds to the superextreme
Reissner-Nordström spacetime. The interior region of the shell,
drawn in gray, is flat. The spacelike surface of the initial data of
example (a) is represented by the thick horizontal line. The
velocity of the shell is orthogonal to the initial Cauchy surface.
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is achieved at the radius rmin ¼ Q2=M. We prescribe the
function KrðrÞ to be a smooth function with compact
support in ½r1; r2� such that, on the interval ½r−; rþ�, it
satisfies

ðKrrÞ2 >
M2

Q2
− 1: ð57Þ

Condition (57) ensures that the radicand on the right-hand
side of (55) is always positive, hence

r0RN > 0; ð58Þ

and we can integrate Eq. (55) to obtain a function rRNðlÞ
which increases monotonically with l. To complete the
prescription of the data we calculate the other piece Kl of
the second fundamental form using momentum constraint
(9), that is,

Kl ¼
rRN
r0RN

K0
r þ Kr: ð59Þ

Note that Eq. (59) makes sense only if r0RN > 0. We have
constructed an asymptotically flat initial data, such that
there is a horizon in rþ and inequality (3) is not satisfied by
the ball B. This completes the construction of example (c).
Finally, it is interesting to mention article [23], where the

dynamics of two charged thin shells in spherical symmetry
is analyzed. This spacetime can provide more sophisticated
examples that can have further applications in the study of
inequality (3). For the particular choice of parameters made
in [23], it is simple to show that inequality (3) is satisfied. In
the notation of [23], there are two concentric shells: the
exterior one is called shell 2 and the interior one shell 1.
There are three regions: the exterior regionD3 outside shell
2, the regionD2 between shell 2 and shell 1, and the interior
region inside shell 1 D1. It is assumed that in D3 and D2

the spacetime is superextreme Reissner-Nordström [with
parameters ðM3; Q3Þ and ðM2; Q2Þ, respectively], and in
D1 is Minkowski. Clearly, Theorem 1 applies to shell 2 and
not to shell 1. Also, since in the exterior region D3 the
spacetime is superextreme Reissner-Nordström, there are
no trapped surfaces in D3, and hence Theorem 1 says that
shell 2 should satisfy inequality (3). However, it turns out
that, due to the particular assumptions, inequality (3) is also
satisfied by shell 1. Let us explicitly prove these two
assertions.
The following condition should be satisfied at every shell

(see [23]):

EAþ1 − EA > 0; ð60Þ

where A ¼ 1, 2 and EA denote the Misner-Sharp energy in
region A. Let us apply (60) to shell 1. Since in D1 the
spacetime is Minkowski, we have E1 ¼ 0, and hence we
obtain

FIG. 3. Example (c) is constructed by extending the surface in
example (b) up to spacelike infinity i0 in region I. The data are
time symmetric only in the regions r < r1 and r2 < r.

FIG. 2. The initial data of example (b) is a piece of the time
symmetric data located in region III of the Reissner-Nordström
spacetime.
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E2 > 0: ð61Þ

Using expression (22) we obtain

R1 >
Q2

2

2M2

; ð62Þ

where R1 denotes the radius of shell 1. We use the
assumption M2 < jQ2j on region D2 to deduce from
(62) the desired inequality,

R1 >
jQ2j
2

: ð63Þ

Now, we apply (60) to shell 2. We have

M3 −
Q2

3

2R2

> E2; ð64Þ

and then

R2 >
R2E2

2M3

þ Q2
3

2M3

: ð65Þ

We use the assumption M3 < jQj3 on D3 and Eq. (61) to
finally obtain

R2 >
jQ3j
2

; ð66Þ

where R2 denotes the radius of shell 2.

IV. NUMERICAL EXAMPLES

In Sec. III C we have presented three important examples
of initial data that exhibit crucial properties of inequality
(3). These examples are constructed in terms of charged
thin shells and hence they have distributional curvature. In
this section we perform numerical computations of our
initial data which have similar properties but are generated
by finite smooth matter distribution. These computations
are relevant for at least two reasons. First, for each example
it will be clear that, by changing slightly the parameters,
we obtain a whole family of data that shares the same
properties. That is, the examples are generic—they do not
depend on a fine-tuning of the parameters. Second, the
calculations presented here can have further applications to
test similar inequalities with a different definition of radius,
like the one presented in [7].
To solve constraint equations (A25) and (A26), we

proceed as follows. We use momentum constraint (A26)
to calculate Kl as a function of Kr and j, namely,

