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A comprehensive procedure for the prediction of the elastic behavior of ferritic ductile iron
by means of multiscale analysis is introduced in this work. The procedure combines com-
putational procedures for the homogenization analysis, micrographic analysis to retrieve
the geometries for the finite element analysis, and microindentation tests to assess the
elastic behaviors of the different phases of the microstructure. The size of the representa-
tive volume element (RVE) is assessed in terms of geometrical descriptors of the micro-
structure (graphite fraction and nodule count and size) and the invariance and isotropy
of the homogenized elastic responses. The RVE is sized to contain at least 50 nodules,
and it results from 100� micrographs. The results for the homogenized values for the
Young’s modulus and the Poisson’s ratio are found in excellent agreement to the data
retrieved from tensile tests, values reported in the bibliography and analytical formulas
available in the literature. The proposed procedure can be easily extended to the character-
ization of cast irons with more complex microstructures.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction act as crack arresters, are responsible for the excellent
Cast irons are materials consisting in a continuous
metal matrix with disperse graphite and/or carbide inclu-
sions. Their properties are determined by their microstruc-
tures, which are the result of the solidification process and
the subsequent heat treatments. Graphite is the stable
form of pure carbon in cast iron. The shape, size and spatial
arrangement of graphite in the microstructure, which can
range from flakes (gray irons) to spheroids (ductile iron),
dramatically affects the mechanical properties of cast
irons. The graphite flakes provide excellent damping char-
acteristics to gray irons, but they also act as stress raisers,
which cause localized plastic flow at low stresses that con-
ducts to fragile failure. In turn, the graphite nodules, which
mechanical performance of ductile cast irons (Warda,
1990).

Ductile irons (DI) allow for a wide range of mechanical
properties via microstructure control. Because of their
good mechanical performance and relatively low cost
when compared to steels, ductile cast irons are increas-
ingly applied in the construction of high stressed parts
for machines and vehicles. DIs are labeled based on the
nature of their matrices: ferritic, pearlitic, martensitic, aus-
tempered and austenitic among others. Ferritic DI (FDI) is
usually used to replace low-carbon steel when ductility
and good impact properties are required in marine applica-
tions, valves, fittings, truck and agricultural implements
and automotive steering knuckles. FDI is typically obtained
by an annealing heat treatment consisting of an austenitiz-
ing stage followed by a slow cooling down (Warda, 1990;
Labrecque and Cagne, 1998).
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During the solidification process of DI, graphite and
austenite nucleate independently into the liquid, with the
austenite growing dendritically. As the solidification pro-
cess advances, the austenite dendrites trap the surround-
ing nodules. Further growth of the graphite nodules takes
place by carbon diffusion from the liquid to the nodules
through the austenite envelope. Consequently, one den-
drite contains several nodules. The resulting solidification
structure is formed by multinodular solidification units
commonly called eutectic cells, which are separated by
regions called cell boundaries. The first to freeze zones,
coincident with the axes and arms of the austenite den-
drites, are usually named FTF. As the solid phases grow
and collide with neighboring growing units, the last por-
tions of remaining melt locate between them, and are
referred to as the Last to Freeze zones (LTF) (Rivera et al.,
2002, 1995). The solidification structure can be revealed
from the microsegregation patterns of the alloy elements.
In particular, elements dissolved substitutionally in aus-
tenite and ferrite, such as Si and Mn, have low diffusivity
in the solid phase, so their segregation patterns originated
during the solidification will change very little during cool-
ing to room temperature and with subsequent heat treat-
ments. In this context, the microsegregations can be
measured qualitatively by using a number of techniques,
such as microanalysis (Boeri and Weinberg, 1993; Rivera
et al., 1988; Kostyleva et al., 1992) or metallographic tech-
niques (Motz, 1988; Zhou et al., 1993). The effectiveness of
several metallographic techniques were evaluated by
Rivera et al. (1995), who applied a color reagent sensitive
to microsegregation that provides the best results to reveal
the solidification structure of FDI. Fig. 1 depicts an FDI
micrograph after color etching where the graphite nodules,
FTF and LTFs are marked. Given the fact that LTF zones
solidify at the end of the process, certain alloy elements
and impurities may diffuse and concentrate or be depleted
in these zones. In addition, the natural volume change
associated to solidification can induce the formation of
small shrinkage cavities at the LTF (Rivera et al., 1995,
1999).
FTF zones

