
Journal of Network and Computer Applications 60 (2016) 32–53
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m

acechich
journal homepage: www.elsevier.com/locate/jnca
Review
RESTful service composition at a glance: A survey

Martin Garriga a,c,n, Cristian Mateos b,c, Andres Flores a,c, Alejandra Cechich a,
Alejandro Zunino b,c

a GIISCo Research Group, University of Comahue, Buenos Aires 1400, Neuquen 8300, Argentina
b ISISTAN Research Institute, UNICEN University, Campus Universitario, Tandil B7001BBO, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
a r t i c l e i n f o

Article history:
Received 28 October 2014
Received in revised form
12 June 2015
Accepted 25 November 2015
Available online 13 December 2015

Keywords:
Web Services
Restful services
Service composition
Service mashups
x.doi.org/10.1016/j.jnca.2015.11.020
45/& 2015 Elsevier Ltd. All rights reserved.

esponding author at: GIISCo Research Group,
ail addresses: martin.garriga@fi.uncoma.edu.a
@fi.uncoma.edu.ar (A. Cechich), azunino@con
a b s t r a c t

In the last years, Web Service composition has undoubtedly become the most promising way to integrate
business-to-business applications. However, the industry and the academia often disagree on materi-
alizing current solutions, which are based on either SOAP Web Services or semantic Web Services.
Besides, any service composition mechanism entails multiple and complex factors such as adaptability,
scalability and lightweightness. Recently, RESTful services have shown their potential to compose reliable
and visible Web-scale applications based on the so-called mashups. In this paper, we survey a com-
prehensive set of RESTful composition approaches, i.e., the most promising in their area, totaling 29
approaches. Then, we propose two sets of features to analyze, characterize and compare such approa-
ches: features inherent to SOAP services composition approaches and RESTful services composition
features. Lastly, we discuss research challenges and open research problems in the area.

& 2015 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . 33
2. Background . 33

2.1. Related Work . 34
3. Features to characterize RESTful service composition . 35

3.1. General features. 35

3.1.1. Composition view . 35
3.1.2. Automation level . 35
3.1.3. Definition and binding. 36
3.1.4. Standards conformance . 36
3.1.5. Service and service composition specification . 36
3.1.6. Adaptation perspective . 36
3.1.7. Verification and Validation (V&V) . 37
3.1.8. QoS awareness . 37
3.2. REST-specific features . 37

3.2.1. Lightweight . 37
3.2.2. Understandable . 37
3.2.3. Scalable . 37
3.2.4. Declarative . 38
4. Restful service composition approaches . 38
4.1. Heterogeneous service composition . 39
4.2. Formalization of RESTful compositions. 42
4.3. Pure RESTful service composition . 44
University of Comahue, Buenos Aires 1400, Neuquen 8300, Argentina. Tel.: þ54 299 4490300x638.
r (M. Garriga), cmateos@conicet.gov.ar (C. Mateos), andres.flores@fi.uncoma.edu.ar (A. Flores),
icet.gov.ar (A. Zunino).

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.11.020
http://dx.doi.org/10.1016/j.jnca.2015.11.020
http://dx.doi.org/10.1016/j.jnca.2015.11.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.11.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.11.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.11.020&domain=pdf
mailto:martin.garriga@fi.uncoma.edu.ar
mailto:cmateos@conicet.gov.ar
mailto:andres.flores@fi.uncoma.edu.ar
mailto:acechich@fi.uncoma.edu.ar
mailto:azunino@conicet.gov.ar
http://dx.doi.org/10.1016/j.jnca.2015.11.020

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 33
5. Discussion . 47
5.1. Agreement to standards . 47
5.2. Impact of legacy composition views . 47
5.3. Takeoff from data-oriented mashups . 47
5.4. Tradeoffs between complexity of materialization and interoperability. 47
5.5. REST principles adherence . 48
5.6. Support for full automation . 48
5.7. Dynamic definition and binding for flexible composition . 49
5.8. Ad hoc service and service composition specifications . 49
5.9. Adaptation support . 49
5.10. Support for static/dynamic Verification and Validation . 49
5.11. QoS-awareness. 49

6. Future research possibilities . 49
6.1. Early days of SOAP service compositions – how to define and automate a service composition . 50
6.2. Present days of SOAP service compositions – how to achieve adaptive, scalable, trustworthy service composition approaches 50
6.3. Conclusions . 51

7. Final remarks . 51
Acknowledgements . 51
References . 51
1. Introduction

As time passed, Web Service technologies matured and orga-
nizations started to embrace services to outsource common parts
of their application functions. Moreover, Web Service composition
has become the most promising way to support business-to-
business application integration. Web Service composition refers
to combining outsourced Web Services to offer new, value-added
services (Singh, 2001). Composition differs from traditional system
integration – i.e., via Enterprise Application Integration technolo-
gies – in which applications tightly engage each other in a white/
gray box fashion – while Web Services promote integration in a
black-box fashion. Several initiatives have been conducted to
provide platforms, frameworks and languages to enable loose-
coupled integration of heterogeneous systems, mostly for SOAP-
based Web Services. This encompasses a wide set of standards,
such as WSDL (syntactic service description), UDDI (Zimmerman
et al., 2003) (service discovery), OWL-S (Martin et al., 2007)
(semantic service specification), and BPEL for workflow-based
representation of service compositions where bindings between
services are known beforehand (Weerawarana et al., 2005).

However, stakeholders disagree in materializing these solu-
tions, mainly due to a lack of widely accepted usage standards
(Daniel et al., 2008; Bozkurt et al., 2013; Rauf et al., 2008). Parti-
cularly, organizations often develop and/or describe Web Services
using different interface specification practices and concept mod-
els. From the specification practices point of view, unless appro-
priately specified by providers, service meta-data can be coun-
terproductive and obscure the purpose of a service, thus hindering
its adoption. These phenomena are known as anti-patterns, or
indicators of poor-quality service interfaces (Rodriguez et al., 2012)
that entangle definition and analysis of Web Services and com-
positions. From the concept models point of view, different
approaches model Web Service compositions using domain spe-
cific languages and new modeling notations. Such ad hoc model-
ing methods are hard to learn and use, and often have a very
limited tool support available (Rauf et al., 2008).

In the last few years, RESTful (REpresentational State Transfer)
(Fielding, 2000) services appeared as a lightweight and cost-
effective alternative for SOAP-based services. Lightweight RESTful
services are designed to ease consumption, composition and
building of community-driven services (mashups). Motivated by
these facts, in this paper, we analyze and compare existing pro-
posals in the RESTful service composition area. This area is fairly
new and remains somewhat unexplored, evidenced by the lower
number of mature proposals compared to SOAP-based service
composition, but the area is growing at a rapid pace and has
interesting practical implications. We have defined two sets of
features to guide this analysis, covering functional and non-
functional characteristics found in both SOAP-based and RESTful
composition approaches. Briefly, the main contributions of this
paper are

� A common ground to taxonomically analyze service composi-
tion approaches, which comprises two sets of features – fea-
tures inherent to SOAP-based services and RESTful-specific
features.

� A survey of RESTful service composition approaches, according
to the aforementioned features.

� An outline of research challenges in the area of RESTful service
composition and open future research opportunities.

The rest of this paper is organized as follows. Section 2 steps into
some of the concepts mentioned along this section and presents
related surveys. Section 3 presents an overview of the features
identified in existing service composition approaches that guide
this analysis. Section 4 discusses the reviewed RESTful service
composition approaches, analyzed according to the previously
identified features. Section 5 highlights the results of the analysis.
Section 6 attempts to foresee the evolution of RESTful service
composition by tracing a parallel with SOAP-based service com-
position, pointing out research challenges in the area. Conclusions
and future work are presented afterwards.
2. Background

From the SOAP side, two cornerstone terms are commonplace
to classify specifications and technologies for Web Service com-
position: (1) Orchestration, an executable business process built
with Web Services seen from a single-party perspective; and (2)
Choreography, the message sequences between multiple Web
Services seen from the perspective of multiple parties (Peltz,
2003). These terms were initially coined in the context of SOAP-
based service composition, but they applied to RESTful composi-
tion approaches as well.