Kl ¼
r
r0
K0

r þ Kr − 4π
r
r0
j: ð67Þ

Note that this equation makes sense only if r0 > 0. In all our
examples with Kr ≠ 0, this condition is satisfied. Inserting
(67) into the Hamiltonian constraint (A25), we obtain

3K2
r þ 2

r
r0
K0

rKr − 8π
r
r0
Krjþ

1

r2
ðr02 þ 2rr00 − 1Þ ¼ 8πμ:

ð68Þ

In Eq. (68) we take the functions KrðlÞ, jðlÞ, and μðlÞ as
free data and we solve for rðlÞ, imposing as initial
conditions the regularity conditions for the metric

rð0Þ; r0ð0Þ ¼ 1: ð69Þ

It is useful, for testing purposes, to have an integral
expression for the energy E. This formula was calculated
in [10] and is given by

E ¼ 4π

Z
l

0

dlr2ðμr0 þ jrKrÞ: ð70Þ

In our examples we impose

j ¼ 0; ð71Þ

and we choose the nonelectromagnetic matter to vanish,

μM ¼ 0: ð72Þ

Then we have

μ ¼ 1

8π
E2: ð73Þ

The electric field must satisfy the Maxwell constraint
equation (A28). We solve this equation as follows: we
prescribe a smooth function QðlÞ such that, at the origin,
QðlÞ ¼ Oðl3Þ and it is constant for l ≥ l0, where l0
represents the geodesic radius of the body.
Then our final equation is given by

r00 þ 1

2r

�
ðr0Þ2 − 1

�
¼ −

Q2

2r3
þ 3

2
rðKrÞ2 þ

r2

r0
KrK0

r;

rð0Þ ¼ 0; r0ð0Þ ¼ 1; ð74Þ

where bothQ and Kr are given functions of l. In [11] it was
observed that this initial value problem captures not just
solutions representing asymptotically flat initial data. If,
for example, the charge is concentrated enough around
the origin, then the solution rðlÞ reaches a maximum and
returns to zero at finite geodesic distance. If, on the other
hand, r grows big far away from the support regions of Kr
and the charge density, then the forcing on the right-hand
side vanishes asymptotically and the solution approaches
r0 ≃ 1 and r00 ≃ 0, indicating asymptotic flatness. Both of
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these behaviors will be shown in the numerical exam-
ples below.

A. The implementation

Equation (74) is a simple quasilinear ordinary differ-
ential equation (ODE). It can be written as a first order
system by defining u ¼ r and v ¼ r0,

�
u

v

�0
¼

�
v

1−v2
2u − 1

2u3 Q
2ðlÞ þ 3

2
uK2

rðlÞ þ u2
v KrðlÞK0

rðlÞ
�
;

ð75Þ

with initial condition

�
uð0Þ
vð0Þ

�
¼

�
0

1

�
: ð76Þ

Now the geodesic distance l can be discretized with a small
step size δl and the problem solved with a standard ODE
solver. We compute the numerical solutions of (75) and
(76) using the standard Runge-Kutta, fourth order accurate
method.
We check the pointwise convergence of our code by

computing a precision quotient that depends on three
numerical solutions to the same problem computed using
three different step sizes, δl, 2δl, and 4δl (see [24]). This
quotient should keep close, as a function of l and besides
some isolated peaks, to the value 24 if the code is correct
and the time step is small enough, so that the truncation
error is Oðδl4Þ for the three solutions.
A numerically computed solution will be a fourth order

accurate approximation of an exact solution if the latter is at
least a C6 smooth function of l. This is so because the
coefficient of the leading term in the truncation error is
proportional to the sixth derivative of the exact solution. To
obtain a solutionC6 smooth, one needs to prescribe a forcing
which isC4 smooth as a functionof l. To this endwe introduce
a monotonic polynomial, obtained via Hermite interpolation,

pða; b; xÞ ¼ ð1þ wÞ5ð1 − 5wþ 15w2 − 35w3 þ 70w4Þ;

w ¼ x − b
b − a

;

qðc; d; xÞ ¼ 1 − pðc; d; xÞ: ð77Þ

For a ≤ x ≤ b, pða; b; xÞ is a monotonically increasing
polynomial that matches 0 with 1 in a C4 smooth way. For
c ≤ x ≤ d, qðc; d; xÞ is a monotonically decreasing poly-
nomial that matches 1 with 0 in a C4 smooth way.
Energy integral (70) is approximated by a fourth order

accurate composite Simpson’s rule. Also, as in the exterior
region the energy and the mass satisfy (22), we can
compute the mass for any solution computed on a finite
l interval that includes a portion of the exterior region.