LTF zones

250µm

Fig. 1. FDI micrograph after color etching: spheroidal graphite nodules
(black), FTF zones (dark zones) and LTF zones (bright zones).
The characterization of the FDI microstructure needs of
geometrical and material-behavior constitutive data. The
geometrical description is typically given in terms of
graphite volume fraction, nodularity (a measure of the
nodule sphericity) and nodular count (the number of nod-
ules per unit area). In general, higher nodular counts and
nodularities promote better mechanical properties
(Burditt, 1992; http://www.ductile.org, 0000). In what
respects to the material-behavior constitutive data, the
usual assumption is to assimilate the matrix as homoge-
neous (Bonora and Ruggiero, 2005; Ghosh and Moorthy,
1995; Carazo et al., 2014; Hollister and Kikuchi, 1994;
Hashin, 1983; Ortiz et al., 2001a; Basso et al., 2009;
Kosteski et al., 2011; Ortiz et al., 2001b). However, the
experimental evidence shows that the matrix presents a
high degree of heterogeneity (see Fig. 1). The assessment
of the associated heterogeneity in the mechanical proper-
ties needs experimental analysis at the microstructural
level.

Computational micromechanics provides valuable tools
to help to the better understanding of DI mechanical
behavior. Finite, boundary and discrete element methods
have been used to study the DI effective elastic response
(Bonora and Ruggiero, 2005; Carazo et al., 2014) fatigue
crack propagation (Ortiz et al., 2001a) and fracture
(Bonora and Ruggiero, 2005; Basso et al., 2009; Kosteski
et al., 2011). The hypotheses used in the geometrical
description of the microstructure play a key role point
when dealing with computational models. There are three
approaches to account for the size and spatial distribution
of the nodules: they are assumed to be of one size and peri-
odically located (Bonora and Ruggiero, 2005), they are arti-
ficially generated by means of computer algorithms (Ortiz
et al., 2001a; Basso et al., 2009; Kosteski et al., 2011; Ortiz
et al., 2001b) or they are directly extracted from actual
micrographs (Carazo et al., 2014). Analysis based on peri-
odic microstructures are suitable to elaborate qualitative
descriptions of the material behavior, but as it has been
shown by Kosteski et al. (2011), they may conduct to erro-
neous results, especially when non-linear phenomena are
involved. The simulations of non-periodic microstructures
are based on homogenization analyses of Representative
Volume Elements (RVE) (Hollister and Kikuchi, 1994;
Zohdi and Wriggers, 2000). Among the various definitions
available in the literature (Hashin, 1983; Willis, 2002;
Kanit et al., 2003), the RVE is assimilated in this work to
the minimum volume of material whose behavior is equiv-
alent to that of a volume of a homogeneous fictitious
material.

The present work is focused in developing a compre-
hensive procedure for the prediction of the elastic behavior
of FDI. The procedure is based on the computational
asymptotic homogenization of RVEs. The geometry of the
RVEs is taken from actual micrographs, as this procedure
offers a better chance to simulate more complex matrix
microstructures and graphite morphologies and distribu-
tions, and, very importantly, to contemplate future
simulations of nonlinear phenomena that demand detailed
information about the microstructure. The non-homogeneity
in the mechanical properties of the different microstruc-
tural phases is experimentally assessed by means of



Table 2
Metallographic characterization of as-cast samples (ASTM A 247).

Nodule count [nodules/mm2] Nodularity Nodule size

100 >95% 6

Table 3
Hardness value of as-cast and ferritized samples.

