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A B S T R A C T

In this paper we describe the characteristics and the applications of the multivariate methods for
spectroscopic and chromatographic techniques independent component analysis (ICA) and
two-dimensional correlation spectroscopy (2DCOS) focused to their use in environmental studies. In
our opinion, these methods are important because they allow to characterize environmental samples
with different aims and scopes from those generally obtained by means of more common multivariate
methods such as principal component analysis (PCA) and partial least squares (PLS). The new insights of
these methods in recent environmental studies are reviewed and debated.

ã 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In analytical chemistry, principal component analysis (PCA) and
partial least squares analysis (PLS) are multivariate statistic
techniques widely applied as methods for quantitative analysis
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and for the discrimination and differentiation of multivariate data
samples [1–3] by means of specific chemometric software [1,4,5].

As far as environmental studies concern, PCA has been applied
to study the distribution of hydrocarbons [6,7] and heavymetals in
marine sediments [8], to support the identification of baseline
levels of heavy metals in marine and terrestrial organisms [9–14],
to study the different driving force involved in the mechanisms of
organic matter degradation in East Siberian and Laptev seas [15]
and to determine physiological cell states in environmental water
quality control by FTIR spectroscopy [16].

With the same aim, PLS has been applied to support vibrational
spectroscopy in the assessment of environmental quality of soils
and sediments [17,18], to improve the analytical accuracy in the
determination of total carbohydrate contents in seawater [19] and
to support the simultaneous determination of ten polycyclic
aromatic hydrocarbons in natural water by fluorescence spectros-
copy [20].

Beingwell known andwidely applied, PCA and PLS applications
in environmental studies are practically unlimited and for this
reasonwe do not include the discussion of their uses in this review.
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Fig. 1. Example of ICA application bymeans of the MILCA algorithm to a FTIR spectral data set of samples of marine organic matter during the process of evolution (followed
for 21 days). The bottomplot reporting two spectra (i.e., two ICs) only shows that thewhole process of organicmatter aggregation is described by the formation of amino acids
(the blue spectrum) and a complex mixture of compounds (the pink spectrum) where polysaccharides proteins high polymerized are present [31]. (For interpretation of the
reference to color in this figure legend, the reader is referred to the web version of this article.)
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Here, we describe and review the applications in environmental
studies by means of spectroscopic and chromatographic techni-
ques of two less common multivariate techniques such as
independent component analysis (ICA) and two-dimensional
correlation spectroscopy (2DCOS) because they are scarcely
applied in environmental studies. In fact, with respect to PCA
and PLS, they are neither applied as quantitative nor as
discrimination methods for chemical analysis.

ICA identifies the real sources of the analytical signals
corresponding to well defined subsamples present in the data
set and do not describe abstract factors like PCA and PLS, which
remain basically methods for reducing the data dimension [21].
2DCOS allows to describe reactions and evolutionary mechanisms
of molecular systems submitted to external perturbations which
produce structural changes [22].

According to these characteristics, ICA and 2DCOS give new
tools and perspectives in environmental studies and in this review
these aspects are fully debated by means of the recent literature.

2. Discussion on the application of ICA and 2DCOS for
environmental studies

2.1. Pre-processing of analytical signals for the correct interpretation
of ICA and 2DCOS results

Like all the multivariate methods, ICA and 2DCOS require
appropriate pre-processing treatments for the correct interpreta-
tion of spectroscopic and chromatographic signals. In fact, pre-
processing (i.e., baseline correction, smoothing and standardiza-
tion) of analytical signals is necessary to support a correct
interpretation of spectra and chromatograms by enhancing the
signal to noise ratio and by improving spectral and chro-
matographic resolution. The discussion of these pre-processing
methods is out of the aim of this review, so we recommend some
papers as skill guides for the pre-processing of analytical signals
[23–25].