B. Example (a)

Here we compute the first few members of a sequence
frnðlÞg; n ¼ 2; 3;… of regular solutions to problem (74)
that saturate inequality (3) in the limit n → ∞. This
sequence must have the property that the total charge
Qn vanishes in the limit n → ∞, and, consequently, the
areal radius of the charge must also vanish in that limit, so
that limn→∞2Rn=Qn ¼ 1.
All solutions in this sequence correspond to time

symmetric initial data; that is, in all of these cases we
set Kr ¼ 0 in the forcing of Eq. (74).
We choose to compute the first few solutions of a

sequence that satisfies

Qn ¼
2

n
and Rn ¼

1

n
þ 1

n lnðnÞ ; n ¼ 2; 3; 4;…:

ð78Þ

This sequence of solutions is designed to saturate inequal-
ity (3) in the limit n → ∞ as

2Rn

Qn
¼ 1þ 1

lnðnÞ ; ð79Þ

with a slow convergence to one.
Using the polynomial pða; b; xÞ defined in (77), we

prescribe the function QðlÞ to be

QðlÞ ¼
�
Qnpða; l0; lÞ; if l < lo;

Qn; if l ≥ l0;

a ¼ 0; l0 > 0; Qn ¼
2

n
; ð80Þ

where l0 is the geodesic radius of the charge distribution. At
the origin the function QðlÞ vanishes as Oðl5Þ.
To compute each solution of the sequence—say, with

index n—the value of the total charge Qn and the geodesic
radius l0 of the charge are input parameters in the program.
The areal radius of the chargeRðl0Þ is known only after the
solution is computed. Thus, the input parameter l0 needs to
be adjusted to obtain the desired value Rðl0Þ ¼ Rn. To
adjust l0, we start with two solutions with the right charge,
one with a smaller value of R and another with a larger
value ofR. We then perform a bisection procedure on l0 to
find the root of the function

gðl0Þ ¼ Rðl0Þ −
1

n
−

1

n lnðnÞ : ð81Þ

We stop the iterations when the value of Rðl0Þ reaches
the value of Rn with ten correct digits. Table I shows the
relevant input parameters we obtain for the first few
members of the sequence of solutions and the mass that
results for each of them.
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To illustrate the behavior of the solutions in this
sequence, two plots are shown. Figure 4 shows the plots
of 2rðlÞ and QðlÞ of the first (n ¼ 2) and last (n ¼ 8)
solutions in Table I in a small region around the charge
domain. Figure 5 shows the plots of r0ðlÞ for all solutions in
Table I in a larger region. These last plots show how the
solutions satisfy the asymptotic boundary condition. Note
that jr0j ≤ 1: this is always true for time symmetric initial
data; see [11].

C. Example (b)

In this section we present a single numerical solution
representing time symmetric initial data. The charge dis-
tribution is a thick spherical shell with support in a finite
interval 0 < a ≤ l ≤ l0. The charge QðlÞ is given by

QðlÞ ¼
8<
:

0; if l ≤ a;

Qpða; b; lÞ; if a < l < l0;

Q; if l0 ≤ l;

a ¼ 0.8; l0 ¼ 1.0; Q ¼ 2.1: ð82Þ

The solution with these parameters violates inequality (3);
the total charge Q exceeds 2R by more than 6%. Figure 6
shows a plot of this solution. At about l ¼ 2.85200, rðlÞ
gets back to zero. At this point the equation becomes
singular and the solution diverges. As expected, r0ðlÞ
vanishes outside the body [maximum of rðlÞ] at about
l1 ¼ 1.72169, with rðl1Þ ¼ 1.229588, showing that there

exists a trapped surface enclosing the body. However, near
the boundary of the body (i.e., in the region l0 ≤ l < l1),
there are no trapped surfaces.
As a test for the solution, using formula (22) we calculate

the massM ¼ 2.408077371 and then calculate the r− given
by (24). The value of r− coincides with the value rðl1Þ
calculated above with seven digits.

