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Highlights 

 Theoretical achievements to understand systems at the nanoscale are discussed. 

 Metal electrodeposition on nanoparticles may yield peculiar metastable states   

 Non-noble metals  on carbonaceous nanostructures  may catalyze hydrogen evolution  

 Doped carbon nanostructures may catalyze the oxygen reduction reaction. 
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Since their early times, by the 50s, 

computational software and hardware 

have been growing in importance, to 

become today one of the key tools for 

the development and generation of 

knowledge. Increased computing power 

has radically transformed the way we 

make nowadays research. Today, it is 

possible to perform complex 

computational experiments with high 

quality and accuracy for model systems 

that are similar to those studied 

experimentally. This starts to be reality 

both considering sizes and timescales, 

and in many cases this is strictly true at 

the nanoscale. The global trend shows a 

significant increase in the 

interrelationship between groups of 

theoretical and experimental research. 

Addressing the problem from a 

combined perspective (theory, 

simulations and experiments) is 

becoming a rule in high impact 

publications and although a lot is still to 

be done, this synergy shows huge 

advantages. This is so because this new 

perspective allows greater deepening in 

the understanding of the basic aspects of 

the systems at the atomic or molecular 

level. 

A comprehensive review on computer 

simulations applied to underpotential 

deposition (UPD) at the nanoscale, of 

interest for materials scientists, has been 

presented very recently [1**]. 

Here, we discuss some challenging 

theoretical and computational 

achievements in systems of 

electrochemical interest at the 
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nanoscale, providing a close correlation 

with experiments. 

 

1. Challenging Theoretical Models for 

Nano-electrodeposition 

The most important concept to 

understand the growth of heterogeneous 

systems is surface free energy, and 

probably the most widespread model 

used to compute such properties is the 

classical nucleation theory (CNT). 

Nowadays, this concept is applied to the 

design of shape controlled nanoparticles 

(NPs) on the basis of kinetic control of 

the reaction conditions, something that 

was originally proposed by LaMer in 

the 50s. 

 

Figure 1: Scheme of the excess free energy as a 

function of the number of atoms for 

heterogeneous electrodeposition in a 

nanosystem when the interaction 

substrate/adsorbate is larger than that between 

depositing atoms. A minimum appears in the 

free energy landscape. This minimum will 

subsist at zero or slightly positive 

overpotentials, defining a global extremum. This 

minimum could also remain for slightly negative 

overpotentials, defining a metastable state. 

Reprinted with permission of Reference [3]. 

 

CNT was not developed for the 

electrochemical context, thereby effects 

as the equilibrium with charged species, 

ligands, solvent, etc. were not included 

in it [ 2 ]. A challenging picture of 

electrodeposition, based on 

nanothermodynamics, was presented in 

References [ 3 **, 4 ]. Figure 1 shows 

qualitatively this new approach. The 

previous picture has allowed to 

rationalize selective growth of facets 

[5,6], vanishing of UPD for small NPs 

[4,7*,8*,9 ,10*,11 ], the relevance of 

anions or ligands for electrodeposition 

[ 12 , 13 *, 14 ], and has been used to 

analyze the first stages of Li adsorption 

on defective graphene [15]. 

 

2. Advanced Computer Simulations 

applied to fundamental 

electrochemistry 

The description of the interactions 

between particles is the heart of 

computer simulations. In the present 

context, the description of charged 
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species is very important. This is done 

through two methods: density functional 

theory (DFT) calculations or 

semiempirical potentials based on the 

theory of bond order. 

 

2.1. Density Functional Theory 

DFT is one of the most frequently used 

computational tools in electrochemistry 

[1,16,17]. DFT energy calculations have 

typically an uncertainty of 0.3 eV, 

which is an order of magnitude larger 

than thermal energy at room 

temperature. Thereby, a further 

comparison with experimental data is 

imperative as discussed by Exner et al 

[18]. 

A methodic DFT-work analyzing the 

structure and properties of a complex 

electrochemical system was performed 

by Escudero-Escribano et al [19*,20]. 

Non-covalent interactions were found to 

be responsible for the occurrence of 

honeycomb structures observed in STM 

images (see Figure 2). 

 

 

 

Figure 2: STM-image and the DFT-optimized 

model used to understand the nature of non-

covalent interactions leading to honeycomb 

structures. Modified with permission of 

Reference [19]. 

 

The interaction of ligands and/or 

solvents molecules with nanostructures 

is an important topic in 

electrodeposition. A meaningful 

contribution on this topic was made by 

Carino et al [21,22*]. The calculated 

binding energies were found to 

correspond well with the peaks 

observed in the CVs of Cu UPD on Pt. 