From the REST side, RESTful services provide a simple, light-
weight and scalable alternative to SOAP-based services. REST uses

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5334
the basic built-in HTTP remote interaction methods (PUT, POST,

GET, and DELETE) applying their intended semantics to access
any URI-referenceable resource (Fielding, 2000). A resource could
be any piece of data in the Web such as a document, an image, a
tweet or a weather forecast. Moreover, RESTful services exhibit
four properties:

1. Resources represent an abstraction for server-side application
state and entities, i.e., any element that may be the target of a
hypertext reference is a resource.

2. Each resource is addressable using an unique worldwide
identifier (URI).

3. All resources share a uniform interface – HTTP methods – to
interact with client applications.

4. Interaction with a resource is stateless.

RESTful Web Services are perceived to be simple because REST
leverages existing well-known Web standards (HTTP, XML, URI)
and the only necessary infrastructure is the Web, which has
already become pervasive. HTTP clients and servers are available
for all major programming languages and operating system/hard-
ware platforms. This leads to the second main strength of RESTful
services, lightweightness, where services can be built with minimal
tooling, which is inexpensive to acquire and thus has a very low
barrier for adoption (Pautasso et al., 2008). Lightweight services
are easier to consume, are more often used to provide services
across organizational borders and are interesting for community-
driven services (Lanthaler and Gutl, 2010). This is particularly true
for the growing pervasive computing environment, where mobile
devices with different capabilities can act as clients and even
servers or hosts for Web Services. The notions of simplicity and
lightweightness bring support to scalability, since a RESTful Web
Service can scale to serve a very large number of clients, thanks to
the built-in support for caching, clustering and load balancing of
REST. Not having to store state between requests allows the server
to quickly release computational resources, and further simplifies
implementation because the server does not have to deal with
“conversational” resource usage across requests (Fielding, 2000).
Additionally, stateless servers allows the service consumer (human
or machine) to directly manipulate the state of the application
through hyperlink navigation, which is known as the HATEOAS
(Hypermedia As The Engine Of the Application State) principle.
The Web as the RESTful architecture by excellence empowers the
scalability potential of REST.

Resource composition in REST is handled via mashups. A
mashup often takes the form of a Web page or website that
combines information and services from multiple sources on the
Web, offering user-oriented value-added services (Rosenberg et al.,
2008). From the point of view of their purpose, mashups can be
broadly classified into the following categories (Peenikal, 2009):

� Data-oriented mashups involve converting, transforming and
combining similar data elements represented by resources into
a single value-added output.

� Process-oriented mashups imply a step forward from data-
oriented mashups, allowing the composition of business ser-
vices and the integration of these latter within existing business
processes.

� Consumer-oriented mashups are aimed at the general public as
an effective means for customer personalization of data/view-
ing, where users employ any Web browser to combine and
reformat the data according to their needs. An example is Yahoo
Pipes,1 which uses the idea of Unix-like pipes for mashing up
1 http://pipes.yahoo.com/pipes/.
services. Then, unlike data-oriented mashups, in consumer-
oriented mashups composition is mostly GUI-driven and can
be seen as the simplest case of data-oriented mashups.

In this paper we will focus on data-oriented and process-oriented
mashups, since they present the most challenging issues from a
service composition perspective.

2.1. Related Work

Recently, RESTful architectures gained momentum mainly
because their scalability, their usage in Web 2.0 mashups and their
simplicity to be published and consumed (Pautasso, 2009). The
mashup concept emerged in 2008, and since then a large number
of Web 2.0 applications in the form of mashups have been
developed (Benslimane et al., 2008). In (Yu et al., 2008) these
approaches were surveyed, showing that they were mostly data-
oriented mashups. Surveyed approaches were either manual,
requiring programming skills and knowledge about schemes and
semantics of data sources, or tool-assisted, enabling end users to
quickly prototype their own Web applications via mashups and
speeding the development process. More recently, the work in de
Vrieze et al. (2011) analyzed recent mashup tools, enterprise
mashups and service-oriented workflows. An enterprise (or busi-
ness) mashup is an application that combines data from multiple
internal and public sources and publishes the results to enterprise
portals, application development tools, or as a value-added ser-
vice. Enterprise mashups must also interoperate with enterprise
application technologies for security, governance, monitoring, and
availability. The survey showed that, in general, available mashup
tools are mainly data-driven Web applications providing simple
and seamless end-user programming. The work asserts that
enterprise mashups still focus on providing aggregation at a
business data level, with less emphasis on the composition of
business functions. However, enterprise mashups represent a step
towards providing process-oriented mashup development. Lastly,
service-oriented workflows are mostly heavyweight approaches
for collaborative applications.

The survey in Lanthaler and Gutl (2010) compares “heavy-
weight” (i.e., SOAP-based) and “lightweight” (i.e., RESTful)
approaches based on different aspects of services lifecycle. In
particular, Lanthaler and Gutl (2010) focuses on service discovery
and composition, since in practice a client (human or machine) has
to find a desired Web Service prior to composing it with other
services. Since no UDDI-like technology exists for REST, the usual
way to find a RESTful service implies a human manually inspecting
a Web site such as ProgrammableWeb2 that collects and cate-
gorizes published services. If service descriptions were augmented
via semantic annotations such as SA-REST (Semantic Annotations
of Web Resources) or MicroWSMO (a microformat based on Web
Service Modeling Ontology), it would be even possible to use that
semantic data for partially automating service discovery and
composition. Fully automation of the composition process, how-
ever, needs semantic annotations using concepts from ontologies
but it is not always possible to define a complete mapping from
the native data format of RESTful services to the data structure of
an ontology (Lanthaler and Gutl, 2010).

After finding suitable RESTful services, mashups are the
weapon of choice to combine them. Typically, a developer
implements a special mediation layer to translate data formats
between different services. Figure 1 illustrates different stacks of
languages and protocols for both SOAP-based and RESTful services.
2 http://www.programmableweb.com/.

http://pipes.yahoo.com/pipes/
http://www.programmableweb.com/

Fig. 1. Comparison of SOAP-based and RESTful languages stack (adapted from
Lanthaler and Gutl, 2010).

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 35
SOAP-based services have witnessed the creation of more lan-
guages and standards.

Even though mashups bring innovative and value-added
applications for Web users, they are not wide-spread in enter-
prises due to the lack of a standardized process or specification to
embody mashups (Peng et al., 2009). As long as current approa-
ches mature, stakeholders will think of mashup applications as
compositions of loosely-coupled and reusable services, and then
business modeling languages will connect and manage these ser-
vices together with SOAP-based services in a standard way.

Finally, Zur Muehlen et al. (2005) illustrates the technical and
social debate “REST vs. SOAP” from the standardization process
point of view, and discusses the implications of these design
philosophies. REST and SOAP are not necessarily opposites: REST is
an architectural style, and SOAP is a general protocol that can be
used as an element of many different architectures. Authors sug-
gest thinking REST as a navigational style of design, and thinking
SOAP as a procedural style. Despite these terms are easy and often-
used, they lead to active debates. In terms of architectural princi-
ples, conceptual decisions and technological decisions, RESTful
services emerged as an ad hoc integration alternative, while SOAP-
based services are used for enterprise level application integration
where transactions, reliability and message-level security are cri-
tical (Pautasso et al., 2008).