Matrix Label Brinell hardness

Ferritic C1F 149
As-cast (pearlitic) AC 272
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microindentation tests. The size of the RVE is assessed in
terms of geometrical descriptors of the microstructure
(graphite fraction and nodule count and size) and the
invariance and isotropy of the homogenized elastic
responses. The homogenized elastic properties are vali-
dated by comparison to the Young’s modulus data
retrieved from tensile tests

2. Materials and methods

2.1. Materials

MEGAFUND S.A provided FDI samples. Their chemical
composition, listed in Table 1, was determined by means
of a Baird DV6 spectrometer. The samples were one-inch
‘Y’ blocks cast in sand molds (ASTM A897M). All blocks
were ferritized by an annealing heat treatment, consisting
of an austenitizing stage at 920 �C for 4 h, followed by a
slow cooling down to room temperature inside the fur-
nace. Metallographic samples were prepared using stan-
dard polishing methods. Etching was carried out using
nital (2%). The microconstituents, the nodule count, nodu-
larity and nodule size were quantified using an OLYMPUS
PMG3 optical microscope and the Image Pro Plus software
(Image Pro-Plus Software, 2012).

The results for the microstructural characterization
(ASTM A 247) and the Brinell hardness tests (ASTM E10-
01) in the as-cast condition are listed in Tables 2 and 3,
respectively. The reported values are, in every case, the
average of at least three measurements. Fig. 2 shows
micrographs of the material microstructures in the as-cast
condition and after the annealing heat treatment. Note the
transformation of the fully pearlitic matrix in the as-cast
condition (Fig. 2a) to fully ferritic with a small amount of
globular pearlite after the annealing heat treatment
(Fig. 2b).

2.2. Methods

2.2.1. Microindentation tests
Three zones were distinguished in the FDI microstruc-

ture: ferrite, LTF and graphite nodules. The three zones
were considered to behave as isotropic linear-elastic solids.
A set of metallographies of the FDI microstructure were
color etched using a reagent sensitive to the segregation
of Si (Rivera et al., 1995) (10 g NaOH, 40 g KOH, 10 g picric
acid and 50 ml distilled water) to distinguish the three
zones, see Fig. 3a. The etchant was applied when boiling
at 120 �C and the etching time was about 90 s. The metall-
ographies were inspected to select three zones that were
representative of the microstructure topology.

The Young moduli of the three zones were measured by
means of microindentation tests using the Oliver and Pharr
method (Oliver and Pharr, 1992). The tests were performed
Table 1
Chemical composition of DI (wt%).

C Si Mn S P Mg Cu Ni Cr

3.32 2.36 0.31 0.012 0.016 0.033 0.62 0.025 0.058
using a Tl900 SERIES Hysitron equipped with the MRNP
Multirange nanoprobe�, and a Vikers indenter. The inden-
tations were done in rectangular patterns as it is depicted
in Fig. 3b. All tests were performed in displacement-
control mode with the loading curve in Fig. 4. The maxi-
mum displacement of 1 lm was selected in order to obtain
an imprint size that allowed practicing 25 indentations
over the analysis zone.

2.2.2. Micrographic analysis
The micrographic analysis was used to characterize the

nodule shapes and spatial distributions. Metallographic
samples were obtained from the Y-block as it is illustrated
in Fig. 5 and mounted in bakelite for observation. An exam-
ple of a typical micrograph is illustrated in Fig. 6a. The
micrographs were binarized using Image Pro-Plus (2012)
to distinguish the matrix and the graphite nodules, see
Fig. 6b. The resulting images were used to perform the
nodule count and to measure the nodule area, diameter,
perimeter and roundness as is shown in Fig. 6c. The data
was analyzed in terms of the nodule size class (SC) accord-
ing to ASTM A247. The above data was used to size the
RVE. With this purpose, a set of analyses with 50�, 100�,
200� and 500� magnifications were analyzed (see
Fig. 7). The associated observation areas ranged from
8820 lm2 (500�) to 854,539 lm2 (50�). Twenty different
observation fields at random positions were considered
for each magnification.