2.2. ICA theory

ICA belongs to the group of neural network methods [26],
aimed to identify the number of independent components (ICs, the
pure and latent sources of signals) present in unknown proportion
in the mixture of analytical signals. Basically, given the complex
matrixX consisting of t samples and n signals each, ICA can identify
the number of the significant j-ICs which determine

X ¼ a1IC1 þ a2IC2 þ :::::ajICj 1 � j � t (1)

It is important to underline two fundamental characteristics and
properties of ICA. The ICs are the latent and independent signals of
samples describing the original X matrix and they are restored

according to a blind process. Blind means that no one preliminary
information of these components is required for the decomposition
(i.e., deconvolution) of the signals in theXmatrix [21,26]. The blind
characteristics of ICA also differentiate it from other multivariate
methods such as PCA and PLS. PCA and PLS describe latent and
abstract factors which are linear combination of the original
variables belonging to the system (i.e., the X matrix) under
investigation. So PCA and PLS latent factors are able to discriminate
samples present in the X matrix but they do not describe any
existingphysical reality.Conversely, ICAdescribesand identifies the
real source signals corresponding to all the existing subsamples
present in thesystemunder investigation.Thesesubsamplesarethe
ICs which produce the final spectral or chromatographic plot of
overlapped signals [27]. Common ICA applications include sound
and image analysis studies mainly, however, chemists have been
also attracted by its powerful ability in the analysis of complex
chemical signals. Wang et al. [27] report the first review of ICA
applications for analytical chemistry by means of the several
existing ICA algorithms. Most of these ICA algorithms
(FastICA, JADE, MILCA) are freely available on the web [28–30].

Fig. 1 reports an example of ICA application to a FTIR
spectral data set of marine organic matter during the evolution
of their aggregation process (Fig.1, upper plot), while the other plot
(Fig. 1, bottom plot) shows the two independent (i.e., chemical)
components describing the whole characteristics of the process
[31]. The two spectra in the bottom plot are the two ICs (latent
subsamples) able to describe all the structural characteristics of
the fourteen spectra present in the upper plot of Fig. 1. Table 1
shows the list of ICA applications in environmental studies
reviewed in this paper.

2.2.1. Identification of the correct number of ICs
Like PCA and PLS, the decomposition of the X matrix by ICA

needs the correct identification of the significant ICs, so to separate
the ICs having well defined physical–chemical meanings from the
remaining ICs which consist of signal artefacts (i.e., noise) only. The
separation between significant and noisy ICs determines reliabili-
ty, stability and robustness of the ICA results [21,32]. Both in
FastICA and JADE algorithms, the X matrix is preliminary
submitted to a PCA treatment in order to obtain a general noise
reduction. This implies that the IC number is the same of the
components identified by PCA and consequently this ensures
the stability of the algorithm when the size of the samples in the
dataset is small compared to the data dimension [32].

Specific methods support the identification of the significant IC
number. The minimal value of the sum-square root of residues
between the original and the reconstructed data is a common tool
for ICs number identification, like in PCA and PLS [27,33]. The
Amari index value when lower than 0.05 is the evidence of a good
decomposition of the X matrix whereas values above 0.2
correspond to a poor and unsatisfactory ICA model [34]. According

Table 1
Applications of ICA in environmental studies.

Analytical technique Sample type Determined properties Data treatment Reference

FTIR Petroleum Petroleum sources JADE [36]
FTIR Petroleum Petroleum refinery sources JADE [37]
FTIR Marine mucilage Mucilage formation FastICA [38]
FTIR Organic matter Structural characteristics FastICA [39]
FTIR Organic matter Structural characteristics FastICA, JADE, MILCA [40]
FTIR Ostreopsis o., alga Spectral interferences correction FastICA [41]
UV–vis Seawater Anion determination MILCA [42]
UV–vis Natural water Metal determination MILCA [44]
GC Sediment PAHs FastICA [46]
GC Petroleum PAHs FastICA [47]
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to the Durbin–Watson criterion, the related index tends to 0 when
the identified ICs are noise free whereas it tends toward 2 when
one or more ICs consist of noise [35].