However, many efforts have demonstrated the potential of
RESTful services for enterprise integration scenarios (de Vrieze et
al., 2011; Vinoski, 2007; Richardson and Ruby, 2008). Hence,
motivated by the protagonic role RESTful services have acquired
recently, specially for service composition tasks, in this paper we
survey existing RESTful service composition approaches to provide
a comprehensive analysis of the developments in the area. To the
best of our knowledge, this is the first survey focused on offering
an overview of existing composition approaches, and their
strengths and weaknesses.
3. Features to characterize RESTful service composition

RESTful service composition is a new challenging research area
lacking standardized solutions, and without a clear context to
characterize current efforts. According to the surveys presented in
Section 2.1, and others that provide common terminology in the
area (i.e., (Peltz, 2003)), overview current SOAP-related standards
(i.e., (Daniel et al., 2008)), and establish guidelines for automatic
service composition (i.e., (Rao and Su, 2004; Zhao and Doshi,
2009)), we have defined two sets of features to characterize ser-
vice composition approaches:
� General features (Section 3.1): Eight features that cover how the
approaches relate to up-to-date service-oriented technologies,
languages, practices and standards. In this case, standards refer
to SOAP-based and Web-based standards that could be also
applied to RESTful services and compositions.

� REST-specific features (Section 3.2): Four features that represent
REST-specific properties that do not apply to traditional SOAP-
based service composition.

The motivation behind the first set of features to characterize both
kinds of composition approaches is that, despite their differences,
SOAP-based and RESTful approaches share architectural, concep-
tual and technological underpinnings (Pautasso et al., 2008). Then,
we considered that those features could frame RESTful approaches
as well, and therefore we regarded them during this analysis as
general features.

3.1. General features

Table 1 presents a summary of each general feature along with
a list of their possible values. Then, Section 4 outlines the analysis
of current composition approaches based on this set of general
features.

3.1.1. Composition view
The Composition View feature characterizes current approa-

ches mainly considering: orchestration, choreography, workflow,
data-oriented or process-oriented mashup. Orchestration and
choreography (as defined in Section 2) seem to encompass all
SOAP-based composition alternatives and often both are slightly
overlapped. They also apply to many RESTful composition
approaches, as we will show in Section 4. Furthermore, the
workflow composition view arises from the fact that, in many
ways, a composite service is similar to a workflow. The current
interest in Web Services is directing attention to issues that have a
longer history in the workflow community. Viewing a service
composition as a workflow allows addressing service interoper-
ability with well-known and broadly-tested tools, techniques and
standards (Zur Muehlen et al., 2005; Rao and Su, 2004). The data-
oriented mashup and process-oriented views are strictly inherent
to RESTful approaches, as discussed in Section 2.

Possible values for this feature are “Orchestration”, “Choreo-
graphy”, “Workflow”, “Data-oriented Mashup”, “Process-oriented
Mashup”, or “Ad hoc”, syndicating in the last case the name of the
proposed composition view.

3.1.2. Automation level
According to this feature, service composition approaches can

be broadly classified into three categories: manual, semi-
automated and automated (Majithia et al., 2004). Manual com-
position frameworks expect the user to generate composition
scripts (which sketch the composition in an abstract way) either
graphically or through a text editor, and then submit the scripts to
an execution engine (which instantiates and eventually executes
the composition). However, these systems have several drawbacks
such as programming effort, manual re-binding – which implies
manually changing atomic services of a composition upon
detecting failures – and the need of users with good programming
skills. Semi-automated composition techniques make suggestions
for service selection during the composition process. Nevertheless,
the user still needs to select services and link them up in the
desired order. These systems are not scalable yet – as the filtering
process may provide numerous services for the user to select from
– and lack self adaptation and autonomy. Moreover, automated
techniques use AI planning or similar techniques to automate the
entire composition process. Fully automated composition requires

Table 1
Summary of general features to characterize composition approaches.

Category Feature Description Possible values

Technologies Composition view Point of view (one partner, multiple partners) and focus (process, data) of
the composition addressed by the approach

Orchestration / Choreography / Workflow / Data
oriented Mashup / Process oriented Mashup / Ad
hoc

Automation level The proposed solution automates to some extent the composition pro-
blem through the use of ontologies and/or AI planning

Manual / Semi-Auto / Auto

Definition and binding Applications can be built by composing services either at design time
(static), or at runtime and on the fly (dynamic). In hybrid approaches, the
composition is delineated statically and concrete services are bound
dynamically

Static / Dynamic / Hybrid

Standards Standards conformance The proposed solution adheres to some technical standards, languages or
specifications related to service composition

Yes(name of the standard)/ No

Service and composition
specification

Types of (composite) service specifications accepted by the composition
proposal

(Name of the input language)/ Ad hoc

Practices Adaptation perspective Composition logic can be adapted and hence altered from an abstract
perspective only, and/or adapted from a concrete perspective, or adapta-
tion support is not provided at all. In case of adaptations performed at the
concrete level, functional incompatibilities between services can be
managed by modifying service interfaces or message ordering, while QoS
infringements or component failures can be managed by re-binding the
composition workflow

Abstract / Concrete (Interface, Protocol, Workflow
re-binding) / Both/ Not Applicable

Verification & validation
(V&V)

The proposed solution supports verification, validation or testing of the
service compositions built

Yes (provided aspect) / No

QoS-awareness Service composition considers QoS or non-functional properties Yes / No

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5336
understanding the context, semantics, and problem space of the
general composition domain. In fact, proposed approaches in this
line have dealt with small, restricted parts of fully automated
composition (Paik et al., 2012).

Possible values for this feature are “Manual’, “Semi-automatic”
and “Automatic”.

3.1.3. Definition and binding
Services can be composed either manually and a priori, or

autonomously and on the fly. The first approach is called static
service composition, and the latter is dynamic service composition
(Chakraborty and Joshi, December 2001). Compared with static
service composition, dynamic service composition enables for
more flexible and adaptive applications through the composition
of services according to user contexts (e.g., location, time, and
profile) and user preferences. Dynamic service composition also
reduces application development costs because new applications
are created by saving service discovery time and simply deploying
a small number of new components which autonomously locate
required services. However, static service composition is better
suited for designing complex interaction patterns, such as branch
or iteration, often present in B2B applications, which are complex
but easy to foresee at design time (Fujii and Suda, 2004). All in all,
each composition time is better suited for certain contexts.

Possible values for this feature are “Static”, “Dynamic”, or
“Hybrid”, since a service composition approach could support both
static and dynamic definition and binding.

3.1.4. Standards conformance
Without robust and common agreement on standards,

researchers and practitioners cannot address real interoperation and
composition problems adequately (Daniel et al., 2008). Standards
are, by definition, well-founded and documented. Intuitively,
standards-conforming composition approaches may be easier to
implement and adopt than ad hoc solutions. Therefore, approaches
whose composition schemes conform to current standards belong to
this category. In most proposals, the language used to specify either
services or compositions is standardized. Such standardized lan-
guages are encompassed in the corresponding feature Service Com-
position Specification. It is worth noticing that, although all RESTful
composition proposals conform to the HTTP standard, this feature
looks for other standards and particularly REST-specific standards.

Possible values for this category are binary (“Yes”, “No”), along
with the names of the standards adopted by each approach when
applicable.

3.1.5. Service and service composition specification
This feature identifies which specifications a composition sys-

tem supports for sketching either required services or composi-
tions. Functional descriptions communicate what an atomic or a
composite service does. Non-functional descriptions discern
between two (or more) services designed for performing the same
task. When such descriptions involve semantic information, they
require to place extra effort on building domain ontologies and
annotations (Crasso et al., 2011). Other approaches focus on cate-
gorizing as much QoS aspects as possible without requiring any
extra semantic markup (Al-Masri and Mahmoud, 2007).

Possible values for this feature are the specifications/languages
supported by the system under review. A service composition
approach may also accept as an input a specification or language not
strictly designed for Web Services – e.g., UML. For example, possible
values in this respect are “WSDL”, “WADL”, “BPEL” and “UML”.

3.1.6. Adaptation perspective
The mediation or adaption approach is interesting as an eco-

nomic and effort-saving approach to address partial compatibility
in real-life Web Service compositions. Ideally, when detecting
undesirable changes in certain threshold values – typically defined
over QoS attributes such as reliability or response time – the ser-
vice system should be able to adapt itself due to such changes
(Immonen and Pakkala, 2014).

