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Self-assembly via branching morphologies in nematic liquid-crystal nanocomposites
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We demonstrate that the morphological diversity in liquid-crystal hybrid systems is much richer than previously
anticipated. More importantly, we reveal the existence of a dual mechanism for self-assembly of nanoparticles
via morphological instabilities at phase boundaries. Using numerical simulations, we study the growth of isolated
nematic droplets in an isotropic liquid crystal (LC) doped with nanoparticles (NPs) and provide insight into the
nature of microstructure evolution in LC hybrids. Our work expands the numerically accessible time and length
scales in these systems, capturing morphologies which develop under the competition of nonequilibrium elastic
interactions, diffusive instabilities mediated by NP transport, and the anisotropy of the nematic field. By mapping
nematic morphologies, we also propose a methodology for estimating various important LC material parameters

that are difficult to obtain experimentally.
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Self-assembly is an exciting process for patterning novel
microstructures to control material functionality in a wide class
of systems, ranging from quantum dots in semiconductors to
carbide orientation in composite ceramics. Mixtures of liquid
crystals (LCs) with nanoparticles (NPs) are an example of
nanocomposites that are both of fundamental interest and can
serve as a paradigm by which to better understand the process
of self-assembly in nanomaterials. Directing the assembly
of NPs into addressable arrangements can lead to materials
with high processability, self-healing properties, and reversible
control [1-3]. To date, self-assembly of NPs in these systems
have been addressed in two ways: trapping in defect cores,
and isotropic enrichment of NPs in micron-sized spherulitic
grain boundaries. We reveal a dual mechanism where defect
trapping coexists with anisotropic expulsion on the nanoscale.

The maximal elastic cost of NPs in LC is of order KR,
where R is the size of the particles and K ~ kT /d is the
magnitude of the elastic modulus, which depends on the size
d of the LC molecules and the local temperature 7. For
NPs R ~ d, entropic effects dominate and the particles act
as molecular impurities [2]. The nematic-isotropic transition
temperature decreases with the concentration of NPs and the
nematic phase is partially destabilized, separating through
a first-order phase transition into an isotropic phase with
increased NP concentration and a nematic phase with reduced
NP concentration. When coupled to the diffusive dynamics
of NPs, this transition can lead to morphological instabilities
of the phase boundary. Such instabilities have been reported
during directional growth of pure and doped LC systems [4-8].
They are triggered by a diffusive instability of the thermal field
or the impurities, respectively, which differ in their length and
time scales. Free growth of nematic seeds in pure LC has
been studied only up to limited length and time scales [9,10].
In contrast, free growth of nematic seeds in doped LC has
remained unexplored due to the challenges associated with
capturing the multiscale physics of this process. Curiously,
such diffusive instabilities have been studied for more than
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30 years in the context of crystal growth [11-19], being
fundamental to solidification processing and microstructure
evolution in metallic alloys.

Nematic textures in the presence of nanoparticles have been
explored using molecular dynamics and Monte Carlo [20,21],
as well as using continuum models of LCs that treat the NPs
as boundary conditions [22,23]. However, atomistic models
are unable to access experimentally relevant length scales, and
while continuum models can capture mesoscopic structures in
the nematic phase, they typically do not account for the entropy
of the NPs, which is required to represent phase separation
between particle rich and particle poor phases. This Rapid
Communication reports mesoscale simulations of a recent
multiphase theory developed to self-consistently couple the
LC and NPs interactions in the continuum limit. Using an
advanced adaptive mesh refinement algorithm, our simulations
access a large range of length scales, allowing us to predict and
map out an extended range of possible morphologies in LC-NP
mixtures.