2.2.3. Tensile tests
Tensile tests were performed on sub-size test samples

(ASTM A897M-03), which were machined from the same
zone of the Y-blocks where the metallographic samples
were extracted. Tensile tests were conducted according
to the specifications of ASTM E8M-04 using 30-ton Morh
& Federhaff test machine and a MTS (632.11F-20)
extensometer.

2.2.4. Computational homogenization
2.2.4.1. Formulation. The computational homogenization
analysis uses the asymptotic method as it is introduced
in Hollister and Kikuchi (1992). The method considers
two scales: the macro-scale for the continuum of which
the homogenized elastic properties are computed, and
the micro-scale for the material microstructure, see
Fig. 8. The method assumes that the separation between



Fig. 2. Optical micrographs for the material in the (a) as cast condition and (b) after the annealing heat treatment.

Fig. 3. Microindentation tests: (a) material microstructure revealed after color etching (LTF zones are revealed bright) and (b) microindentation patterns.
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Fig. 4. Loading curve for the microindentations tests.

One inch “Y

Cutting plane

Fig. 5. Methodology to obtain the metal

(a) (b)

200µm

Fig. 6. Optic metallography of FDI (50�): (a) original image, (b) pr

(a) (b)

Fig. 7. Examples of the analysis areas for the different ma
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the scales, this is, the characteristic length of the micro-
scale l, say the nodule size, is much smaller than the char-
acteristic length of the macro-scale L.

It is also assumed that the material has linear-elastic
responses in both, the macro and the micro scales. The
relationship between the stress and strains in the macro-
scale is given in terms of the homogenized stiffness tensor
C such that

r ¼ Ce; ð1Þ

where the macroscopic fields can be computed as the vol-
ume average of their microscopic counterparts over the
domain of the RVE, this is:

r ¼ 1
VRVE

Z
VRVE

rldV and ð2Þ

e ¼ 1
VRVE

Z
VRVE

eldV : ð3Þ
” block

Metallographic
samples

Metallographic samples 
mounted in bakelite

lographic samples for the analysis.

(c)

ocessed image, and (c) results of the analysis of the nodules.

(c) (d)

gnifications: (a) 500�; (b) 200�; (c) 100�; (d) 50�.



Fig. 8. Macro continuum with a local RVE.
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Microscopic stress and strains in the RVE are related
such that

rl ¼ Clel: ð4Þ

Without loss of generality, the displacement field in the
microscale, ul, is assumed to be decomposed as:

ulðyÞ ¼ uþ �uðyÞ þ ~ulðyÞ; ð5Þ

where u is the displacement in the macro-scale,

�uðyÞ ¼ e � y; ð6Þ

is linear in the RVE coordinate y, and �ul is a fluctuation
of the displacement. The microscopic strain field associ-
ated to the displacement field in Eq. (4) is

el ¼ eþ ~el ð7Þ

Although the asymptotic homogenization method is
rigorously valid for periodic microstructures, i.e. those
composed by repeated unit cells in the domain, Terada
et al. (2000) showed that periodic boundary conditions
could be applied to non-periodic heterogeneous media to
get estimates of the mechanical properties. In fact, they
showed that results obtained by means of other boundary
conditions converge to the results obtained using periodic
boundary conditions when the size of the sample is big
enough. Similar conclusions have been reported by
Carazo et al. (2014), who investigated the effects of the
RVE shape and boundary conditions on the elastic homog-
enization of cast iron.

In general, the strain field in the macro-scale is not
known a priori. However, since the problem is linear, any
arbitrary e may be written as a linear combination of unit
strains, which are defined as

e11
pm¼

1 0
0 0

� �
; e22

pm¼
0 0
0 1

� �
and e12

pm¼
0 1
1 0

� �
ð8Þ

Once the three microscopic strain states are known, the
local structure tensor Mijpm, which relates the macroscopic
strain ekl

pm and the microstructural total strain ekl
lij

, is calcu-
lated using
ekl
lij
¼Mijpmekl

pm: ð9Þ

Once M is known, the local strain at any point within
the RVE may be calculated from an arbitrary homogeneous
macroscopic strain as

el ¼Me: ð10Þ

The homogenized elasticity tensor C may also be calcu-
lated from M. Starting from Hooke’s law at the microscopic
level (4), both sides are integrated over the RVE and
divided by the total RVE volume to give

