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A 1D TFM numerical simulation of near horizontal stratified two-phase flow is performed where the TFM,
including surface tension and viscous stresses, is simplified to a two-equation model using the fixed-flux
approximation. As the angle of inclination of the channel increases so does the driving body force, so the
flow becomes KH unstable, and waves grow and develop nonlinearities. It is shown that these waves
grow until they reach a limit cycle due to viscous dissipation at wave fronts. Upon further inclination
of the channel, chaos is observed. The appearance of chaos in a 1D TFM implies a nonlinear process that
transfers energy intermittently from long wavelengths where energy is produced to short wavelengths
where energy is dissipated by viscosity, so that an averaged energy equilibrium in frequency space is
attained. This is comparable to the well-known turbulent stability mechanism of the multi-
dimensional Navier–Stokes equations, i.e., chaos implies Lyapunov stability, but in this case it is strictly
a two-phase phenomenon.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that the one-dimensional two-fluid model (1D
TFM) may be rendered well-posed once appropriate short wave-
length physics is incorporated. For example the surface tension
force makes the TFM well-posed for horizontal stratified flows
beyond the Kelvin–Helmholtz (KH) instability (Ramshaw and
Trapp, 1978). This is a proper physical solution to the linear stabil-
ity problem, but the finite exponential wave growth remains. How-
ever, the TFM is inherently non-linear, and little is known about its
non-linear stability. The purpose of this paper is to investigate the
Lyapunov stability of a 1D TFM beyond the KH criterion.

The state-of-the-art of the 1D TFM stability analysis remains
more or less where it was when the present generation of US
TFM nuclear reactor safety codes were written in the early seven-
ties, that is, within the realm of linear stability theory. Later
advances in the field of non-linear dynamics and chaos have not
transcended yet into the understanding of the stability of the TFM.

In the first place Whitham (1974) elaborated a set on non-linear
solutions to the two-equation shallow-water theory (SWT) consist-
ing of shocks and expansion waves and identified the kinematic
SWT instability. But SWT differs from TFM in one important
aspect: it does not include the dynamic KH instability. Beyond that,
Kreiss and Yström (2002) (KY) analysed a two-equation model that
is dynamically similar to the TFM beyond the KH instability. They
obtained shocks and expansion waves similar to SWT and observed
that the viscous force limits the growth of the waves. Furthermore,
Fullmer et al. (2014a) showed that the KY equations are chaotic.

Recently Lopez de Bertodano et al. (2013) derived the two-
equation fixed-flux model from the TFM that reduces exactly to
SWT for flow conditions below the KH instability, thus rendering
the TFM amenable to Whitham’s analyses. The fixed-flux model
is based on the fixed flux assumption, which allows local instabil-
ities like SWT and KH, but precludes global instabilities like flow
excursion and density waves. In this paper the fixed-flux model
is applied to perform a stability assessment of Thorpe’s experiment
(Thorpe 1969) beyond the initial wave growth period, including
linear analysis and nonlinear simulations, resulting in limit cycles
and chaos.
2. Fixed-flux two-equation model

The incompressible fixed-flux TFM of Lopez de Bertodano et al.
(2013) obtained from the full TFM of Fullmer et al. (2014b) and val-
idated with the experiment of Thorpe (1969) is given by:
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Nomenclature

c wave speed (m s�1)
C coefficient of void gradient term in momentum equa-

tion (m2 s�2)
C(r) number of points of a trajectory contained in hyper-

sphere of radius r
f friction factor
g acceleration due to gravity (m s�2)
H channel height (m)
j volumetric flux (m s�1)
k wave number (m�1)
L test section length (m)
r radius
rq density ratio
u velocity (m s�1)

Greek letters
a volume fraction
k wavelength (m)

l dynamic viscosity (Pa s)
m kinematic viscosity (m2 s�1)
q density (kg m�3)
r surface tension (N m�1)
h angle of channel inclination (rad)
x angular frequency (s�1)

Subscripts
1 heavier phase
2 lighter phase
i interfacial
q density ratio

Acronyms
KH Kelvin–Helmholtz
SWT shallow water theory
TFM two-fluid model
1D one dimensional
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is the void convection coefficient and the algebraic drag terms are
grouped as
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Finally, it can be shown that the combined viscous force, assum-
ing the viscosity is the same for both phases, is:
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Two more equations are needed for closure. The first is the void
fraction restriction

a1 þ a2 ¼ 1: ð6Þ
Secondly we consider the total flux to express the velocity of

one component in terms of the other. By combining the time
derivative of Eq. (6) with the sum of the phasic continuity equa-
tions one gets:

@

@t
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where j is the total volume flux.
Eq. (7) shows that, provided that the phase densities are con-

stant, j is spatially uniform, i.e., jðx; tÞ ¼ jðtÞ. For the present case
of Thorpe (1969), stagnated flux restriction applies, i.e., jðtÞ ¼ 0.
This key assumption greatly simplifies the TFM equations without
removing the local material instabilities.

If C is negative and surface tension is neglected, the
two-equation fixed-flux model in the limit rq ! 0 becomes the
well-known 1D SWT equations (Whitham 1974; Wallis 1969). Fur-
thermore C ¼ 0 leads to the long wavelength Kelvin–Helmholtz
criterion, e.g., see Eq. (2–147) of Ishii and Hibiki (2006),

ðu2 � u1Þ2 >
1� rq
rq

ð1� a1ÞgyH ð8Þ

If C is positive the equations represent the Kelvin–Helmholtz
unstable regime which is the case of the TFM, beyond the scope
of SWT, under study. We are now in a position to define the types
of waves and instabilities that will be analysed.

The dynamic wave speed, derived later, is given by c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi�a1C
p

and the corresponding instability condition is C > 0, associated
with the dynamic KH instability. On grounds of the analogy
between the TFM and SWT, it may be stated that the linear and
non-linear behaviour of the dynamically stable TFM (i.e., C < 0)
may be understood in terms of the many well-known results
derived in SWT. If C ¼ 0 and F ¼ 0 the system becomes the water
faucet model of Ransom (1984) which is of practical interest to
the verification of the TFM for nuclear reactor safety codes. The
case C > 0 corresponds to the dynamically unstable incompress-
ible TFM, and it is of unique interest to two-phase flow analysis
in general and reactor safety codes in particular, because it is ill-
posed when surface tension is not included. However, the nonlin-
ear behaviour of the well-posed case has not been explored beyond
the pioneering mathematical analyses of Kreiss and Yström (2002)
and Keyfitz et al. (2004).
2.1. Viscous term

Additional constitutive equations are required for the closure of
the wall and interfacial shear terms and the effective viscosities.
For the present calculations the values are f 1 ¼ f 2 ¼ 0:005; and
f i ¼ 0:014. More importantly, the effective viscosity needs to be
specified. Alas, a complete model for the turbulent viscosity is
not presently available. In its stead, a rough, order-of-magnitude
model is proposed here, which hopefully suffices for the numerical
simulations. Since the densities of the Thorpe experiment (1969)
are quite close, a first-order approximation is to neglect the



Table 1
Material properties of the Thorpe experiment.

Property Water Kerosene

qk (kg/m3) 1000 780
lk (Pa s) 0.001 0.0015
r12 (N/m) 0.04 –
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damping action of the interface and treat the two-fluid flow as a
single-phase temporal mixing layer. By assuming the mixing layer
is self-semilar (i.e., the space–time dependence can be collapsed
into a single dependent variable), the turbulent viscosity can be
derived analytically (Pope 2000),

mT ¼ 0:392S dðtÞDU; ð9Þ
where S is the spreading rate, dðtÞ is the mixing layer thickness and
DU is the absolute value of the velocity difference between the two
streams. Due to the self-similar assumption, Eq. (9) is only valid if
S � 1

U
dd
dt is a constant. A constant spreading rate has been verified

experimentally and via direct numerical simulation for single phase
flows with reported values ranging from S from 0.06 to 0.11 (Pope
2000). In the present case of the Thorpe experiment, the velocities
of both ‘‘streams” – and hence their difference – increase linearly
in time, so that Eq. (9) holds only if the mixing layer thickness
expands quadratically in time. A VOF-LES simulation of the experi-
ment of Thorpe performed previously by Fullmer et al. (2011) was
used to verify that this is approximately the case for S � 0.0137 to
0.0252. Here, we take the mean value of this range so that
S � 0.02. Finally, rather than using a time dependent mixing layer
thickness, the maximum value is taken, i.e., dðtÞ � H. This results
in the following very simple turbulent viscosity model, which is
used for all the numerical simulations,