2.2.2. Application of ICA in environmental FTIR spectroscopic studies
The identification of the petroleum constituents and fractions

in commercial gasoline is important for quality control purposes
and for determining the fingerprinting of petroleum sources when
oil spills occur in terrestrial or in marine environments. The JADE
algorithm application to the FTIR spectral matrix of different
commercial gasoline performs the extraction of the spectral
components which characterize each gasoline or oil spill sample
allowing the recognition of the sources [36]. This study also shows
that ICA application for the identification of specific refinery
fractions outperforms the results obtained by means of PCA
applied to the same FTIRmatrix. In fact, the correlation coefficients
calculated between the derived ICs and the original spectra of the
constituents, are significantly higher than the respective ones
obtained from PCA. Furthermore, the same authors improved the
performances of this FTIR–ICA approach for the identification of
refinery fractions by applying techniques of spectral encoding as
alternative to the correlation coefficient as similarity tool [37].

Marine mucilages are anomalous size aggregates of marine
organic matter floating on sea surface and along the water column
which cause problems for fish and tourist activities; this
phenomena has an unpredicted recurrence in the Mediterranean
sea. As mucilages can be easily reproduced in laboratory by the
degradation of marine algae, the FTIR spectra of these organic
matter aggregates were collected and then examined by the
FastICA algorithm with the aim to identify the chemical mecha-
nisms leading to their formation [38]. ICA results showed that the
process of mucilage formation can be described by two ICs mainly.
One IC corresponds to the presence and formation of oligopeptides
and oligosaccharides coming from the degradation of higher
molecular weight compounds such as proteins and polysacchar-
ides. The second IC corresponds to the compounds arising from the
repolymerization of oligopeptides and oligosaccharides, leading to
higher polymerized compounds such as proteins and polysac-
charides, with in addition the development of supramolecular
structures involving their interactions with lipids. Due to these
results, it is possible to state that marine mucilage formation
depends on specific hydrological factors present in the marine
environment which are not strictly related to marine pollution
which remains the most diffuse opinion on the causes of this
phenomena.

Calace et al. [39] applied the FastICA algorithm to the
classification of a two hundred FTIR spectral data base of organic
matter samples extracted from lake, river and marine sediments.

ICA determined three ICs in the data set, linked to the proteins,
lipids and carbohydrates; these three ICs describe the chemical
reactions present in organic matter formation and aggregation.
This study also confirmed the importance of the supramolecular
interactions for the formation and the stabilization of the types of
organic matter aggregates [36,38].

The study of the complex mechanisms of organic matter
aggregation is also the aim for comparing the performances of the
three FastICA, JADE and MILCA algorithms [40]. Results showed
that MILCA outperforms FastICA and JADE, giving more resolved
and noiseless ICs, without the spectral ambiguities arising from the
presence of both positive and negative spectral peaks. This study
also reports the mathematic reasons explaining the best perform-
ances of theMILCA algorithmwith respect to the FastICA and JADE.

Ostreopsis ovata is a marine algae present in Italian seas which
can produce toxins that enter the food chain causing several
problems to the marine environment and human health [41].
Cultures of this alga, growth in batch reactor under different

hydrological conditions, were obtained and examined by FTIR
spectroscopy to test the physiological effects on this alga by the
hydrological conditions. However, if the adhesion of algal biofilms
on the wall of the batch reactor is not good, a spectral interference
from the bicarbonate present in seawatermakes hardly to compare
the spectral bands of samples growth in different conditions. The
application of FastICA to FTIR spectra allowed to separate the IC
bicarbonate from the IC of algal samples and then to perform the
correct (i.e., interference free) spectral comparison among the algal
samples of O. ovata [41].

2.2.3. Application of ICA in environmental UV–vis and fluorescence
spectroscopic studies

The UV absorption of seawater depends on the presence of
several anions such as bromide, sulphide, bicarbonate and nitrate,
producing strongly overlapped peaks between 200 and 250nm
range. In the monitoring activity of the marine environment, the
determination of these anions requires a specific analyticalmethod
for each anion. PCR, PLS and the MILCA and JADE algorithms were
tested and compared to identify the most reliable methods to
perform the simultaneous determination of the above ions by UV
spectroscopy [42]. MILCA method gave comparable results with
PLS for nitrate, bicarbonate and bromide determination and even
better in the case of sulphide determination, so that MILCA
outperformed PLS. Many reasons can explain these results. Like
PLS, MILCA is able to take into account the non linear UV spectral
absorption of seawater depending on the high amount of dissolved
anions; this peculiar ability is not present in PCR. Moreover, the
better performances of MILCAwith respect to PLS observed in this
study for sulphide determination depend reasonably by the
specific characteristics of the MILCA algorithm which works in
the first derivative space (derivatives of spectral curves with
respect to wavelength). This allows to correct some spectral
artefacts depending on strongly overlapped peaks and then to
improve spectral resolution [43].