1
VRVE

Z
VRVE

rldV ¼ 1
VRVE

Z
VRVE

CleldV : ð11Þ

Substituting for el from (10) and recalling (2) and (3)
gives

r ¼ 1
VRVE

Z
VRVE

ClMdV
� �

e; ð12Þ

where the homogenized stiffness tensor is

C ¼ 1
VRVE

Z
VRVE

ClMdV : ð13Þ

The homogenized stiffness tensor C is, in general, aniso-
tropic. On the other hand, experimental evidence shows
that FDI presents an isotropic response in the macroscale.
Thus, it is proposed to recover the Young’s modulus of
and the Poissońs ratio of the FDI from the isotropic part
of C, and to use the anisotropy of C as an indicator of the
representativeness of the result.

Among other choices (Browaeys and Chevrot, 2004;
Dinçkal and Akgöz, 2010; Ta et al., 2010), the tensor Ciso

of an isotropic material for the two-dimensional plane-
strain condition can be written using the bulk modulus j
and shear modulus l:

Ciso ¼ 2jSþ
ffiffiffi
5
p

lD ð14Þ

where S and D are respectively the so-called normal-
ized spherical tensor and deviatoric tensor, defined for
the two-dimensional plane-strain condition as



Fig. 9. Detail of an RVE discretized with an element size of s = 1 lm.
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S ¼ 1
2

1 1 0
1 1 0
0 0 0

2
64

3
75 ð15Þ

and

D ¼ 1ffiffiffi
5
p

1 �1 0
�1 1 0
0 0 1

2
64

3
75: ð16Þ

Tensors S and D are an orthogonal pair for the scalar
product associated to the Frobenius norm. Then, the clos-
est equivalent isotropic stiffness tensor to C, which is
denoted as Ciso

eq , can be computed by projection as follows

2jiso
eq ¼ hC;Si; ð17Þ

ffiffiffi
5
p

liso
eq ¼ hC;Di ð18Þ

and

Ciso
eq ¼ 2jiso

eq Sþ
ffiffiffi
5
p

liso
eq D: ð19Þ

The symbols jiso
eq and liso

eq in the above equations are the
bulk and shear moduli of the equivalent isotropic tensor.
Under a plane strain conditions, the equivalent bulk and
shear moduli are related to the Young’s modulus and the
Poisson’s coefficient via

jiso
eq ¼

E
2ð1� 2mÞð1þ mÞ ð20Þ

and

liso
eq ¼

E
2ð1þ mÞ : ð21Þ

Finally, the index proposed by Ta et al. (2010), belong-
ing to ½0;1�, is used to asses the anisotropy of the homoge-
nized elastic tensor,

Ia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C� Ciso

eq

��� ���2

F

kCk2
F

vuuut ; ð22Þ

where jj � jj2F denotes the Frobenius norm.

2.2.4.2. Implementation. The above procedure was imple-
mented in the context of FEA and coded using Matlab.
The microscopic strain fields for the three unit strains in
Eq. (8) were computed by means of finite element models
of rectangular-shaped RVEs. The model geometries were
produced automatically from the micrographs in
Section 2.2.2. The models were discretized using regular
quadrilateral linear elements, see Fig. 9. The elastic behav-
ior in the microstructure was assumed isotropic for all the
phases. The value of Cl for each element was set depend-
ing if it lies at the loci of the matrix or of a graphite nodule
according to the results of the micro indentation tests (see
Section 3.1 below). All the models used in this work were
discretized using an element ekl

lij
size equal to 1 lm. This

element size ensures the discretization of the smallest
nodules (class 8) with 13 elements along the diameter.
The mesh-independence of the results was confirmed by
means of convergence analysis.
Displacement boundary conditions for load cases in Eq.
(8) were specified as in Eq. (6). The periodicity of the dis-
placement fields was enforced using the approach due to
Barbero (2008).