mT ¼ 0:003Hju2 � u1j: ð10Þ
For the present case results mT ¼ 0:000025m2

s .
3. Thorpe experiment

The conditions and properties of the Thorpe experiment (1969)
for near horizontal stratified wavy flow, shown in Fig. 1, are used
for the linear and non-linear stability analyses that follow. The crit-
ical wavelength data for the inclination angle h ¼ 0:072 rad were
already used by Fullmer et al. (2014b) to compare with the linear
stability analysis. In the experiment, two immiscible liquids, water
and a kerosen-carbon-tetrachloride mixture, equally fill a rectan-
gular channel of dimensions 0.03 m tall, 0.1 m wide and 1.83 m
long. Since both ends of the channel are closed the flux is simply
j ¼ 0. The material properties are given in Table 1.Initially the
channel is at rest in the horizontal position allowing the fluids to
reach uniform stratified equilibrium. Then the channel is suddenly
tilted at a small specified angle developing a counter-current flow
as the denser water rushes down and pushes the lighter kerosene
up. For the case sinðhÞ ¼ 0:072 a series of photographs of the flow
viewed from the side were published. The dominant wavelength
Fig. 1. Thorpe experiment schematic (left). Experimental photographs (right) at 2.06 and
University Press.].
measured at the onset of wave formation is approximately
3.5 ± 1 cm which is similar to the prediction of the most dangere-
ous wavelength in Fig. 2.

4. Linear stability analysis

We consider the model with F ¼ 0 since we are interested in the
linear dynamics, which is not influenced by this term. Eqs. (1) and
(2) can be written as:
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The characteristics, given by the condition Det½B� kA� ¼ 0
describe the behaviour of the first order system, namely:

C < 0: c ¼ u1 �
ffiffiffiffiffiffiffiffiffiffiffijCja1

p
, two real roots, C ¼ 0: c ¼ u1, one real

root, C > 0: c ¼ u1 � i
ffiffiffiffiffiffiffiffiffiffiffijCja1

p
, two imaginary roots.

The first two cases are well-posed and well-understood. How-
ever the last case leads to difficulties and will be analysed in detail
using a dispersion analysis.

The dispersion relation extends the results of the characteristic
analysis to the full spectrum of wavelengths and it incorporates the
effects of viscosity and surface tension. The first step is to linearize
the two equation system using / ¼ /0 þ /0. Then a Fourier solu-

tion, /0 ¼ /̂0eiðkx�xtÞ, is inserted into the linearized equations, where
k andx are the wave number and the angular frequency. From lin-
ear theory, the condition necessary for a non-trivial solution is:

Det½�ixAþ ikBþ ðikÞ2Dþ ðikÞ3E0� ¼ 0 ð13Þ
2.35 s. [Photographs reprinted from Thorpe (1969) with permission from Cambridge



Fig. 2. Near horizontal wavy flow schematic.

Fig. 3. Dispersion relation for Thorpe experiment.
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4.1. Stable regime

The stable model (i.e., C 6 0) corresponds to gas velocities
below the KH limit. In the limit of infinitesimal wavelengths, i.e.,
k?1, the wave velocities are the characteristic speeds, which
are real and therefore the stable model is hyperbolic. Hyperbolicity
is a characteristic feature of well-posed linearly-stable wave prop-
agation models. Stable waves do not grow in time and only prop-
agate at the characteristic speed. The inviscid case without
surface tension becomes the well-known SWT in the limit rq ! 0
(Whitham, 1974).

While the linear stability characteristics are very simple, the
non-linear behaviour is not so simple and leads to material shocks
equivalent to those encountered in the Burgers’ equation. The dis-
persion relation for finite wavelengths retain this characteristic
behavior, but the effects of viscosity and surface tension make
the system dissipative (i.e., the wave amplitude decreases with
time) and dispersive (i.e., different wavelengths travel at different
speeds).
4.2. Unstable regime

The fixed-flux TFM departs from single-phase SWT once it turns
dynamically unstable, i.e., once Eq. (8) is satisfied. The dispersion
analyses including the effective viscosity given by Eq. (10), the
kinematic viscosity and surface tension, was performed with
Thorpe’sconditions, namely: H ¼ 0:03 m, a ¼ 0:5, u1 ¼ �u2 ¼
0:2 m=s, rq ¼ 0:78, m ¼ 0:000025 m2=s and rH=q1 ¼ 1:2�
10�6 m4=s2. The results are shown in Fig. 2. The first significant
outcome is the fast wave growth rate for all cases, which is brought
about by the KH instability.