Adaptation can be performed at different stages of the com-
position lifetime. In general, compositions can be built in terms of
an abstract composition, where only the required functionalities
(tasks) and their composition logic are specified, and a concrete
composition, where the tasks of an abstract composition are
bound to actual implementations – i.e., concrete services. Based on
this distinction, adaptation in the SOA domain may be circum-
scribed to concrete composition perspective, acting on the
implementation each task is bound to and leaving the composition

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 37
logic unchanged (i.e., the overall abstract composition), or adap-
tation can affect both the concrete and abstract composition per-
spective, meaning that the composition logic can be altered (Car-
dellini et al., 2012).

The first case (adapting only the concrete composition) is the
most common, and can involve different levels (Eslamichalandar
et al., 2012; Canfora et al., 2006): interface level addresses
incompatibilities in service operation signatures; protocol level
addresses behavioural mismatches; and workflow re-binding level
implies changing atomic services of a composition upon detecting
context changes, QoS infringements or component failures. These
levels are in concordance with the adaptation actions proposed in
(Cardellini et al., 2012) that involve only the services of the com-
position (i.e., concrete adaptation): interface level and protocol
level are analogous to service tuning actions (changing properties
or behaviour of services respectively), while workflow re-binding
encompasses service selection and coordination pattern selection.

Possible values for this feature are “Abstract”, “Concrete”,
“Both” or “Not Applicable (N/A), where “Concrete” can be further
decomposed in “Interface Level”, “Protocol Level”, “Workflow re-
binding”.

3.1.7. Verification and Validation (V&V)
Validation ascertains the correct behaviour of a service com-

position – i.e., the service composition behaves as expected. Ver-
ification checks the maintenance of certain desirable properties of
the composite service (Narayanan and McIlraith, 2002) with
respect to the individual composed services. Verification of a
composite Web Service flow prior to its execution is mandatory
(Nakajima, 2002). Then, during execution of composite services,
non-functional aspects such as QoS can also be controlled through
runtime monitoring (Yu et al., 2008; Immonen and Pakkala, 2014).

Possible values for this feature are binary (“Yes”, “No”), plus the
name of the supported V&V technique, such as “Model-Checking”,
“Formal Validation/Verification” or “Runtime Monitoring”, when
applicable.

3.1.8. QoS awareness
Considering non-functional properties, particularly Quality of

Service (QoS), is crucial for companies to meet the requirements of
their customers (Berbner et al., 2006; Daniel et al., 2008). Quality
of Service (QoS) is a broad measure for how well a service serves its
customer. Particularly, for the scope of this work, services are Web
Services, and customers are client applications (Strunk, 2010). The
end-to-end QoS of a service composition depends on the QoS of
the constituting services (Cardoso et al., 2004).

The composite service must fulfill both the quality goals from
the consumer's viewpoint and the business goals of the composite
service provider. In addition to the traditional definition of quality
in software engineering (Kitchenham and Pfleeger, 1996), several
new challenges arise in the new ecosystem of Web Service com-
position (Immonen and Pakkala, 2014). Service selection must
consider quality of atomic services, as the QoS of composite service
is dependent on qualities of its atomic services. In addition to
selecting reliable services, composite service providers must be
able to verify QoS of the selected services and the composite ser-
vice during run-time. This requires atomic/composite services
execution to be monitored. Then, if detecting undesirable changes
in QoS thresholds, the service system should ideally be able to self-
adapt using proper adaptation techniques. Thus, it is noticeable
that QoS-awareness is a crosscutting aspect of Web Service com-
position, concerning not only non-functional properties but also
runtime monitoring and self-adaptation of atomic and composite
services to ensure required QoS levels.

Besides, with the increasing number ofWeb Services with similar
or identical functionality, the non-functional properties of a Web
Service are becoming more and more important. Since several Web
Services may embody the same functionality, the key in service
composition is to find the services that better fulfill customer's QoS
requirements (Immonen and Pakkala, 2014; Berbner et al., 2006).
QoS is measured in terms of attributes or properties, such as
response time, reliability, availability or reputation.

Possible values for this feature are binary (“Yes”, “No”), plus the
particular QoS attributes when QoS is considered.

3.2. REST-specific features

RESTful services provide some advantages over SOAP-based ser-
vices (Zhao and Doshi, 2009), including lightweightness, easy
accessibility and flexibility. Although the research community has
put significant effort on SOAP-based Web Service composition so far,
it has put much less attention in the RESTful service composition
problem. Table 2 presents the set of specific features – comprising
four properties adapted from (Zhao and Doshi, 2009) – with which
RESTful approaches should be compliant. Each feature is described
below, along with their possible values that are binary (Yes/No).

Those four characteristics make RESTful Web Service compo-
sition fundamentally different than the composition of SOAP-
based services. However, as we will see later, the resource-
centric perspective is relatively new for Web Services, and most
of the claimed RESTful approaches do not fully adhere to REST
principles (Zhao and Doshi, 2009).

3.2.1. Lightweight
RESTful services use HTTP as the invocation protocol, avoiding

tunneling higher-level protocols through HTTP (Vinoski, 2007). A
resource representation itself becomes the response of a RESTful
service invocation without any extra encapsulation or envelopes.
Additionally, RESTful services depend less on vendor software and
mechanisms that implement additional SOAP layers on top of HTTP.

These mechanisms are materialized in the WS-n set of stan-
dards and protocols. They include, but are not restricted to, WS-
Notification, WS-Security, WSDL, and SOAP, and address the design
of process-oriented, brokered distributed services. This granularity
of application tends to be more prevalent in businesses and gov-
ernment applications, and less prevalent in technical and aca-
demic areas, although recent RESTful approaches are bridging this
gap (de Vrieze et al., 2011; Vinoski, 2007).

This set of protocols is not considered lightweight because it
takes HTTP to a transport protocol for big XML payloads that wrap
the real content of the message/operation. The resulting service is
far more complex than its RESTful counterpart, in the sense that
the service is harder to debug (because of the multiple-protocol
stack), and forces clients to remain tied to a particular configura-
tion (Richardson and Ruby, 2008).

3.2.2. Understandable
Client applications can share and pass around URIs that identify

resources. The URIs and the representation of resources are – if
specified precisely – self-descriptive and thus make RESTful services
easily understandable and accessible. On the other hand, WSDL
specifications of SOAP-based Web Services bury these advantages
under multiple abstraction layers (Richardson and Ruby, 2008).
Paradoxically, developers of SOAP-based services tend to create
WSDL descriptions that hinder services understandability and dis-
coverability (Crasso et al., 2010; Mateos et al., 2013).

3.2.3. Scalable
RESTful services support server-side caching of and paralleli-

zation on URIs access, just like Web pages are currently cached in
and retrieved from network proxies and gateways for improving
request performance. The responses of GET (a side-effect free

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5338
operation) can be cached as well. Additionally, RESTful services
provide an effective way to support server-side load balancing
based on URI partitioning. Moreover, a RESTful composition is
considered scalable or extensible if new services can be integrated
without decreasing the overall performance, availability or other
QoS attributes of the composition.
3.2.4. Declarative
In contrast to (SOAP-based) imperative services – operations

perspective – RESTful services adopt a declarative approach,
namely resources perspective. They focus on what resources are
modelled and the information that can be exchanged with them,
rather than describing how those resources perform their func-
tions. The declarative style brings the fundamental differences
between RESTful and SOAP-based services to the forefront.
Table 2
Summary of specific features of RESTful approaches.

Feature Description Possible
values

Lightweight Uses HTTP as the invocation protocol avoiding
improperly tunneling other protocols

Yes/No

Understandable Service clients can share self-descriptive URIs
that identify resources

Yes/No

Scalable Supports URI server-side caching, paralleliza-
tion and partitioning just like regular Web
pages

Yes/No

Declarative Services focus on the description of resources,
rather than describing how their functions are
performed.

Yes/No

Table 3
RESTful service composition approaches (part I).