Monakhova et al. [44] apply and compare several ICA
algorithms for the simultaneous UV–vis determination of seven
metals in different food, pharmaceutical and environmental
samples. ICA application gives comparable and in some specific
cases even better performances than the classical PCR and PLS
methods.

The simultaneous determination of several organic pollutants
such as polycyclic aromatic hydrocarbons by fluorescence spec-
troscopy, supported by multivariate calibration, is actually an
interesting alternative approach to HPLC methods due to the
possibility of saving time and costs of analysis [20]. In this field of
studies, Gao and Ren [45] apply the combination of ICA and Neural
Network Regression, obtaining remarkable improvements of the
analytical accuracy for pollutant determinations with respect to
the determinations performed by using PLS or neural network
regression only.

2.2.4. Application of ICA in environmental chromatographic studies
The FastICA algorithm has been applied for the estimation of

the biogenic and anthropogenic hydrocarbon sources in marine
sediments for a GC data set of seventy samples from four different
areas of Italian seas [46]. FastICA identified five ICs and bymeans of
the hydrocarbon markers observed in these ICs, it was possible to
estimate the hydrocarbon sources present in the fourmarine areas.
In addition, FastICA allowed to establish a direct compositional link
between one of the coastal areas considered in the study and one of
the identified IC.

Quantitative analysis of polycyclic aromatic hydrocarbons in
petroleum products by HPLC techniques is a topic of several
environmental studies. However, the analytical accuracy of these
determinations is often affected by the complex hydrocarbon
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[(Fig._2)TD$FIG]

Fig. 2. Example of synchronous (upper plot) and asynchronous (bottom plot) spectra of a sixteen polyethylene terephtalate sample data set coming from marine plastic
debris litter, collected along the coasts of Tyrrhenian sea [31]. Asynchronous spectra are very helpful to detect differences in the cristallinity and orientation of the polymeric
structures present as shown by the crosspeaks in the 700–1300 cm�1 range [72].
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composition of samples showing strongly overlapped peaks. Being
ICA a deconvolution technique, its application improves the
analytical accuracy of the determinations by enhancing the
chromatographic resolution of overlapped peaks [47,48].

2.3. Theory of 2DCOS

Two-dimensional correlation analysis is a family ofmultivariate
methods for investigating the dynamic evolution of a molecular
system submitted to an external factor and/or perturbation which
determines changes in its structure and composition [22]. This
technique has been originally developed for spectroscopic analysis
in the field of polymer and material sciences, however, due to its
mathematic fundamentals, the applications of 2DCOS to other
analytical techniques and to other fields of studies, including
environment are of potential interest [22].

2.3.1. Wavelength-wavelength 2DCOS
In 2DCOS, the X data matrix is constructed by sorting samples

according to a specific criteria which can be the time of sample
acquisition or the concentration of the perturbation agent [22].
Then synchronous (Synww), asynchronous (Asynww) and disrela-
tion (Dis) spectra of the molecular system are determined. Synww
spectra describe the structural changes occurring in the system
according to linear (i.e., in phase) relationships among the
variables. For spectra aligned as column vectors, Synww spectra
are determined according to

Synww ¼ X � XT

ðs� 1Þ (2)

where X is the spectral data matrix previously described, XT is its
transposed matrix and s is the number of samples in the matrix.

Asynww spectra describe the nonlinear (out of phase) relation-
ships among the variables of the molecular systems and are
determined according to

Asynww ¼ X� HXT

ðs� 1Þ (3)

where X, XT and s have been previously defined and H denotes the
Noda’s modification of the Hilbert transform matrix.