The basic, or fundamental, 1D TFM dispersion relation is
obtained from the solution of Eq. (13) with e ¼ m ¼ 0 and r ¼ 0.
Beyond the KH limit this model is ill-posed, i.e., growth rates
increase unboundedly as the wavelength shrinks to zero. The zero
wavelength growth rate is infinite for any relative velocity except
for the trivial case of homogeneous flow, i.e., zero relative velocity.
This is the well-known ill-posed TFM (Lyczkowski et al., 1978).
Furthermore, when wall and interfacial friction are included, even
with unrealistically large coefficients values, they do not change
the ill-posed nature of the dynamic instability at the zero wave-
length. In turn, adding kinematic viscosity, m ¼ 0:000025 m2=s,
makes the model technically well-posed since the growth rate
becomes finite at zero wavelength. However the growth rate is still
maximum and very high there, i.e., xi ¼ a1C

m , which is similarly
unphysical (Arai 1980). While this model is not strictly ill-posed,
it is practically so.

On the other hand, Fig. 3 shows that surface tension makes the
model well-posed with the advantage that it is more realistic. The
cut-off wavelength corresponding to the surface tension of water-
kerosene, r ¼ 0:04 N=m, is approximately 20 mm. Furthermore the
most dangerous wavelength matches approximately the experi-
mental measurement of 35 mm. This confirms that, for Thorpe’s
experiment, the KH instability is indeed the appropriate mecha-
nism. The figure also shows that the effect of viscosity on the linear
stability is negligible compared to surface tension. Surface tension
regularization (Ramshaw and Trapp 1978) is the earliest published
demonstration that the TFM may be rendered well-posed for
unstable flow by including appropriate short wavelength physics.
Nevertheless, even when the model is well-posed, there is still a
strong exponential wave growth which presents challenges to
practical applications of the 1D TFM. In the next section a nonlin-
ear analysis is presented that overcomes this difficulty. It will be
shown that, while surface tension is the key mechanism of linear
stability, viscosity is the key mechanism of non-linear stability.
5. Numerical simulations

In this section the nonlinear behaviour of the TFM is performed
by numerical simulations. The 1D model of Eqs. (1)–(7) is solved
numerically with the second order numerical method proposed
by Fullmer et al. (2014a). The primary objective of the non-linear
analysis is to understand how a model that is linearly unstable is
nevertheless bounded in the long term. Barnea and Taitel (1994)
have shown that, in general, when the governing model is linearly
unstable, perturbations grow and cut-off and critical wavelengths
are generally consistent with linear theory. The typical initial
non-linear behavior is for waves to steepen into Burgers-like
shocks (Whitham 1974). Furthermore, Kreiss and Yström (2002)
have demonstrated that the waves stop growing because of the
interaction of viscosity and the material shocks. Here, we seek to
understand what happens as t ! 1.

Unfortunately, the time and space constraints of the Thorpe
experiment make it impossible to do such a calculation for that
particular test section. Therefore, in order to run a simulation for
a longer period of time, a problem is proposed to reproduce the
conditions in the center of the channel but in an infinite domain,
i.e., with periodic boundary conditions instead of the closed ends.
An angle of inclination greater than h ¼ 0:027 rad is required for
the KH critical velocity given by Eq. (8). The length of the compu-
tational domain is L ¼ 1 m. It was found that starting the simula-