Id Approach Key points

01 Pautasso (2009) BPEL4REST extension, enabling composition of both RE
primitives.

02 De Giorgio et al. (2010) SOA4All extension, with dynamic replacement of SOAP a
(Lightweight Process Modeling Language), a language b

03 Peng et al. (2009) REST2SOAP framework to wrap RESTful services into S
04 Rodrigues et al. (2013) Data event-based approach for Web Service compositio
05 Maximilien et al. (2008) Composition of RESTful and SOAP-based via interpreted

deploying, and managing Web API mashups
06 Liu et al. (2012) Dynamic mashup building using RESTful and SOAP-bas
07 Farokhi et al. (2012) MDCHeS, a model-driven framework to support dynam
08 Haupt et al. (2014) Meta model for REST service composition built based o
09 Wu et al. (2013) Exploits Apache ODE (Orchestration Director Engine) ex

BPEL processes using the standard HTTP methods
10 Zhao et al. (2011) Linear logic-based formal approach to automatic RESTf

search-efficient, correct, complete, and formalized way
11 Zhao and Doshi (2009) Situation calculus-based formal model for describing in

description of services through SWRL (Semantic Web R
12 Riabov et al. (2008) Iterative refinement of data-oriented mashups definitio
13 Zuzak et al. (2011) A formal model for describing RESTful systems that co
14 Zhang et al. (2014) Context-aware discovery and composition of generic (e

give the user several “good enough” solutions accordin
15 Li and Chou (2014) Approach based on Category Theory. RESTful services a

algebraic rules define composition upon link transitivit
16 Xie et al. (2013) A semantic resource service model (SRSM) that combin

through ontology reasoning
17 Pautasso (2009) Visual composition language that uses an iterative met

tools
18 Alarcon et al. (2011) ReLL, a dynamic and lightweight RESTful service comp

mically describe machine-client navigation
19 de Vrieze et al. (2011) A lightweight Business Process Modeling (BPM) approa
20 Li et al. (2013) A lightweight composition mechanism in Web browsers

to using Unix pipelines
21 Rosenberg et al. (2008) Bite, a composition language and lightweight framewo
4. Restful service composition approaches

Service stakeholders started to embrace REST to ease service
publication and consumption. Composition could exploit this wealth
of RESTful services to offer value-added services (Pautasso, 2009).
Besides, RESTful service composition is often associated with Web
2.0 mashups, which combine and reuse services and data sources in
novel and creative ways. In such direction, researchers have pro-
posed some emergent lightweight RESTful composition approaches.
Indeed, after searching in online sources, we found several works
addressing the RESTful service composition problem. We searched
for articles indexed in Scopus, Science Direct, IEEE Xplore, ACM
Digital Library, SpringerLink, Google Scholar and WileyOnline. Then,
we looked for relevant references included in the works previously
found, in order to identify other potential works. As the RESTful
service composition is a very recent topic, we included both journal
and conference articles. We found twenty nine relevant approaches
in total. Tables 3 and 4 summarize the key aspects of the analyzed
approaches. Then, for the sake of presentation, we grouped the
twenty nine surveyed works into three categories, namely Hetero-
geneous composition, Formalization of RESTful composition and
Pure RESTful composition.

Apart from organizing the discussed works, this categorization
draws a parallel with the evolution of SOAP-based composition
approaches (Rao and Su, 2004; Srivastava and Koehler, 2003; Sheng
et al., 2014; Issarny et al., 2011), as we will discuss in Section 6. On
the one hand, industry and business approaches, mainly workflow-
based, embraced RESTful services by integrating them into existing
SOAP-based business processes as quickly and seamlessly as possi-
ble. Hence, heterogeneous service composition approaches (Section
4.1), which bridge the gap between RESTful and SOAP-based services
integrating them into a single composition framework. In this sense,
STful and SOAP-based services and publication of BPEL processes with REST

nd REST services through MicroWSMO semantic annotations. Supported by LPML
ased in BPMN and BPEL
OAP services, creating a composite BPEL service
n in which the execution of business processes is driven by changes in data states
programming languages. Provides a comprehensive solution to creating, reusing,

ed Web Services with their interfaces unified through lightweight semantics
ic composition of SOAP-based and RESTful services
n extension capabilities of BPEL, namely extension activities
tensions to generate WSDL documents for RESTful services to invoke them from

ul Web Service composition, executable at the business management level in a
through process calculus
dividual RESTful Web Services and automating their composition. Formal
ule Language)
n, supported through a planning-oriented formalism
mprehensively follow REST principles
lectronic and non-electronic) services. A soft constraint-based context model can
g to context information
re defined through two categories: resources and links (functions). Then, simple
y
es structural and operational semantics for resource-oriented service composition

hodology for composition development with interactive debugging and testing

osition approach driven by the hypermedia network, using Petri-Nets to dyna-

ch that eases requirements specification of process-oriented enterprise mashups
which allows users to interactively chain distributed atomic Web Services similar

rk to create Web-scale workflows based on RESTful services.

Table 4
RESTful service composition approaches (part II).

Id Approach Key points

22 Pautasso and Wilde (2013) Business processes modelled and observed using RESTful push services, Atom feeds and notifications through push protocols, instead of
traditional pull-oriented solutions

23 Lanthaler and Gutl (2011) A machine-readable semantic description language for RESTful services based on JSON, to enable automatic discovery and composition
24 Choi (2012) Transforming results of atomic RESTful services into objects, to bring service composition to lay object-oriented programmers
25 Sepulveda et al. (2014) Identifies key QoS elements, particularly for the security domain, captured as an ontology. An extension to ReLL that considers security

constraints (ReLL-S) allows a machine-client to interact with secured resources
26 Bennara et al. (2014) A composition engine that allows to discover the interaction patterns a resource offers and its orchestration possibilities with other

resources, using the REST principles and linked data
27 Bellido et al. (2013) Analysis and implementation of control-flow patterns through the extension of the HTTP status codes. Allows composed resources to

delegate control flow to different services according to status codes
28 John and Rajasree (2013) A combination of Microformat markup over HTML, RDF and RDFS to support semantic RESTful services description, discovery and

composition
29 Lu et al. (2015) An architecture to design, implement and execute RESTful business processes with maximal adaptability described through BPMN. An

automatic decision-making module can adapt the business process at runtime.

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 39
approaches in this category in principle have an increased
practical value.

On the other hand, academic solutions are mainly based upon
the formalization of domain concepts through ontologies or other
semantic constructs. Then, some underlying theory (such as Finite
State Machines, Semantic Reasoning or Constraint Satisfaction)
allows composing services while formally verifying some desirable
properties. Thereby, formalization of RESTul compositions
approaches (Section 4.2), which formalize description and com-
position of RESTful services. Their final goal is either full auto-
mation of the composition process or satisfaction of certain
properties throughout the composition lifecycle. As such, these
kind of approaches could experience a stepwise adoption in the
industry.

Finally, acknowledging the maturity of RESTful service com-
position as a research field itself, certain approaches propose novel
composition methods particularly for RESTful services, i.e., with
little or even no ties to SOAP-based service concepts. Hence, Pure
RESTful service composition approaches (Section 4.3), which are
only intended to cope with RESTful services, composing them as
an evolution of data-oriented or process-oriented mashups.

We analyzed the works in these categories according to the two
sets of features defined in Section 3. Tables 5 and 6 summarize the
results regarding the general features. Table 7 summarizes the
results in regards to the specific features.

4.1. Heterogeneous service composition

One of the most mature proposals in the field of RESTful Web
Service composition is (Pautasso, 2009) (Id. 01). The author pro-
poses an extension for BPEL to enable composition of both RESTful
Web Services and “traditional” SOAP-based Web Services. The
contribution is twofold: it shows how the HTTP binding of the
2.0 version of WSDL can be used to describe RESTful services, and
how a BPEL process can be published as a RESTful Web Service by
exposing certain parts of its execution state using the REST pri-
mitives GET, PUT, POST and DELETE . Three BPEL extensions map
the resource abstraction and support the corresponding interaction
mechanisms and invocation patterns: (a) a BPEL activity for each
native REST primitive to invoke RESTful services, (b) a dynamic
resource representation to expose the execution state of a BPEL
process to clients, and (c) a revision of BPEL constructs to fit with
REST design principles.