DFT-based Kinetic Monte Carlo (KMC) 

has gained popularity because 

adsorption energies and activation 

barriers are accessible via DFT 

calculations [16,17, 23 ]. KMC is a 

stochastic method that directly 

incorporates reaction mechanisms. It 

allows to predict experimental 

quantities such as rates of product 
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formation, reaction orders, reaction 

paths and evolution of the system on the 

experimental time-scale. It also allows 

access to observables that are difficult 

to obtain from experiments, such as the 

instantaneous surface concentrations of 

different species. Many of these results 

have been recently compiled in 

Reference [1]. New advances have 

extended this methodology to include 

atom exchange [24,25] or larger jumps 

[ 26 ]. This innovation has allowed to 

analyze different categories of 

deposition systems, such as 

homoepitaxy, heteroepitaxy, multi-

layer, decoration of step edges, and 

confined regions [1, 25-27]. 

DFT-based KMC is being used to 

model current/voltage curves 

experimentally observed, but special 

attention must be paid to the selection 

of the model and a further comparison 

with experimental data is imperative 

[ 28 ]. Furthermore, different DFT-

parameters sets lead to substantial 

differences either in the overall kinetics 

or in the surface configuration. 

Transport phenomena may also be 

analyzed using KMC. This was for 

example made in a recent work by 

Blanquer et al [ 29 ]. These authors 

presented a new application of KMC in 

three dimensions, in order to explain the 

increase in capacity observed for 

lithium oxide batteries. It was found 

that improvement of the mobility of the 

species, dilution or increase of Li
+
 

diffusion coefficient should lead to 

greater and more effective discharge. 

These predictions were confirmed by 

experiments. 

 

2.2. Semi-empirical Potentials 

Advances on empirical potentials are 

based on the concept of bond order. One 

of the advantages of their use is the 

ability to emulate systems of more than 

10
6
 atoms on time scales of the order of 

40 ns [30]. These heuristic potentials 

have become a concrete alternative to 

simulate nano-electrochemical complex 

environments. They have allowed to 

simulate relevant characteristics of the 

electrochemical environment: for 

example simulations show that in 

aqueous media, oriented nanocrystals 

should grow yielding single crystal 

forms [ 31 ]. Recent advances are the 

inclusion in the growth process of high 

electric fields [32] and the possibility of 

simulating complex chemical reactions 

at high temperatures [33,34,35]. 
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3. Work related to energy generation 

and storage 

 

3.1. First principles modeling of 

electrocalytic reactions 

In recent times, the use of renewable 

energy resources as well as more 

efficient energy storage systems have 

been favorite topics on the agenda of 

most influential governments and 

international organizations. A 

sustainable energy system is urgently 

required by the modern society due to 

issues like global warming effects, 

fluctuating oil price, and contamination 

produced by fossil fuel combustion. 

This situation has led, within the area of 

scientific research, to the quest for 

improved electrochemical storage 

systems that can safely store energy 

from sustainable sources, such as wind 

and solar power, and also provide the 

energy needed, for example, for 

transportation and residential uses. 

Hydrogen fuel cells are one of the 

devices foreseen to fit into these needs, 

and two electrocatalytic reactions are of 

primarily importance for these devices. 

One of them is the Hydrogen Evolution 

Reaction (HER), which, although it is 

not involved in the fuel cell, it is 

required to provide its fuel: hydrogen. 

The other one is the reaction limiting 

the performance of hydrogen-air fuel 

cells: the Oxygen Reduction Reaction 

(ORR). We revise the newest relevant 

theoretical results for these two 

problems in the scope of the present 

article. 

 

3.1.1. Hydrogen Evolution Reaction 

The best current catalysts for this 

reaction are of high-cost due the fact 

that they are based on Pt. Thus, it is 

urgent to employ low-cost and earth-

abundant materials to replace them and 

make this technology more economical. 

Unfortunately, very abundant 3d 

transition metals (like Fe) are not stable 

in acidic medium since they dissolve. 

Recent work has been devoted to 

develop metallic nanostructures (Fe, Co, 

FeCo, CoNi alloys) covered by 

carbonaceous shells doped with 

nitrogen that protect them from 

corrosion [36,37**]. DFT calculations 

have been decisive to understand the 

way in which these catalysts operate. 

The three elementary steps for the HER 

are: 

 

**H e H                 (1) 
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*

2H e H H                 (2) 

*

22H H              (3) 

 

where * denotes an active site on the 

catalyst. 

The Tafel slopes obtained with the 

previous metal/C nanostructures 

indicated that the HER for these 

compounds occurred by the Volmer-

Heyrovsky mechanism(1)-(2). The 

application of DFT calculations to this 

problem was manifold: 

a) Calculation of the adsorption free 

energy of hydrogen. This is a descriptor 

of the HER [38]. Either very large or 

very low values showed to be 

detrimental. 

b) Calculation of free energy along the 

reaction coordinate. The results also 

supported the Volmer–Heyrovsky 

mechanism to be operative here. 

c) Analysis of the electrostatic potential. 