Fig. 4. Color map of a(x,t) for h = 0.0276 (periodic). The crossing horizontal lines (red and black) indicate the position of the profiles depicted in top margin at times 4049 and
4478 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Color map of a(x,t) for h = 0.0277 (periodic). The crossing horizontal lines (red and black) indicate the position of the profiles depicted in top margin at times 4216 and
4385 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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tions from the kinematic condition, i.e., F ¼ 0 in Eq. (4), with an ini-
tial perturbation in the void fraction minimizes unnecessary tran-

sients. Then the initial condition is a1 ¼ 0:5þ 0:02e
x�x0
0:01ð Þ2 and the

velocity is set by the kinematic condition.
To keep the flows from being brought to rest under the shear

dissipation, a constant, uniform source must be added. In the phys-
ical case, the axial component of gravity acts in the same direction
for both fluids and if it were not for the closed ends, both fluids
would accelerate downward and reach larger phasic velocities than
in the countercurrent case. To keep the flow countercurrent, a hor-
izontal hydrostatic force (x-direction) is added to each phase that
is equal and opposite. The corresponding source term for Eq. (4)
is Fh ¼ ð1� rÞg sin h.
We present results for the narrow range of inclinations where
the flow turns from limit cycle to chaotic. Figs. 4 and 5 show the
maps of aðx; tÞ in color scale for h = 0.0276 and 0.0277. In both
cases the solution is periodic, which is revealed by the repetition
of the void-fraction profile (top margin plot) taken at 4049 and
4478 s in the first case (period �429 s) and at 4216 and 4385 s in
the second case (period �169 s). On the other hand, for h = 0.028,
Fig. 6, the map shows the rupture of the periodicity leading to ape-
riodic chaotic behavior where the regularity of the standing wave
is lost, i.e., uniform amplitudes, periods, propagation speeds, etc,
are no longer observable. This may also be seen the Fourier trans-
forms of the solutions for h = 0.0276 and 0.028, shown in Figs. 7
and 8 respectively. In the limit cycle right before chaos the discrete



Fig. 6. Color map of a(x,t) for h = 0.028 (aperiodic). The crossing horizontal lines (red and black) indicate the position of the profiles depicted in top margin at times 4044 and
4415 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Fourier transform of limit cycle, h = 0.0277.

Fig. 8. Fourier transform of chaos, h = 0.028.
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frequency components of the solution are clear, whereas once
chaos breaks out the spectrum becomes continuous.

The continuous spectrum of Fig. 8 is of particular interest
because it implies a new non-linear bounding mechanism. The
chaotic formation of steep wave fronts and expansion at the back
of the waves needs to be analyzed further, but it resembles 2D
turbulence in the sense that energy is transferred to short and long
wavelengths. What is different is that there is a net nonlinear
energy transport to short length scales, i.e., the wave fronts, where
it is dissipated by viscosity and, in this sense, it resembles 3D
turbulence.

Two standard non-linear stability tests were performed in addi-
tion to the Fourier spectrum to characterize the chaotic behavior at
h = 0.028. The first test is the calculation of the largest Lyapunov
exponent (xLLE) (Sprott 2003), which is the nonlinear counterpart
of the linear growth rate obtained from the dispersion analysis
shown in Fig. 3. More specifically, xLLE indicates the average rate
at which two nearby states converge to, or diverge from, one
another. For discretized time, xLLE can be assessed as:
xLLE ¼
Xt!1

t¼0

1
Dt

ln
dðtÞ
d0

ð14Þ

where d0 is a small initial separation between two trajectories
(solutions) and dðtÞ is the corresponding separation at a later time
t. A positive xLLE indicates that the solutions are diverging and that
the system is chaotic, and its magnitude approximates the rate at
which the predictability of the system is lost. Fig. 9 shows the abso-
lute value of the difference between a state evolving in the limit
cycle for h = 0.0277 and two evolutions starting close to the cycle.
The rate of convergence, i.e., the LLE, is �0.04 ± 0.01 s�1. Once the
trajectories merge in the limit cycle, the separation remains oscil-
lating around a constant value given by the shift in the direction
of the phase-space flow. Along that direction the Lyapunov expo-
nent is zero. On the other and, Fig. 10 shows the divergence of sev-
eral solutions for h = 0.028 with slightly perturbed initial conditions
compared to the unperturbed case. The corresponding estimation of
xLLE resulted 0.07 ± 0.01 s�1. This may be compared with the max-
imum linear growth rate from Fig. 3 and 18 s�1, which is two orders
of magnitude grater. Hence, the chaotic wavy solution is signifi-



Fig. 9. Absolute value of the difference between the limit cycle solution for
h = 0.0277 and two evolutions starting close to the cycle. jDaj is the L2 norm taken
over 16 fixed equidistant positions.