A detailed account of the model can be found in
Refs. [24,25]. It represents a mixture of calamitic nematic
LC (rods) and NPs (hard spheres) of comparable size. The
LC can present orientational order and the NPs can present
supramolecular positional order. Consequently, four phases
can arise: isotropically dispersed particles in isotropic LC
(isotropic phase), isotropically dispersed particles in nematic
LC (nematic phase), ordered particles in isotropic LC (crys-
talline phase), and ordered particles in nematic LC (nematic-
crystalline phase). The state of the mixture is characterized
by the LC (NP) volume fraction ¢ (¢np = 1 — ¢), the degree
of positional ordering of NPs, o € [0,1], and the local LC
orientation, quantified by the eigenvectors of the traceless
symmetric 3 x 3 Q(7) tensor, each weighted by its corre-
sponding eigenvalue. The uniaxial order parameter S € [0,1]
characterizes the local predominance of a given direction and
is proportional to the leading eigenvalue. It vanishes in the
isotropic phase, where Q vanishes.
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The thermodynamics of the system is described by the
(homogeneous) free energy of the mixture fj = fiem + fmix +
Serys + fine. The nematic free energy fpem, derived from the
Maier-Saupe free energy, is an expansion in rotationally invari-
ant tensor products Q : Q and (Q - Q) : Q whose coefficients
depend nontrivially on temperature and composition [26].
It is a double well potential function of §, with minima
at S =0 and S # 0. The entropy of mixing fyix contains
the Flory-Huggins entropy of mixing, and a term derived
from the Carnahan-Starling equation of state for a fluid of
hard spheres that accounts for excluded-volume effects. The
crystalline free energy ferys is based on the mean-field model
of Matsuyama [27] and represents configurational entropy and
excluded volume effects. Finally, fi,; accounts for interactions
between LC and NPs. It consists of a modified regular solution
(Flory-Huggins) term for isotropic interactions, and an elastic-
surface term accounting for elastic distortions in the vicinity
of a particle. Following Ref. [25], we use values obtained
by fitting experimental data from a mixture of 4’-n-pentyl-
4-cyanobiphenyl (5CB) and gold NPs coated with a mixed
monolayer of short alkyl chains and n-dodecylcyanobiphenyl
(12CB), and obtain the phase diagram included in Fig. 1.
Although in Ref. [25] only the isotropic (I) and nematic (N)
parts of the phase diagram were calculated, we include the
crystalline (C) and nematic-crystalline (NC) phases.

The conserved (¢) and nonconserved (o and Q) order pa-
rameters evolve according to model C relaxational dissipative
dynamics of the Hohenberg and Halperin classification [28],
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FIG. 1. (Color online) Phase diagram, quenches explored, and
typical nematic morphologies (NP concentration maps). All envelope
radii are above 45 um. The dashed line marks the interface stability
limit. N, I, C, and NC denote the different phases. Ty; is the
nematic-to-isotropic transition temperature.
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TABLE 1. Material parameters, {x} = {0,¢,¢0Q,¢0,0 Q} and

{X} = {0, 0}.
Ly (J/m) Ly(/m) Ly (J/m) My (m’/s) Mix) (m*/s])
3.0x 1072 3.1 %107 3.0x 1072 107" 11.9

The gradient free-energy density f, is given by

L . L
&=4w®ww+§wawvm

+—(V )? + (V¢) + Loo(Vo)-(V-Q)

+Lyo(V)- (V Q)+ Lyo (Vo) - (Vo), “)

where L, and L, are the Landau constants coupling the
elastic response to local splay bend and twist. L3 is neglected,
implying equal bend and splay responses. The cost of forming
interfaces is weighted by Ly and L, while Lgg, Lo, and
Lo are coupling constants. The mobilities of ¢, o, and
Q are given by My, M,, and M, respectively. While the
values of L; and L, are well established, and My is in the
range (107'%-107'2) m’/(sJ), the others are not well known.
Following Ref. [25] we use the values shown in Table I.

The equations of motion are solved on a C++, finite
difference, adaptive mesh refinement (AMR) algorithm based
on that of Provatas et al. [29-31], which incorporates OPENMP
parallelization. The AMR approach scales CPU time and
RAM with the length [area in three dimensions (3D)] of
free interfaces, allowing an enormous scaleup in computa-
tional efficiency in phase field-type models of microstructure
evolution. Local refinement of the computational mesh is
determined by a robust error estimator that places a threshold
on each of the gradients |V¢| > 1072, |Vo| > 1072, and
|IV(Q : Q)| > 107*. Here, the physical simulation domain
comprises ten levels of adaption.

We explore a range of quenches (constant, uniform temper-
ature) and volume fractions, starting with a nematic seed in
an isotropic liquid, spatially uniform volume fraction, no crys-
talline order throughout, and far-field boundary conditions.
The Q tensor is initialized so that S is a two-dimensional
Gaussian with a standard deviation of ~20 nm whose peak
rises to the equilibrium value of S. The orientation in the seed is
in the x direction (the direction of the text). The computational
domain represents (100 wm)?.