FIG. 4. 2rðlÞ and QðlÞ for the solutions with n ¼ 2 and n ¼ 8.
The borders of the objects are placed at the corresponding values
of l0 given in Table I.

TABLE I. Parameters and mass for the first solutions in the
sequence satisfying (78).

n Qn δl l0 Mass

2 1 1 × 10−3 1.346158647537232 0.680983
3 2=3 1 × 10−3 7.422593683004379 × 10−1 0.554538
4 1=2 5 × 10−4 5.176483931019902 × 10−1 0.449646
5 2=5 5 × 10−4 3.981155012268573 × 10−1 0.375407
6 1=3 5 × 10−4 3.235192440450192 × 10−1 0.321540
7 2=7 2 × 10−4 2.724420906044543 × 10−1 0.280995
8 1=4 1 × 10−4 2.352533040568233 × 10−1 0.249473

FIG. 5. Plots of r0ðlÞ for the solutions with n ¼ 2 and n ¼ 8 of
Table I (showing asymptotic flatness).

FIG. 6. 2rðlÞ and QðlÞ for the solution of example (b), which is
not asymptotically flat. The vertical dotted lines indicate the
values of l0 ¼ 1.0 (the border of the body) and l1 ¼ 1.22959
where r0 becomes zero. Inequality (3) is violated by about 6%.
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D. Example (c)

In this section we modify the data used to obtain the
solution of example (b). This is done as suggested by the
analytical examples of Sec. III C. The charge distribution is
the same as in example (b), so that QðlÞ is given by (82),
but now there is a nonvanishing extrinsic curvatureKrðlÞ of

compact support. Thus, the solution no longer represents
time symmetric initial data. We prescribe K0

rðlÞ as the C4

smooth function

K0
rðlÞ ¼ ð−2.0Þ ×

8>>>>>>>><
>>>>>>>>:

0; if 1.2 ≤ l;

pð1.2; 1.75; lÞ; if 1.2 < l ≤ 1.75;

qð1.75; 2.3; lÞ; if 1.75 < l ≤ 2.3;

−pð2.3; 2.85; lÞ; if 2.3 < l ≤ 2.85;

−qð2.85; 3.4; lÞ; if 2.85 < l < 3.4;

0; if 3.4 ≤ l;

ð83Þ

where p and q are the polynomials defined in (77). KrðlÞ is
defined as the exact integral of KrðlÞ. In Fig. 7 we show a
plot of Kr.
The solution obtained is a monotonically increasing rðlÞ

coincident with the solution of example (b) when l ≤ 1.2
(the initial value problem is exactly the same up to this
point). For larger values of l, the extrinsic curvature affects
the solution so that rðlÞ keeps growing and the solution
becomes asymptotically flat. Figure 8 shows the behavior
of this solution.
This solution has a horizon outside the body. Figure 9

shows the plot of θþðlÞ. This function has two roots,
located at l− ¼ 1.58085 and lþ ¼ 2.85231. These values
correspond to radii rðl−Þ ¼ 1.22959 and rðlþÞ ¼ 3.58657,
respectively. The computed mass for this solution is
M ¼ 2.408077371. The total charge, Q ¼ 2.1, is an input
parameter in the program. We can compute the values r−
and rþ given by Eq. (24), which turn out to be coincident
with the values rðl−Þ and rðlþÞ in seven and six digits,
respectively. The radius of the horizon, R0 ¼ rþ, clearly
satisfies inequality (4). Finally, using formula (67) we
numerically compute Kl and then compute the trace of the
second fundamental form given by K ¼ Kl þ 2Kr. This
function is nonzero, and hence the data are not maximal.

FIG. 7. Plot of KrðlÞ, C5 smooth with compact support in
[1.2,3.4].

FIG. 8. 2rðlÞ and QðlÞ (upper panel), r0ðlÞ on a larger domain
(lower panel), for the solution obtained with (82) and (83).