The structure tensor M was computed at the element
centroids using Eq. (9). To this end, a system of equation
was set for each of the load cases using the macroscopic
strains ekl

pm and their corresponding in the microscale:

e11
ij

e22
ij

e12
ij

8>><
>>:

9>>=
>>; ¼

e11
l11 e11

l22 2e11
l12

e22
l11 e22

l22 e22
l12

e12
l11 e12

l22 e12
l12

2
664

3
775

Mij11

Mij22

Mij12

8><
>:

9>=
>;: ð23Þ

Once M was known, the homogenized stiffness tensor
was calculated using the discrete version of Eq. (13):

C ¼ 1PN
p¼1Vi

XN

p¼1
Cp

lMpVi; ð24Þ

where is N is the number of elements of finite element
model and Vi are their volumes.

The equivalent isotropic stiffness tensor, Ciso
eq , was com-

puted using Eqs. (15)–(19). This result was then used to
recover the homogenized values for the Young’s modulus
and the Poisson’s coefficient, E and m, from Eqs. (20) and
(21), respectively. Finally, the anisotropy index of the
homogenized elastic tensor was computed using expres-
sion (22).
3. Results and discussion

3.1. Micrographic analysis

The results of the micrographic analysis are given in
Table 4. The nodular count and the graphite area fraction
as a function of the size of the sample area are plotted in
Fig. 10. The nodule diameter associated to the SC 8, 7 and
6 are 15 lm, 30 lm and 50 lm, respectively. It can be
observed that the graphite area fraction and the nodular
count increase with reduction the sample area.



Table 4
Results of the micrographic analysis.

Sample area [lm2] Nodules quantified Aspect ratio (ar) Graphite area
fraction (ci) [%]

Nodular count
[nod/mm2]

SC8 [%] SC7 [%] SC6 [%]

50� 854,539 114 ± 10% 1.28 ± 0.26 9,5 ± 1.4 145 ± 12 28 ± 3 52 ± 5 20 ± 2
100� 213,634 56 ± 15% 1.24 ± 0.24 10 ± 1.5 178 ± 13 29 ± 9 56 ± 10 15 ± 7
200� 53408 15 ± 19% 1.24 ± 0.26 12 ± 2.2 206 ± 18 29 ± 14 59 ± 20 12 ± 8
500� 8545 4 ± 41% 1.25 ± 0.27 15 ± 4.6 295 ± 33 30 ± 23 62 ± 33 8 ± 16

Fig. 11. Some of the load vs displacement curves from the micro
indentations practiced in ferrite, LTF and graphite nodules.
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Consequently, the number of quantified nodules decreases.
In every case, dispersions diminish with the increment of
the observation area. Both, the nodular count and the
graphite area fraction tends to stabilize at a sample area
of approximately 213,600 lm2, but this stabilization is
more evident in the graphite area fraction. In this sense,
assuming that all the carbon content in the material is con-
centrated in the nodules, the graphite area fraction might
be used as an indicator for the RVE size.

3.2. Micro-indentation tests

Fig. 11 depicts some of the load vs displacement curves
for the micro-indentations practiced in FTF, LTF and graph-
ite nodules. The associated results for the Young’s moduli
are reported in the histograms in Fig. 12(a) and (b). The
mean values and standard deviations of the Young’s mod-
uli are

Enodule ¼ 15� 0:15 GPa; ð25Þ

EFTF ¼ 230� 8:22 GPa ð26Þ

and

ELTF ¼ 255� 7:77 GPa: ð27Þ

It can be observed that while there is a great contrast
between the behaviors of the graphite nodules and the
two zones in the matrix, FTF and the LTF behave very sim-
ilarly. Based on the above results, the FTF and the LTF
phases were assimilated to a single material, say the
metallic matrix, with its Young’s modulus computed as
Fig. 10. Results for the (a) nodule count and (b) graphite area fraction. Error ba
associated to the analysis area.
the area-weighted average of the FTF and LTF data. The
area fraction values for the FTF and the LTF were measured
by digital image processing of the etched RVE images. The
results were 78% of FTF and 22% of LTF, with a dispersion
less than 2%, see Fig. 13. Thus Young’s modulus for the
metallic matrix resulted