Fig. 10. Absolute value of the difference between three pairs of chaotic solutions
(h = 0.028) starting with slightly perturbed initial conditions for jDaj is the L2 norm
taken over 16 fixed equidistant positions.

Fig. 11. Number of points of a trajectory for for h = 0.028, C(r), contained in a dE-
dimensional ball of radius r. The slope of the midsection in logarithmic scale is the
fractal correlation dimension.

Fig. 12. Dependence of the fractal correlation dimension dF on the embedded
dimension dE (h = 0.028).
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cantly more stable than the smooth initial condition, which allows
the model to become bounded. This is the reason why linear anal-
ysis is misleading and nonlinear analysis is necessary to understand
that a Lyapunov stable TFM is imaginable.

Another important characteristic test of chaos is the fractal
dimension of the phase-space dynamics, which measures the
‘‘strangeness” of the attractor (Grassberger and Procaccia 1983;
Ruelle 1989; Manneville 2010). In the present case, the fractal cor-
relation dimension dc was used for its simplicity (Abarbanel 1996).
It is calculated by shrinking a dE-dimensional hypersphere of
radius r and counting the number of points inside the hypersphere,
C(r). As r tends to zero C(r) behaves as

CðrÞ / rdc ð15Þ
Therefore, on a logarithmic plot, the slope of C(r) versus r gives

the correlation dimension dc. The difficulty is that there are simul-
taneously two unknowns: the fractal dimension dc and the phase-
space dimension in which the fractal dimension should be calcu-
lated, called the embedded dimension, dE. In system dynamics each
dimension is associated with a state variable, like void fraction in
our case. Since the spatial coordinate is continuous, the dimension-
ality of our problem is actually infinite; but we are assuming that it
can be fairly represented by discretizing the space in N segments,
leaving a 2N dimension system (N for each state field, a and u).
However, it may not be necessary to use all 2N variables to capture
the dynamics of the problem. Therefore, the correlation dimension
is first calculated with an embedded dimension of one, which is
almost surely insufficient, and then repeated several times, each
time increasing the embedded dimension. At some point, the cor-
relation dimension will stop changing, giving both the fractal and
the minimum embedded dimension. Fig. 11 shows C(r) in logarith-
mic scale for dE from one to eight, taking the void fraction at
equidistant positions for h = 0.028. The successive slopes corre-
spond to dc , which are plotted on Fig. 12 as a function of dE. The
correlation dimension saturates at dc � 3.43 with a minimum
embedded dimension of dE = 6, which indicates that in principle
the dynamics of the system may be modeled using only six appro-
priately defined state variables. The embedded dimension is con-
sistent with previous studies performed using the Kreiss–Yström
two equation model (Fullmer et al. 2014a).
6. Conclusions

The fixed flux 1D TFM for horizontal or slightly inclined two-
phase flow has been used to dynamically simulate stratified wavy
flow and its transition from smooth flow. The model is based on
the full TFM of Fullmer et al. (2014b) previously validated with
the experimental data of Thorpe (1969).

It was shown in Fig. 3 that the model with surface tension is
well-posed and the linear stability analysis agrees well with the
data for the dominant wavelength. However, linear waves grow
exponentially and another mechanism is needed to stop their
growth, so the focus turns to nonlinear stability due to viscosity.
The path from limit cycles to chaos and the continuous spectrum
of the solution are strong indications that the 1D TFM is chaotic.
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Furthermore a positive Lyapunov coefficient and the fractal dimen-
sion have been obtained as quantitative evidence of chaos. For a
narrow range of parameters, it is shown that the dynamics of the
infinite domain problem are bounded by the attractor alone, inde-
pendent of physical limitations, i.e., transitions to regions of single-
phase flow which are locally stable. The present results offer the
first confirmation of computational 1D TFM chaos, beyond the pre-
liminary demonstrations of Fullmer et al. (2014b).

The chaotic solutions consisting of steep wave fronts and
expansion of the back of the waves imply that energy is transferred
to short and long wave scales with a net nonlinear transport to
short length scales where it is dissipated by viscosity. This is com-
parable to the well-known turbulent stability mechanism of the
multi-dimensional Navier–Stokes equations, i.e., chaos implies
Lyapunov stability, but in this case it is strictly a two-phase
phenomenon.

The current chaotic results still require experimental confirma-
tion beyond the experimental data of Thorpe.
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