FIG. 9. Plot of θþðlÞ for the solution of example (c).
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V. FINAL COMMENTS

We have studied the inequality between size and charge
for bodies in spherical symmetry. Theorem 1 provides a
complete characterization of this inequality. In particular,
this result uncovers many important properties of this
inequality, like the gap factor 2 between a body and a black
hole. The natural question is, how do we generalize this
theorem to the nonspherically symmetric case? As we point
out in the Introduction, one of the main difficulties in
studying this problem is the definition of the size R for
general spacetimes. A naive generalization would be to take
the area of the boundary of the body. However, there exist
explicit counterexamples to the inequality using this mea-
sure of size [25]. Moreover, it is unlikely that a definition of
size that takes into account only properties of the boundary
willwork in thegeneral case. In fact, the size definitions used
in [5] and [7] depend on the interior of the body. However,
these definitions do not reduce to the area in the spherically
symmetric case. Hence, they will not provide sharp results,
like the rigidity or the gap factor proved in Theorem 1.
A new definition of size was presented in [8]. It is based

on the inverse mean curvature flow. This definition reduces
to the area radius in spherical symmetry and also depends
on the interior of the body. How to generalize Theorem 1
using this definition of size is a relevant open problem.
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APPENDIX: SPHERICALLY SYMMETRIC
INITIAL DATA FOR THE

EINSTEIN-MAXWELL EQUATIONS

Let M be a four-dimensional manifold with metric gμν
[with signature ð−þþþÞ] and Levi-Civita connection ∇μ.
In the following, Greek indices μ; ν � � � are always four
dimensional.
Consider Einstein equations with energy momentum

tensor Tμν,

Gμν ¼ 8πTμν; ðA1Þ
where Gμν is the Einstein tensor of the metric gμν. The
dominant energy condition for Tμν is given by

Tμνvμwν ≥ 0 ðA2Þ
for all future-directed causal vectors vμ and wν.
It will be useful to decompose the matter fields Tμν into

the electromagnetic part and the nonelectromagnetic part,

Tμν ¼ TEM
μν þ TM

μν; ðA3Þ

where TEM
μν is the electromagnetic energy momentum

tensor given by

TEM
μν ¼ 1

4π

�
FμλFν

λ −
1

4
gμνFλγFλγ

�
; ðA4Þ

and Fμν is the (antisymmetric) electromagnetic field tensor
that satisfies the Maxwell equations

∇μFμν ¼ −4πJ ν; ðA5Þ

∇½μFνα� ¼ 0; ðA6Þ

where J ν is the electromagnetic current.
Initial conditions for Einstein equations are characterized

by the initial data set given by ðΣ; hij; Kij; μ; jiÞ, where Σ is
a connected three-dimensional manifold, hij a (positive
definite) Riemannian metric, Kij a symmetric tensor field,
μ a scalar field, and ji a vector field on Σ, such that the
constraint equations

DjKij −DiK ¼ −8πji; ðA7Þ

R − KijKij þ K2 ¼ 16πμ ðA8Þ

are satisfied on Σ. Here, D and R are the Levi-Civita
connection and the scalar curvature associated with hij, and
K ¼ Kijhij. Latin indices i; k;… are three dimensional,
and they are raised and lowered with the metric hij and its
inverse hij. For a general introduction to this subject, see,
for example, review article [26] and the references
therein.
If we think of the initial data as a spacelike surface in the

spacetime, with unit timelike normal tμ, then the matter
fields μ and ji are given in terms of the energy momentum
tensor Tμν by

μ ¼ Tμνtμtν; jν ¼ Tμνtν: ðA9Þ

The dominant energy condition (A2) implies

μ2 ≥ jiji: ðA10Þ

The decomposition (A3) of the matter fields translates to

μ ¼ μEM þ μM; ji ¼ jiEM þ jiM; ðA11Þ

where we have defined

μEM ¼ 1

4π
ðEiEi þ BiBiÞ; jiEM ¼ ϵijkEjBk; ðA12Þ

where ϵilm is the volume element of hij, and the electric
field E and the magnetic field B are given by
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Eμ ¼ Fμνtν; Bμ ¼ −�Fμνtν; ðA13Þ

where �Fμν denotes the dual of Fμν defined with respect to
the volume element ϵμνλγ of the metric gμν by the standard
formula