Dis spectra are determined according to

Dis ¼ ½VarðXÞ � VarðXTÞ � Synww2�0:5 (4)

where Var is the total variance of the X and XT matrices and
Synww2 is the quadratic Synww matrix. Dis spectra display all the
information occurring in the absence of correlations among the
variables, so describing the unrelated events occurring in the
systems under investigation.

2DCOS is often applied using one single spectroscopic
technique for the X, however, when we consider two different
spectroscopic techniques for the above equations (for instance
FTIR for X and FTNIR for XT), 2DCOS is termed two-dimensional
hetero-correlation spectroscopy (2DHCOS); it has the peculiar
advantage to exploit the complementary information present in
each spectroscopic technique [22].

Fig. 2 reports an example of the synchronous and asynchronous
FTIR 2DCOS spectra of a polyethylene terephthalate data set of
samples coming from marine macrolitter [31]. Table 2 shows the
list of the 2DCOS applications in environmental studies reviewed
in this paper.

Detailed supports for the interpretation of synchronous,
asynchronous and disrelation spectra are available [22,49]. In
addition, Pazderka and Kopeck [50] report simple MATLAB
routines for the determination of synchronous and asynchronous
2DCOS spectra.

2.3.2. Sample to sample 2DCOS
By means of some modifications of the synchronous and

asynchronous equations for thewavelength–wavelength 2DCOS, it
is also possible to determine the synchronous and asynchronous
2DCOS spectra in the so called sample to sample (ss) mode [22,51].

With respect to the wavelength–wavelength mode wich
describes relationships among variables, the sample to sample
mode describes linear and nonlinear relationships among samples.
The joint examination of spectral data by both wavelength–
wavelength and sample to sample modes specific insights into the
structure of complex molecular systems [51,52]. For analytical
signals aligned as column vectors, Synss spectra are determined
according to

Synss ¼ XT � X
ðn� 1Þ (5)

Table 2
Applications of 2DCOS in environmental studies. “ww” and “ss”meanwavelength–wavelength and sample–samplemode respectively. “FS”means fluorescence spectroscopy.

Analytical technique Sample type Determined properties Data treatment Reference

FTIR Dunaliella t., alga Pollutant effects ww 2DCOS [53]
FTIR Humic acids Structural characteristics ww 2DCOS [54]
F
TIR, NMR

Humic acids Structural characteristics 2DHCOS [55]

UV-VIS, FS Humic acids Structural characteristics ww 2DCOS [56]
FS Humic acids Structural characteristics ww 2DCOS [57]
FTIR Derived organic matter Sequential order of degradation ww 2DCOS [58]
FTIR, UV–vis Marine mucilage Structural characteristics 2DCOS, 2DHCOS [59]
FTIR, FTNIR Organic matter Browning development 2DHCOS [60]
FTIR Organic matter Organic matter degradation 2DCOS [61]
FTIR Organic matter Recalcitrant organic matter formation 2DCOS [62]
FTIR Clay mineral Xenobiotic absorption ww 2DCOS [63]
FTIR Caulerpa r., alga Phytoremediation ability ww 2DCOS [64]
UV–vis Natural water Calibration and variable selection ww 2DCOS [65]
FTIR Vicia faba roots Effects of essential oils ww 2DCOS, D2DCOS [68]
GC Hydrocarbons in sediments Estimation of similarity and source ss 2DCOS [45]
GC Jet fuel Estimation of similarity and classification ss 2DCOS [70]
GC Hydrocarbons in Antarctic cores Estimation of similarity ss 2DCOS [71]
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where X is the spectral data matrix previously described, XT is its
transposed matrix and n is the number of variables (i.e., wave-
lengths) in the sample spectra.

Asynss spectra describe the nonlinear (out of phase) relation-
ships among samples of themolecular systems and are determined
according to

Asynss ¼ XT � HX
ðn� 1Þ (6)

where X, XT and n have been previously defined and H is the Noda’s
modification of the Hilbert transform matrix.