 

 

Figure 3: a) Schematic illustration of a CoNi 

alloy encapsulated in three-layer graphene. b) 

Change in the adsorption free energy of 

hydrogen. 
*( )G H  (red line) and electronic 

potential (blue line) as a function of the number 

of graphene layers, where

(without metal)G G    (with metal)G . 

c) Redistribution of the electron densities after 

the CoNi clusters have covered by one to three 

layers of graphene. The red and blue regions 

are regions of increased and decreased electron 

density, respectively. Reprinted with permission 

of Reference [36]. 

 

d) Analysis of differential electronic 

density plots. These results and the 

previous ones showed that stabilization 

of the *H  species should originate from 

the increase in the electron density on 

the graphene shells near the metal 

clusters. 

Figure 3 shows the model of metal core 

covered by a graphitic layer and results 

for the free energy of adsorption, 
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electronic potential and differential 

electronic density plots for different 

numbers of graphene layers covering 

the metal core. DFT calculations have 

also been applied to understand related 

systems, like the HER on MoS2 doped
 
 

with metal atoms [ 39 *], on different 

nanostructures of MoS2 [ 40 ] and on 

iron-nickel sulfide (INS) [ 41 ]. In the 

latter case, the higher activity of the INS 

nanosheets with respect to pristine NiS 

nanosheets in acid solutions was 

attributed to the lower energy barrier for 

H   adsorption and the higher 

exothermicity for hydrogen formation. 

 

3.1.2. Oxygen Reduction Reaction 

Similarly to the case of the HER, Pt 

based catalyst have dominated the 

scenery of the materials used for the 

ORR [42]. In acidic solutions, the ORR 

may proceed over two different 

processes: 

 

2 24 4 =  2O H e H O                (4) 

2 2 22 2 =  O H e H O                (5) 

 

where the second process is unwanted 

in energy generation processes. In the 

case of the ORR, the d-band center of 

the metal and the free binding energy of 

oxygen are the favorite descriptors used 

to analyze the activity of catalysts [43]. 

The potential of this approach in 

combination with the analysis of 

experimental data has been shown 

recently to analyze the ORR and HER 

on Pt catalysts supported by transition 

metal carbides [44]. Sabatier principle 

becomes manifest in so-called typical 

volcano plots, where some property 

representing the catalytic activity (i.e. 

Exchange current density) is plotted as a 

function of the binding energy of a 

relevant adsorbed species. 

A maximum is found at intermediate 

binding energies for these reactive 

intermediates, which serves to screen 

for other good candidates fitting the 

binding energy under consideration. 

As in the case of the HER, recent effort 

is devoted to develop Pt-free catalyst 

that make the use of catalysts 

economically feasible. A breakthrough 

in this situation aided by the DFT study 

of the mechanisms of the four-electron 

pathway on nitrogen doped graphene 

can be found in the work of Zhang et al 

[45*]. A similar situation was shown by 

Yang et al [46] for boron-doped carbon 
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nanotubes (NT). In this case, the 

positively charged boron atom was 

found to be favorable to capture of the 

oxygen molecule, which is slightly 

negatively charged upon approaching 

the NT. Recent work in the previous 

direction was undertaken to rationalize 

the ORR on a series of graphenes doped 

with nonmetal elements: nitrogen, 

boron, oxygen, sulfur and phosphorus 

[ 47 **]. DFT calculations were 

performed to predict exchange currents 

0

theoryj  and the adsorption free energies 

*( )G OOH of the intermediate 
*OOH , 

which is formed upon 2O  adsorption 

and dissociates subsequently to yield 

*O . These two quantities were 

predicted to follow a volcano-shaped 

plot (red line in Figure 4), which 

correlated very well with the same 

representation of the experimental 

exchange currents exp

0j , blue squares 

therein. In the same plot a hypothetical 

system with the maximum catalytic 

activity is denoted with X-G and 

marked with a full square. This would 

correspond to a system with a 

*( )G OOH  close to the volcano center, 

presenting an activity 5 times higher 

than that of a Pt/C catalyst. The authors 

proposed that such an X-Graphene 

should be sought by doping with 

multiple elements, introducing 

structural defects or any possible 

combination of these effects. 

 

 

Figure 4: Volcano plots between 0

theoryj  and 

*( )G OOH  as calculated in Reference [47]. 

Blue hollow squares are experimental values of 

exp

0j  from Tafel plots and DFT derived 

*( )G OOH  for each doped graphene catalyst. 

The 0j  experimental value for Pt is shown by 

the blue dashed line. 

 

Very recent work based on multi-scale 

modeling of the ORR must be 

highlighted as an appealing new 

approach to this problem[48*]. 
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