Another work that brings together SOAP-based and RESTful
services is (De Giorgio et al., 2010) (Id. 02). It addresses the
dynamic replacement of both kind of services from within a ser-
vice composition. MicroWSMO (Kopecky et al., 2008) and LPML
(Un et al., 2010) (Lightweight Process Modeling Language) support
the approach. MicroWSMO is a semantic annotation mechanism
for RESTful Web Services based on a microformat called hRESTS
(HTML for RESTful Services). This leads to machine-readable
descriptions of Web APIs, and serves as a rough equivalent to
WSDL enabling the substitution of a SOAP-based service with a
RESTful one (and viceversa) to implement activities of a business
process. LPML borrows concepts from BPMN and BPEL in a light-
weight manner, i.e., by introducing little extensions to support
dynamic binding and service substitution at runtime. The idea of
adding an annotation level to wrap RESTful services into more
descriptive specifications counterposes that of directly invoking
RESTful services as proposed in (Id. 01).

Another effort to integrate SOAP-based services and RESTful
services is the REST2SOAP framework (Peng et al., 2009) (Id. 03).
Due to the similarity between SOAP-based compositions and Web
2.0 mashups, the authors handle REST-based mashup applications
as compositions of loosely-coupled and reusable services, with
BPEL as the standard way to connect and manage these services.
However, according to the authors, BPEL cannot fully integrate and
invoke RESTful services, due to the inherent differences between
RESTful and WSDL/SOAP based services, such as operation styles,
supported data types and representation media. REST2SOAP
leverages WADL (Hadley, 2006) (Web Application Description
Language) and XUL (Bojanic, 2003) (XML User Interface Language)
specifications to wrap RESTful services into SOAP services semi-
automatically, fostering the creation of BPEL composite services
combining SOAP services, RESTful services and GUIs. This
approach is consistent with the wrapping idea proposed in (Id.02).

The work in (Rodrigues et al., 2013) (Id. 04) proposes the WED-
flow (Workflow Events Data) approach, in which the execution of
business processes is driven by changes in data states. According
to the authors, the control flow is not a requirement but a con-
sequence of Web Services execution, while a data event-based
approach for Web Service composition provides greater flexibility
for the development and maintenance of applications. The work
evaluates possible scenarios for data event-based orchestration
and choreography. Then, the WED-flow executes Web Services
which interact in the context of those possible scenarios. It uses a
polling-like approach, monitoring relational databases in order to
catch and handle data events. For instance, an e-shopping Web
Service can change a database by writing a payment order. Then,
WED-flow monitors that change in the database and triggers the
execution of a Web Service for payment validation. Accepted ser-
vices can be either RESTful or SOAP-based as long as their data is
available for usage by WED-flow monitors. The idea of a data-
event driven composition is different to the aforementioned
approaches, since these latter focus on modeling the control flow
of compositions (e.g., through BPEL) rather than the data flow.

Table 5
Characterization of RESTful approaches according to general features (part I).

Id Composition view Automation level Definition and
binding

Standards
conformance

Service and composition
specification

Adaption perspective Verification & Validation QoS-awareness

01 Orchestration Manual Dynamic No Ad hoc (Extended BPEL) N/A N/A No
02 Workflow Semi-auto Dynamic No LPML, BPML, REST Concrete (Protocol) N/A Yes (not specified)
03 Workflow, process-oriented

mashup
Semi-auto Static No WADL, WSDL, BPEL, XUL Concrete (Interface) WADL validation No

04 Workflow Manual Dynamic No Ad hoc (WED-flow) Concrete (Workflow re-
binding)

Monitoring No

05 Process-/data-oriented
mashup

Manual Static No Ruby on Rails / Ad hoc (DSL) N/A No No

06 Data-oriented mashup Semi-auto Hybrid No MSM (Minimal Service
Model)

Concrete (Workflow re-
binding)

No No

07 Workflow Semi-auto Dynamic No MD ad hoc specifications Concrete (Workflow re-
binding)

No Yes (Availability, response
time)

08 Workflow Manual Hybrid No Ad hoc (BPEL Extension) N/A No No
09 Workflow Manual Static Yes (BPEL) BPEL, WSDL N/A No No
10 Workflow Auto Static No Linear Logic N/A Correctness No
11 Workflow Auto Static Yes (SWRL) SWRL N/A Formal verification No
12 Data-oriented mashup Semi-auto Dynamic No Ad hoc (SPPL) Concrete (Workflow re-

binding)
Formalization of composi-
tion flow

No

13 Ad hoc (FSM) Manual Static No FSM withϵ-transitions N/A FSM Formalization No
14 Ad hoc (Planning) Semi-auto Static No Ad hoc (planning-like) N/A No Yes (context information)
15 Ad hoc (Categorial link

composition)
Manual Static No Ad hoc (categorial links) N/A Category Theory

formalization
No

16 Ad hoc (Semantic reasoning) Semi-auto Static No Ad hoc (SRSM), OWL Concrete (Interface, Work-
flow re-binding)

Semantic reasoning No

M
.G

arriga
et

al./
Journal

of
N
etw

ork
and

Com
puter

A
pplications

60
(2016)

32
–53

40

Ta
b
le

6
C
h
ar
ac
te
ri
za
ti
on

of
R
ES

Tf
u
l
ap

p
ro
ac
h
es

ac
co

rd
in
g
to

ge
n
er
al

fe
at
u
re
s
(p
ar
t
II
).

Id
C
om

p
os
it
io
n
vi
ew

A
u
to
m
at
io
n
le
ve

l
D
efi

n
it
io
n
an

d
bi
n
d
in
g

St
an

d
ar
d
s
co

n
fo
rm

an
ce

Se
rv
ic
e
an

d
co

m
p
os
it
io
n

sp
ec
ifi
ca
ti
on

A
da

pt
io
n
p
er
sp

ec
ti
ve

V
er
ifi
ca
ti
on

&
V
al
id
at
io
n

Q
oS

-a
w
ar
en

es
s

17
A
d
h
oc

(c
on

tr
ol

fl
ow

)
M
an

u
al

H
yb

ri
d

N
o

A
d
h
oc

(J
O
p
er
a)

C
on

cr
et
e
(I
n
te
rf
ac
e)

Te
st
in
g

N
o

18
A
d
h
oc

(p
et
ri
-n

et
s)

M
an

u
al

St
at
ic

N
o

A
d
h
oc

(R
eL

L)
C
on

cr
et
e
(I
n
te
rf
ac
e)

N
/A

N
o

19
Pr
oc

es
s-
or
ie
n
te
d

m
as
h
u
p

M
an

u
al

H
yb

ri
d

N
o

A
d
h
oc

(u
n
n
am

ed
)

N
/A

N
/A

N
o

20
D
at
a-
or
ie
n
te
d
m
as
h
u
p

M
an

u
al

St
at
ic

Ye
s
(H

TM
L5

)
H
TM

L5
M
ic
ro
da

ta
N
/A

N
/A

N
o

21
Pr
oc

es
s-
or
ie
n
te
d

m
as
h
u
p

M
an

u
al

D
yn

am
ic

N
o

A
d
h
oc

(B
it
e)

N
/A

N
/A

N
o

22
Pr
oc

es
s-
or
ie
n
te
d

m
as
h
u
p

M
an

u
al

St
at
ic

Ye
s
(A

to
m
)

A
to
m

fe
ed

s
N
/A

N
/A

N
o

23
D
at
a-
or
ie
n
te
d
m
as
h
u
p

Se
m
i-
au

to
St
at
ic

N
o

A
d
h
oc

(S
ER

ED
A
Sj
)

N
/A

N
/A

N
o

24
D
at
a-
or
ie
n
te
d
m
as
h
u
p

Se
m
i-
au

to
St
at
ic

N
o

Ja
va

N
/A

N
/A

N
o

25
C
h
or
eo

gr
ap

hy
M
an

u
al

D
yn

am
ic

Ye
s
(O

A
u
th
)