2.3.3. Spectroscopic applications of 2DCOS
In the exposure of the marine microalga Dunaliella tertiolecta to

several organic and inorganic pollutants, 2DCOS applied to FTIR
spectra depicts all the structural changes arising from the
interaction between the organism and the pollutants [53]. In
addition, the FTIR–2DCOS asynchronous spectra describe the non
linear relationships existing among the concentration of the tested
pollutants and the inhibition growth effect on the microalga.

Spectroscopic applications of 2DCOS are present in the studies
concerning the structural characterization of fulvic and humic
acids from aquatic and terrestrial environments. 2DCOS FTIR
studies on fulvic and humic acids extracted frommarine sediments
reveal many interesting characteristics involving the roles played
by carbohydrates, proteins and lipids in themechanisms of organic
matter aggregation [54].

Hussain et al. [55] apply 2HDCOS by FTIR and 13C NMR
spectroscopy to investigate changes in the compositional and
structural characteristics of dissolved organic matter along an
estuarine transect submitted to different hydrologic conditions.
The 2DCOS maps reveal that each of the three main identified
components of organic matter consist of dynamic mixtures of
compounds that share similar backbone structures but have
significant differences in the functional groups present [55].

It is well known that fulvic and humic acids of the aquatic
environment are involved into oxidative degradation reactions by
microbial activity and solar irradiation and by binding reactions
with metals. Hur et al. [56] investigated the chemical transforma-
tion of fulvic and humic acids submitted to UV irradiation by
means of 2DCOS applied to UV–vis and synchronous fluorescence
spectroscopy. Their results showed that three types of bands
changed sequentially in the order of 290–400nm, 200–250nmand
250–290nm ranges respectively; this suggested that aromatic
chromophores in aminoacids and tannin-like structures were
preferentially oxidized generating non UV-absorbing compounds.
The same research team studied the changes of algal derived
organic matter in a microbial fuel cell by FTIR spectroscopy
supported by 2DCOS [57], determining the sequential order of
transformation reactions. This topic, obtained by means of the so-
called Noda’s rules [22], showed the sequential order proteins!
acidic functional groups!polysaccharides! amino acids!oli-
gopeptide/proteins.

Nakashima et al. [58] investigated the binding capacity of
humic acids by 2DCOS applied to fluorescence spectroscopy with
special emphasis to Ca2+ and Pb2+. Asynchronous spectra identified
two different binding species in humic acids and the sequential
order of the quenching perturbation of the two metals on the
structure of humic acids.

Conventional 2DCOS (by FTIR spectroscopy) and 2DHCOS (by
FTIR and UV–vis spectroscopy) were jointly applied to the spectra
of anomalous size aggregates of marine organic matter called
mucilage, giving a valuable support to the comprehension of the
mechanisms involved in their formation [59].

2DHCOS by FTIR and FTNIR spectroscopy has been applied to
elucidate potential mechanisms involved in the browning
observed in aggregates of organic matter formed under anoxic
conditions [60]. This study describes the importance of hydrogen
bond interactions among carbohydrates and proteins in the texture
of the aggregates, texture which also suggests that the color
characteristics of the aggregates can be related to the presence of
both Maillard and enzymatic browning reactions.

Li et al. [61] apply 2DCOS to the FTIR investigation of the organic
matter transformations along the section of core sediments from
the Lake Superior (USA). Synchronous spectra reveal that
carbohydrates and aliphatic esters are degraded significantly with
the increasing core depth causing their enrichment in biogenic
silica and inactive polysaccharides. Asynchronous spectra point
out that carbonyl groups of aliphatic esters and amide in proteins
are degraded faster than those present in carbohydrate and
aromatic compounds.

2DCOS FTIR spectroscopic studies are present in other fields of
environmental studies too. Harvey et al. [62] investigated the
mechanism for the development of surface charge and recalcitrant
organic matter in plant derived biochars.

Yan et al. [63] applied 2DCOS-FTIR spectroscopy to study the
absorption of the polar xenobiotic enrofloxacin on clay minerals
commonly present in soils. The electrostatic interaction between
dissolved organic matter and enrofloxacin is the predominant
force to describe its presence in sediments and in any case the role
played by H-donor-acceptor and p–p interactions is always
significant.