Ematrix ¼ 235� 8 GPa: ð28Þ

Note that the Young’s modulus calculated in (28) is
about 10% higher than conventional value used for a
SAE1010 ferritic steel, this is 210 GPa. This discrepancy is
rs indicate dispersion of the results. The labels indicate the magnification



Fig. 12. Histograms with the results for the Young moduli: (a) nodules, (b) LTF and FTF.

250µm

(a) (b)

Fig. 13. Ferritic DI microstructure at 50� (a) revealed after color etching (b) binarized image of the metallic matrix, FTF (white) and LTF (black).
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attributed to the presence of alloys in the composition of
the FDI matrix, in contrast to the unalloyed steel. A con-
stant value for the Poisson ratio m ¼ 0:28 was used for both,
the matrix and the nodules (Warda, 1990).
3.3. Tensile tests

Fig. 14 illustrates the stress vs. strain curve of one of the
tensile tests. Experimental values for the Young’s modulus,
the yield stress and the ultimate tensile stress and strain
are reported in Table 5. These values are the average of four
tests. Data retrieved from the literature are also reported in
Table 5 (Warda, 1990; Burditt, 1992). It can be observed
that the results of the tests are in very good agreement
to those of the references.
Fig. 14. Stress vs. strain response of a FDI tensile test.
3.4. Homogenization analysis

Fig. 15 depicts the results for the homogenized Young’s
modulus and Poisson’s ratio in terms of the sample size.
Each point in the plots is the average of six analyses; the
error bars indicate the dispersion of the results. It can be
observed that the values for both, E and nu converge
towards constant values as the area of the samples
increase. At the same time, the dispersion of the results
monotonously diminishes with the increment of the area
of the sample.



Table 5
Experimental results from tensile test.

Yield stress r0:2

[MPa]
Ultimate tensile stress
rUTS [MPa]

Ultimate tensile strain
eUTS [%]

Young’s module
E [GPa]

Poisson’s
ratio m

Experimental results 329 536 12,5 172 ± 6 –
Bibliographic sources (Warda, 1990;

Burditt, 1992)
310 562 12–17 169 0.28
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The dependence of the results with the sample size is
also addressed in terms of anisotropy. The results for the
anisotropy index, Ia, are given in Fig. 16. It can be observed
that, like for E and m above, the index converges and its dis-
persion diminishes with increment of the sample size.

The above results allow observing that samples larger
than 0.213 mm2 (this is, those corresponding to 100�mag-
nification) result in the computation of size-independent
isotropic elastic properties with tight levels of uncertainty.
In other words, the RVE is asked to contain a minimum of
56 nodules (see Table 4).

The resultant homogenized stiffness tensor for the RVE
is Ia ¼ 0:311

C ¼
210:7741 84:2964 0:4570
84:2936 215:2425 �0:0080
0:1137 0:0001 63:8648

2
64

3
75: ð29Þ

The associated anisotropy index of which is
Ia ¼ 0:00886� 0:00226. In order to quantitatively address
this last result, consider for instance, that the value of the
anisotropy index for an orthotropic elastic tensor with
E1 ¼ 2E2 is, for E1 ¼ 1:2E2 is Ia ¼ 0:086 and for
E1 ¼ 1:02E2 is Ia ¼ 0:009.

The associated homogenized values for the Young’s
modulus and the Poisson’s ratio of FDI are

E ¼ 171� 7 GPa ð30Þ

and

m ¼ 0:282� 0:001 ð31Þ

respectively.
Fig. 15. Results for the (a) Young’s modulus and (b) the Poisson’s ratio as functio
labels indicate the magnification associated to the analysis area.
It results from the comparison of the results in (30) and
(31) with the data in Table 5, that the mean value for the
homogenized Young’s modulus presents a discrepancy less
than 2% with respect to the experimental value. Similarly,
the discrepancy between the homogenized and reference
values for the Poisson’s ratio is less than 1%.