Our simulations reveal a rich variety of morphologies as the
range explored spans across the absolute stability limit of the
phase boundary, i.e., the upper bound of the range of growth
speeds for which the phase boundary is unstable. Figure 1
shows typical morphologies obtained within the stability
regions in the phase diagram. Unlike classical dendritic
growth, growth anisotropy is not fixed by an underlying crystal
structure. It is due to the nematic orientation and is thus a
dynamic property coupled to the evolution of phase boundaries
and NPs transport.

Growth develops following two regimes (Fig. 2). Regime
I is dominated by the competition between orientational
elasticity in the bulk and at the interface, as in pure LC systems.
During growth, NPs are expelled from the nematic phase
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Regime II, Unstable

FIG. 2. (Color online) Schematic sequence of growth, character-
ized by two regimes. The latter can follow two growth morphologies.

and diffuse from the interface into the bulk of the isotropic
liquid. Once the interface grows above the capillary length, the
competition between rejection and diffusion of NPs can lead to
the Mullins-Sekerka instability [11,12], which then dominates
the interface shape dynamics in regime II. The bulk elasticity
becomes a stabilizing effect, while anchoring at the interface
provides surface tension anisotropy. Stable growth presents
a compact morphology with the orientational field following
closely the dynamics of pure LC nematic spherulitic growth,
except that defect cores are enriched with NPs, and their size
increases with NP concentration. Unstable growth presents
a morphology with four main branches, which may develop
secondary arms. Since the anisotropy is twofold, secondary
branches may form only in the two directions of fastest growth.

Figure 3 shows the evolution of the outer radius that
confines the nematic phase R for stable (unstable) growth
corresponding to ¢np = 0.25 and AT = (T — Tny)/ T =
—0.26(—0.08). The early stage (regime I) is characterized
by R - t, indicating that a volume driving force dominates
the growth process [32]. This agrees well with previous
two-dimensional (2D) droplet simulation results [33,34], and
experimental results [35] that report this linear relationship
for quench depths over 0.2 K. For compact morphologies
the growth exponent remains unity throughout, except for a
short transient period between regime I and II. For branching
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FIG. 3. (Color online) Left: Growth kinetics for stable (unstable)
growth corresponding to ¢np = 0.25 and AT = (T — Tv)/ T =
—0.26(—0.08). Right: Growth rates during regime I. Outlined
symbols mark cases that become unstable in regime II. The dashed
line estimates V*.
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morphologies in regime II, the growth exponent is close to
1/2, characteristic of diffusion limited growth.

The early stages of pure LC nematic spherulitic growth were
studied extensively by Wincure et al. [10,34]. The nematic
droplet quickly develops the geometry outlined in regime I
of Fig. 2. This geometry consists of a core with the initial
orientation and two pairs of distinct regions, one with the
initial orientation and the other with radial orientation. The
first pair minimizes the bulk (elastic) energy at the expense
of interfacial (elastic) energy, and the latter, the opposite. We
can gain further insight by minimizing the total energy (bulk
elasticity, surface tension, and “grain boundaries” between
nematic regions) with respect to the angle «. Assuming the
“grain boundaries” have an energy density of 0.5wyy, sin?(9),
where 6 is the angle between the orientation pairs, yields

(Wa R — wgpro) sin*(er) + (R — ro)wgp sin(2ar)

R
=K ln <—> ,
1o

where K|, = S2(2L, + L,) is the splay Frank elastic con-

stant (L3 = 0) and w, is the anchoring coefficient in the
Rapini-Popoular expression for surface tension y = yp +
0.5w, sin’*(¢), ¢ being the angle between the normal to the
(nematic-isotropic) interface and the local nematic orientation.
The Rapini-Popoular surface tension relates to the parameters
of our model as shown in Ref. [36]. For R > ry, apart from
the all-radial (outside the core) solution o = 0,

ngbR

tan(q) = —— £~
Weblro — waR

Regime II starts when R is of the order of the capillary length. A
larger concentration (quench) implies larger (smaller) capillary
length and larger (smaller) «, in agreement with our results.
Late stage branching morphologies are triggered by the
Mullins-Sekerka instability [11,12]. Sections of the interface
with high positive curvature (protruding into the isotropic
liquid) diffuse NPs more efficiently and speed up, while
interstitial regions and interfacial sections with negative
curvature become saturated in NPs and slow down, leading to
the branching morphologies we observe. The morphological
transition shown in Fig. 1 is the transition to absolute
stability [37—40], the upper bound of this instability. Theo-
retical arguments [11,41-44] set it where the diffusion length
becomes of the order of the capillary length, namely,