In a study concerning the phytoremediation ability of the
marine macro-alga Caulerpa racemosa for removing hydrocarbons
in seawater, 2DCOS FTIR disrelation spectra differentiate the
structural changes caused by the three hydrocarbons tested for the
phytoremediation tests [64].

2DCOS can support multivariate calibration methods for
reducing problems arising from data redundancy and high
computation time. Zhou et al. apply 2DCOS as variable selection
tool for UV spectroscopic calibration [65]. They select the
wavelength ranges where autopeaks of synchronous spectra are
placed because in the autopeak ranges the correlation is
maximized [22], then they use thewavelength ranges of autopeaks
only to perform calibration by PLS.

2DCOS can be also applied as tool for explaining the different
performances observed for PCR and PLS inmultivariate calibration.
In the study for the simultaneous determination of bromide,
bicarbonate, sulphate and nitrate in seawater samples by UV
spectroscopy, asynchronous spectra show the wavelength range
where non linear relationships among absorption and concen-
trations are present [42]. These non linear relationships explain the
best calibration performances of PLS which is able to take into
account the non linear relationships among absorptions and
concentrations, a property absent in PCR [66].

Recently, Noda [67] has proposed a further development of
2DCOS termed double two-dimensional correlation spectroscopy
(D2DCOS). By means of an accurate matrix manipulation it is
possible to have new maps of synchronous and asynchronous
spectra with a marked improvement of spectral resolution with
respect to conventional 2DCOS maps. Noda recommends the
application of D2DCOS in the case of hetero two-dimensional
correlation spectroscopy, however, D2DCOS showed to be helpful
even in omo-2DCOS. In fact, vegetal samples produce complex FTIR
spectra due to the simultaneous presence of polysaccharides,
proteins and lipids. In the investigation of the effects of some
essential oil mixtures on the secondary protein structure of Vicia
faba roots [68], asynchronous D2DCOS spectra are more resolved
than those observed by conventional 2DCOS, allowing to evidence
better the specific structural changes caused by each type of
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essential oil mixture tested in the study. These results are useful to
clarify the possible use of essential oils as alternative to pesticides
in agricultural practices.

2.3.4. Application of 2DCOS in chromatographic studies
The chromatograms of hydrocarbons from environmental

samples often show the presence of several peaks and due to
the lack of specific tools and criteria, the qualitative and
quantitative comparison of the hydrocarbon distributions can be
hardly performed [69]. 2DCOS in sample–sample mode is a valid
support for this topic. Wang et al. describe the so called two-
dimensional correlation coefficient mapping (2DMAP) as a
powerful tool for jet fuel classification in environmental analysis
[70]. Basically, 2DMAP consists of a 2DCOS sample–sample mode
analysis of chromatographic samples where a threshold value of
correlation coefficients, generally 0.95 is selected. Then for 2DMAP
results reported by means of a contour map, samples having
correlation higher than the threshold value are visualized whereas
samples with correlation lower than the threshold value are
hidden and not visualized. According to this simple approach of
similarity estimation, 2DMAP becomes an efficient screening
method for assessing the similarity and/or dissimilarity among
samples. The approach of 2DMAP has been further applied for the
comparison of hydrocarbon distributions in marine sediments
coming from different areas of the Italian coasts [45]. This study
showed that several biogenic, anthropogenic and petrogenic
sources can produce high qualitative and quantitative dissim-
ilarities even for samples coming from neighbouring sampling
sites. At last, in the study of the hydrocarbon distributions in two
Antarctic cores, disrelation 2DCOS evidenced the presence of
different anthropogenic, petrogenic and biogenic sources [71].

3. Conclusions

In this paper we reviewed the innovative applications of the ICA
and 2DCOS in environmental studies underlying the different
targets with respect to those obtained with the conventional PCA
and PLS techniques. Their use allows to obtain new relevant
information present in spectroscopic and chromatographic data
sets belonging to environmental studies.
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