A
d
h
oc

(R
eL

L)
N
/A

N
o

Ye
s
(s
ec
u
ri
ty
)

26
O
rc
h
es
tr
at
io
n

Se
m
i-
au

to
D
yn

am
ic

Ye
s
(J
SO

N
LD

,P
O
W

D
ER

)
PO

W
D
ER

,J
SO

N
-L
D

C
on

cr
et
e
(W

or
kfl

ow
re
-

bi
n
d
in
g)

N
o

N
o

27
C
h
or
eo

gr
ap

hy
M
an

u
al

D
yn

am
ic

N
o

A
d
h
oc

(R
eL

L)
N
/A

N
o

Ye
s
(a
va

ila
bi
lit
y,

th
ro
u
gh

p
u
t,

re
sp

on
se

ti
m
e)

28
O
rc
h
es
tr
at
io
n

Se
m
i-
au

to
H
yb

ri
d

N
o

A
d
h
oc

(H
TM

L
M
ic
ro
fo
rm

at
þ

R
D
F)

N
/A

N
o

N
o

29
W

or
kfl

ow
Se

m
i-
au

to
H
yb

ri
d

N
o

B
M
N
L,

ad
h
oc

an
n
ot
at
io
n
s

B
ot
h
(A

bs
tr
ac
t,
W

or
kfl

ow
re
-

bi
n
d
in
g)

R
u
n
ti
m
e
m
on

it
or
in
g

Ye
s
(a
va

ila
bi
lit
y,

re
sp

on
se

ti
m
e)

Table 7
Characterization of RESTful approaches according to specific features.

Id Lightweight Understandable Scalable Declarative Satisfied
properties

01 Yes Yes 2/4
02 Yes 1/4
03 Yes 1/4
04 0/4
05 0/4
06 Yes Yes 2/4
07 0/4
08 Yes Yes 2/4
09 0/4
10 Yes 2/4
11 Yes 1/4
12 Yes Yes 2/4
13 Yes Yes Yes Yes 4/4
14 0/4
15 Yes Yes 2/4
16 Yes 1/4
17 Yes Yes Yes 3/4
18 Yes Yes 2/4
19 Yes 1/4
20 Yes Yes 2/4
21 Yes Yes 2/4
22 Yes Yes Yes 3/4
23 Yes Yes Yes Yes 4/4
24 Yes 1/4
25 Yes Yes 2/4
26 Yes Yes Yes 3/4
27 Yes Yes Yes 3/4
28 Yes Yes 2/4
29 Yes Yes Yes 3/4

Total 12 14 9 15 2/4 (average)

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 41
Moreover, the work in Maximilien et al. (2008) (Id. 05) presents
an online mashup platform (Swashup) that supports mashup
design, sharing and management. The final goal is to solve Web
integration and service composition problems through mashups
via interpreted programming languages. Both RESTful and SOAP-
based services are represented in an ad hoc DSL (Domain Specific
Language), developed to specify services and mashups. Then, the
platform executes these DSL-specified services through a collec-
tion of Ruby on Rails (RoR) Web applications and APIs, all backed
by a relational database. In this approach, unlike all the previous
approaches, both RESTful and SOAP-based services are mapped to
a more abstract representation through the DSL.

Another approach to ease dynamic mashup development is
presented in Liu et al. (2012) (Id. 06). Dynamic mashups are built
using Web Services described with lightweight semantics. The
user interface components interact with unified interfaces of both
SOAP and RESTful services, rather than invoking those services
directly. These unified interfaces are described using the Minimal
Service Model (MSM), which captures the semantics of services in
a simple RDF ontology, where each service consists of a set of
operations (HTTP methods applied to resources in the case of
RESTful services) plus links to functional classifications and non-
functional properties. Thus, the most important step is the
Semantic Services Authoring, where service descriptions are
annotated with MSM and domain ontologies, and then published
via the iServe platform (Pedrinaci et al., 2010). With these
descriptions, the platform invokes services by instantiating
requests with parameters received into URIs, and then post-
processes service results either to call another service in the
mashup, or to transform them into RDF format to merge them
with other results before sending back the complete answer to the
consumer. The MSM abstraction for both RESTful and SOAP-based
services is similar to the DSL-based representation in (Id. 05).

Fig. 2. Three alternatives to compose RESTful and SOAP-based services (adapted from (Pautasso, 2009)). (a) Direct invocation using BPEL for REST. (b) Wrapping RESTful
services through WSDL. (c) Intermediate abstraction layer to wrap RESTful and SOAP-based services.

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5342
However, in this case all services are invoked in a RESTful way
(through the iServe platform).

A model-driven framework to support dynamic composition of
both SOAP-based and RESTful Web Services is presented in (Far-
okhi et al., 2012) (Id. 07). It comprises three different views. The
Data view represents in a metamodel the composition elements
and their relationships, to construct a composite service. The
Process view defines the process of designing a composite service
and derives models to increase the abstraction, dynamicity and
simplicity level of such process. Finally, the Component view
presents components and their interactions to fulfill the required
tasks. As in (Id. 05) and (Id. 06), the key point of the approach to
compose RESTful and SOAP-based services is their common
representation through a higher level of abstraction. In this case,
the metamodel of the Data view provides the Service element,
which contains all the common attributes for a Web Service, such
as name, type (RESTful/SOAP-based), method name (HTTP meth-
ods or operations respectively), function (the main intent of the
service), URI, parameters, and non-functional requirements (when
provided).

The work in Haupt et al. (2014) (Id. 08) proposes a meta model
for RESTful service composition as an extension of BPEL. The
resulting BPEL processes are also BPEL-compliant processes. To
achieve this goal, authors rely on extension capabilities already
defined in the BPEL language, namely extension activities. For each
HTTP method, a corresponding REST extension activity is defined
in BPEL, also containing its URI and related resources (according to
the HATEOAS principle). This approach is similar to (Id. 01) as it
leverages BPEL extension capabilities to support RESTful services.

Finally, the approach in (Wu et al., 2013) (Id. 09) uses Apache
ODE extensions3 to generate WSDL documents for RESTful services
in order to allow BPEL processes to invoke RESTful services the
same as SOAP-based services. RESTful services are invoked by
sending HTTP requests instead of SOAP messages. Then, a typical
BPEL process can transparently invoke both types of services
through the invoke primitive and the corresponding partner link
pointing to the corresponding service. Service description and
composition into BPEL processes is semi-automatically supported
3 http://ode.apache.org/extensions.
by an ad hoc platform named Service Generation System (SGS),
which is implemented as an Eclipse plugin. As in (Id. 02) and (Id.
03), this work wraps RESTful services into WSDL specifications – in
this case WSDL 1.1 – to transparently call them from a BPEL pro-
cess without modifying this latter.

Figure 2 graphically shows the three alternatives to compose
RESTful and SOAP-based services presented along this section.
Figure 2(a) represents the proposal in (Id. 01) and (Id. 08), which
directly invokes RESTful services extending the BPEL language. In
contrast, Fig. 2(b) wraps RESTful services leveraging the HTTP
binding of WSDL specifications. This allows using both RESTful and
SOAP-based services without modifying the BPEL workflow that
manages the composition – as proposed in (Id. 02), (Id. 03) and (Id.
09). Figure 2(c) shows the third alternative for heterogeneous
service composition. In this case, both RESTful and SOAP-based
services are mapped to a common representation, which allows
composition through an ad hoc composition engine – as proposed
in (Id. 05), (Id. 06) and (Id. 07). Finally, (Id. 04) does not fit in these
models since it is a data-events based approach, where the com-
position flow is determined by monitoring the Web Services
impact on shared data.