�Fμν ¼
1

2
Fαβϵαβμν: ðA14Þ

The electric and magnetic fields satisfy the Maxwell
constraint equations

DiEi ¼ 4πρ; DiBi ¼ 0; ðA15Þ

where ρ is the electric charge density. The relation between
ρ and the spacetime electromagnetic current J μ is given
by ρ ¼ J μtμ.
The initial data model an isolated system if the fields are

weak far away from sources. This physical idea is captured
in the following definition of asymptotically flat initial
data set. In this article we assume that the manifold Σ is R3,
and hence the definition simplifies slightly. Consider
Cartesian coordinates xi, with their associated Euclidean
radius r ¼ ðP3

i¼1ðxiÞ2Þ1=2, and let δij be the Euclidean
metric components with respect to xi. The initial data
set ðΣ; hij; Kij; μ; jiÞ is called asymptotically flat if the
metric hij and the tensor Kij satisfy the following falloff
conditions:

hij ¼ δij þ γij; Kij ¼ Oðr−2Þ; ðA16Þ

where γij ¼ Oðr−1Þ, ∂kγij ¼ Oðr−2Þ, ∂l∂kγij ¼ Oðr−3Þ,
and ∂kKij ¼ Oðr−3Þ. These conditions are written in terms
of Cartesian coordinates xi. Here, ∂i denotes partial
derivatives with respect to these coordinates.
We will assume that the initial data set has spherical

symmetry. The ξi is one of the Killing vectors that
generates the group SOð3Þ, so we say that the initial data
set is spherically symmetric if

Lξhij ¼ LξKij ¼ Lξμ ¼ Lξji ¼ 0; ðA17Þ

for all generators ξ of SOð3Þ, where L denotes the Lie
derivative. Note that we are also imposing spherical
symmetry on the sources. We also impose this condition
on the electromagnetic field:

LξEi ¼ LξBi ¼ Lξρ ¼ LξjiEM ¼ 0: ðA18Þ

There are several useful coordinates to describe spheri-
cally symmetric metrics. In this article we will use the
geodesic coordinates given by

h ¼ dl2 þ r2ðlÞðdθ2 þ sin2θdϕ2Þ; ðA19Þ

where l is the proper radial distance to the center and rðlÞ is
the areal radius. The function rðlÞ is assumed to be smooth
for 0 ≤ l < ∞. Regularity at the center implies the follow-
ing conditions for rðlÞ:

rð0Þ ¼ 0; r0ð0Þ ¼ 1; ðA20Þ

where the prime denotes the derivative with respect to l.
Asymptotically flat condition (A16) implies that

lim
l→∞

r0 ¼ 1: ðA21Þ

The scalar curvature of metric (A19) is given by

R ¼ −
2

r2
ðr02 þ 2rr00 − 1Þ: ðA22Þ

Let ni denote the outwards unit normal vector to the
spheres centered at the origin; that is, n ¼ ∂=∂l. The
general form of the extrinsic curvature in spherical sym-
metric is given by

Kij ¼ ninjKl þ ðgij − ninjÞKr; ðA23Þ

where Kl and Kr are two functions of l. Asymptotically flat
condition (A16) implies that

lim
l→∞

rKr ¼ 0: ðA24Þ

Using (A22) and (A23), we can write the constraint
equations (A7) and (A8) in spherical symmetry in the
following form:

KrðKr þ 2KlÞ −
1

r2
ðr02 þ 2rr00 − 1Þ ¼ 8πμ; ðA25Þ

K0
r þ

r0

r
ðKr − KlÞ ¼ 4πj; ðA26Þ

where j is the radial component of the current density
j ¼ jini, which is the only nontrivial component due to
the spherical symmetry. The dominant energy condition is
given by

μ ≥ jjj: ðA27Þ

Let E ¼ Eini and B ¼ Bini. Then, Eq. (A15) is given by

1

r2
ðEr2Þ0 ¼ 4πρ;

1

r2
ðBr2Þ0 ¼ 0; ðA28Þ

where ρ is the electric charge density. The energy density μ
is given by
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μ ¼ μM þ 1

8π
ðE2 þ B2Þ: ðA29Þ

Note that since Bi and Ei are radial, jiEM ¼ 0 and hence the
current density ji has no electromagnetic contribution in
spherical symmetry. We say that the data is in electro-
vacuum if μM ¼ 0 and j ¼ 0.
The electric charge contained in B is given by

Q ¼ 4π

Z
l0

0

ρr2dl: ðA30Þ

Using the Gauss theorem and Eq. (A28), we obtain that the
charge can also be written as

Q ¼ Er2: ðA31Þ

Finally, the outgoing future and past null expansions are
given by

θþ ¼ 2

r
ðr0 þ KrrÞ; θ− ¼ 2

r
ðr0 − KrrÞ: ðA32Þ
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