The result for the Young’s modulus is also compared to
that of the analytical estimation due to Boccaccini (1997),
who used an analytical formulation developed by MAzilu
and Ondracek (1990) to study the influence of the shape
and volume fraction of graphite nodules on Young’s modu-
lus. The referred analytical solution is

EBoccaccini ¼ Ematrix 1� p
9A

9� 1
1þ1:99C

� 3
1þ1:68C

� 1=5
1þ1:04C

� �� 	
ð32Þ

with

A ¼
4p
Ci


 �2
3 z

x

� 
�1
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
x

� 
�2 � 1

 �

cos2 ai

r ; ð33Þ

B ¼ 4p
ci

� �1
3 z

x


 �1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

x


 ��2
� 1

� �
cos2 ai

s
ð34Þ

and

C ¼ 1
B

Ematrix

Enodule
� 1

� 	
; ð35Þ
ns of the sample area. Error bars indicate the dispersion of the results. The



Fig. 16. Results for the anisotropy index as a function of the sample area.
Error bars indicate the dispersion of the results. The labels indicate the
magnification associated to the analysis area.
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where cos2 ai, which describes the orientation of the
nodules, takes the value cos2 ai ¼ 0:33 in for the present
case; ci is fraction are of the graphite nodules; and z=x is
the nodule aspect ratio. The expression (32) is evaluated
in all analysis area (see Fig. 15a) using the experimental
values for Ematrix and Enodule in expressions (25) and (28),
respectively; and the graphite volume fraction and the
nodule aspect-ratio data from the micrographic analysis,
see Table 4.

The resultant value corresponding to RVE size is

EBoccaccini ¼ 176� 6 GPa: ð36Þ

This value presents a deviation of 4% with respect to the
results of the homogenization procedure.
4. Conclusions

This work introduces a comprehensive procedure for
the prediction of the elastic behavior of ferritic ductile iron
(FDI) by means of multiscale analysis. The procedure com-
bines micrographic analysis to directly obtain the geomet-
rical data for the micromechanical models,
microindentation tests to measure the elastic properties
in the microscale, and computational asymptotic homoge-
nization analysis to compute the elastic response in the
macroscale.

Microindentation analysis show that the two zones dif-
ferentiated on the FDI matrix, fist-to-freeze zones and the
last-to-freeze zones, have similar elastic behaviors, and
so, they can be assimilated to a single matrix material. This
result is in accordance to the usual hypothesis found in the
literature.

The representative volume element (RVE) is sized in
terms of the anisotropy of the homogenized macroscopic
elastic tensor, and the invariance and dispersion of the
homogenized values for the Young’s modulus and the Pois-
son’s ratio. In concordance with the results reported for the
geometrical analysis of graphite nodule, where the graph-
ite area fraction tends to stabilize at a sample area of
213,600 lm2 approximately, it is concluded that a sample
must contain, at least, a number of nodules of about 56
be assimilated to a RVE. Samples of this values result from
100�micrographs. RVEs of this size allow computing mac-
roscopic elastic tensors with a degree of anisotropy less
than 1%. The associated Young’s modulus and the Poisson’s
ratio have dispersions of 4% and 1%, respectively.

In agreement to other works, see for instance Carazo
et al. (2014), it was found that the influence of the RVE size
is more noticeable in Young’s modulus than in Poisson’s
ratio.

The homogenized values for the Young’s modulus and
the Poisson’s ratio are in excellent agreement to experi-
mental results used for validation. The deviations between
the numerical predictions and the measurements are less
than 2%. There is also a very good agreement, less that
5% difference, between the numerical predictions and the
analytical estimations for the Young’s modulus due to
Boccaccini (1997).

The proposed procedure can be immediately applied to
the elastic characterization of more complex microstruc-
tures, with more phases present in the microstructure; as
they are the cases of pearlitic or ausferritic DI. It has also
the potential to be extended to account for the non-linear
responses at the microstructural scale.
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