v DAT. 5
- F ’ ( )
where I is the Gibbs-Thomson coefficient. Equation (5) as-
sumes a diffusion controlled process with constant diffusivity
D, which is related to mobility through D = M, 021/ 8(])1311,,
where gradient energy contributions to mass flux have been
neglected. While 82 f;,/ 8¢§P generally depends on composi-
tion and temperature, the assumption of constant diffusivity
has been shown to be reasonable for our model [24,45]. The
temperature range between the nematic and liquidus lines
AT, is a function of the average volume fraction ¢I(\?I),. Its
functional form is estimated by fitting the nematic and liquidus
lines with polynomials. In the dilute limit, linear liquidus

020501-3



GUREVICH, SOULE, REY, REVEN, AND PROVATAS

FIG. 4. (Color online) Concentration ¢np, NP ordering (o), and
nematic orientation for ¢ = 0.25, AT = —0.08 (top left), pin =
0.10, AT = —0.02 (bottom left), and ¢\p = 0.25, AT = —0.26
(bottom right). Adaptive mesh for d)l(\?ll =0.25, AT = —0.08 (top
right).

and nematic lines of slopes m and m/k, respectively, yield
AT, = mp(1 — k)/ k.

The growth rates V = dR/dt during regime I, shown in
Fig. 3, are consistent with those reported by Ref. [34] in pure
LC for the two-defect morphology we observe in the stable
cases. Correlating the absolute stability line V*(¢np) from
simulations to experimentally obtained growth rate data can
provide estimates of the poorly known material parameters
for such systems. For example, larger (smaller) NP mobility
M, will shift V*(¢np) to higher (lower) values. Moreover, this
transition could be located in experiments by controlling M.

The dual mechanism controlling the assembly of NPs can
be appreciated in the concentration maps in Fig. 1, and in
more detail in Fig. 4: supersaturated NP grooves created
by oriented branches and preferred segregation to localized
elastic distortions (defect-core trapping). They are coupled
because interfacial distortions promote defects or disclination
lines, and vice versa. NPs in highly saturated regions adopt
supramolecular positional ordering (o > 0), which increases
with deeper quenches, i.e., in the N4+-C and N+-NC regions of
Fig. 1.
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The first quantitative theory of defect core trapping was
presented in Ref. [46]. It shows that spherical NPs segregate
preferentially to a defect, lower its free energy, and increase its
radius with concentration, as we see in our simulations. These
conclusions extend to more complex defect structures, such as
disclination lines [46].

During diffusive growth, NPs rejected by the growing
nematic phase accumulate in the slower moving interstitial
regions of the interface. These regions become either channels
as grooves deepen or regularly spaced pools entrapped by the
interface. Both patterns contain highly saturated regions of
NPs that can be directed through the material and process pa-
rameters that control the Mullins-Sekerka instability [Eq. (5)]
and the subsequent branching morphologies we report here
(Fig. 1). The latter depends on surface tension anisotropy,
which itself depends on the anchoring at the interface, and can
be manipulated as discussed above. Nucleation and growth of
multiple nematic seeds can be further exploited to distribute
NPs on extended scales through the intergrain networks that
develop.

Our work reveals a self-assembly mechanism in nanocom-
posite LC systems that exploits the interplay between dynamic
interface anisotropy, nematic elasticity, and NP diffusion. The
branching morphologies we report for nematic spherulitic
growth in LC-NP mixtures emerge for low quenches and
high NP concentration and evolve through two regimes.
At early times, the first is dominated by the elasticity of
the orientational field, and the second, at later times, is
dominated by a diffusive instability created by the transport
of NPs. We propose systematic control of the branching
morphologies, their distribution of defects and interstitial
channels, as a method to control the assembly of nanoparticles.
The distribution of defects can be manipulated via the initial
nematic seed orientation, or the boundary conditions. Interface
morphology can be manipulated either through anisotropy or
the diffusive instability. Anisotropy can be controlled through
the initial nematic orientation of the seed, and the diffusive
instability through the material and process parameters. These
can be used to promote or suppress secondary arms, which will
entrap NPs in interstitial regions. This tunable organization can
lead to a rich variety of structures such as NP depositions in
linear disclination arrays, sheetlike arrays (large quench), and
undulating dense linear structures not reported nor anticipated
by basic macrosegregation methods or methods that exploit
preexisting fixed defect structures.
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