4.2. Formalization of RESTful compositions.

An approach to formalize RESTful composition (Zhao et al.,
2011) (Id. 10) encompasses a two-level Linear Logic based program
synthesis procedure. Linear Logic is a resource-sensitive logic in
which any resource can be used only once, and two copies of the
same resource are treated as distinct. Firstly, Linear Logic is applied
at the abstract-resource level, in which business constraints and
resources are expressed as axioms and composition requirements
are expressed as theorems of Linear Logic. A theorem proof is then
performed to determine the possibility of composition, with Web
resources as variables of the axioms. Then, Linear Logic is applied
at service-method level with process calculus (π-calculus), where
RESTful services are also translated to axioms. π-calculus
empowers Linear Logic with concurrent process modeling. The
theorem proof is then performed to determine whether the
composition requirements can be fulfilled by composing existing
RESTful services within the available business constraints. The
whole process guarantees that the composition is both correct and

http://ode.apache.org/extensions

4 http://www.developers.google.com/places.
5 http://www.developer.foursquare.com/.

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 43
complete. The process model derives automatically from the
complete Linear Logic proof, and can then be mapped to a business
process modeling language to execute.

Another work proposes a formal model for describing indivi-
dual RESTful services and automating their composition (Zhao and
Doshi, 2009) (Id. 11). A State Transition System (STS) supports
automatic composition of such services, based on situation cal-
culus, a logic formalism for representing dynamic domains.
Authors classify RESTful services in three types in order to repre-
sent them as STS. Resource Set Services represent a set of domain
resources and are mapped to a set of ontology instances of the
same concept. Individual Resource Services represent the indivi-
dual resources and are mapped to an ontology instance. Finally,
Transitional Services are a special case of transition-oriented
RESTful Web Services, i.e., they consume, create, update or trans-
form states from related resources. Transitional services are for-
mally described as transition rules (between resource states) using
SWRL (Horrocks et al., May 2004), a formal language based on
OWL, and the UML profile RuleML (Boley et al., 2012) (Rule
Markup Language). Unlike (Id. 10), which is based on theorem
proving, (Id. 11) uses a formal model (STS) which intrinsically
represents the HATEOAS principle introduced in Section 2. In this
case, the transitions between states of the STS are analogous to
hyperlink navigation.

The work in (Riabov et al., 2008) (Id. 12) presents MARIO
(Mashup Automation with Runtime Orchestration and Invocation),
a tool to simplify data mashup composition. The composition
engine allows users to explore a space of potentially composable
data mashups and preview composition results as they iteratively
refine their “wishes”, i.e., mashup composition goals. It generates
new flows on demand to match a user' s request. The tool makes
automatic composition approachable by maintaining an abstrac-
tion of taxonomy-extended tag-based search in the space of
existing and generated flows. A formal model based on the Stream
Processing Planning Language (Riabov and Liu, 2005) (SPPL) allows
the formal definition of the compositional semantics of a flow,
capturing inputs/outputs and functional dependencies as planning
primitives. SPPL extends the classical planning formalism by
adding constructs to represent stream processing problems and
automatically build workflows or mashups to solve these pro-
blems. Interestingly, planning is a common alternative to automate
and formalize composition in SOAP-based systems, but only two
approaches (in the scope of this survey) use planning in the con-
text of RESTful composition.

A formal model for RESTful systems is presented in (Zuzak et
al., 2011) (Id. 13). Authors identified that, although formal models
of hypermedia systems in general do exist, neither of such models
cover the fundamentals of REST. Moreover, the models often
include unRESTful properties, such as improperly handling appli-
cation state by overloading the meaning of state (application state,
resource state) or by updating the state without user interaction.
Another concern addressed by the authors is to develop machine-
driven clients for RESTful services, rather than the typical human
clients that interact with RESTful services through a Web browser.
Then, machine-driven clients can lead to machine-to-machine
RESTful interactions and compositions. The work uses a Finite
State Machine (FSM) formalism for modeling and expressing
constraints of RESTful systems. FSMs are a mathematical formal-
ism for describing processes with a finite number of possible states
and sequential state transitions. The feasibility of using FSMs fol-
lows from one of the core principles of the REST style: resource
representation interchange is used for transitioning agents from
one state to another, which suggest the suitability of a state
transition system formalism. (Id. 13) shows that a non-
deterministic FSM with epsilon transitions enables formalization
of the application state following the HATEOAS principle. This is
similar to (Id. 11) which uses STSs rather than FSMs, where the
latter are more restrictive.

A method to formalize context-aware composition of “generic”
services is presented in Zhang et al. (2014) (Id. 14). As the authors
affirm, the scope of Service Computing should cover all kinds of
UDDI-listable services, including both electronic and non-
electronic services, e.g., entertainment services such as restau-
rants, cinemas, etc. In practice, non-electronic services are dis-
covered and composed through RESTful APIs such as Google
Places4 and Foursquare5. Context information such as location,
budget and time is included as soft constraints to provide good
enough solutions when the optimal solution is not feasible. Soft
constraints impose a penalty on certain service assignments rather
than prohibiting them. Then, the composition problem is treated
as a planning and constraint satisfaction problem (Bartak and
Salido, 2011), and solved through a Branch and Bound algorithm
(Leenen et al., 2008). A Branch and Bound algorithm splits the
composition problem into subproblems (e.g., one per context
variable) and calculates bounds for the objective function (i.e., the
composition goal) that are then combined into various good
enough solutions. As in (Id. 12), this approach uses planning to
model and solve the composition problem, but including in this
case context information as soft constraints.

Based on Category Theory (Awodey, 2010), the work in (Li and
Chou, 2014) (Id. 15) presents a language called Categorial Links to
define and compose RESTful services for resource-resource com-
positions. Category Theory is a mathematical theory that studies
relations between categories. Authors affirm that current (non-
standard) languages developed for REST are designed for client-
service interactions, and are not adequate for automatic resource-
resource communications. Thus, to allow composition, a uniform
surface is needed to describe resources. In this sense, a RESTful
system is decomposed into two layers: link category L and
resource category R, and the cohesion between the layers is
maintained by a functor F : L-R. Then, composition is mathema-
tically defined as a transitivity law between links that connect
resources. Categorial links provide a uniform and extensible tool to
model basic, nested and concurrent interactions among RESTful
resources driven by a few algebraic operations. This approach
extends the hyperlink pipeline concept – which will be discussed
in the context of (Id. 20) by formalizing them as categorial links,
through Category Theory.

Finally, the approach in Xie et al. (2013) (Id. 16) presents a
semantic resource service model (SRSM) to combine structural
and transitional semantics for resource-oriented service compo-
sition. Entity-oriented resources represent the object which is
manipulated by a task or process. Other resources are defined as
transition-oriented resources that consume and manipulate other
entity resources. The composition is accomplished by reasoning
over structural and operational semantics defined for entity-
oriented and transition-oriented resources respectively. Struc-
tural semantics are used to match the input and output of services
(i.e., input/output reasoning) as operational semantics are used to
express the functions of services (i.e., pre-condition and effects
reasoning). Thus, the composition is solved as a regression pro-
blem by finding the state transition sequence (by means of
transition-oriented resources) that transfers from the initial state
to the desired end state of the entities. The derived resource
classification is similar to the one presented in (Id. 11): entity-
oriented resources are analogous to individual resources and
resource set services, while transition-oriented resources are
analogous to transitional services.

http://www.developers.google.com/places
http://www.developer.foursquare.com/

6 http://www.w3.org/TR/html5/.
7 http://www.w3.org/TR/webrtc/.
8 https://code.google.com/p/pubsubhubbub/.

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5344
4.3. Pure RESTful service composition

The approach in Pautasso (2009) (Id. 17) establishes a set of
features that should be accomplished by composition languages
for RESTful services: dynamic late binding, dynamic typing,
content-type negotiation, state inspection, and compliance with
the uniform interface principle. The JOpera visual composition
language (formerly presented by the author in Pautasso and
Alonso (2005)) provides a composition environment that supports
those features. This is achieved by two core parts of the language.
An iterative methodology for compositions development with
interactive debugging and testing tools, and feedback information
to gain knowledge about failures during the execution of com-
posed services. Such information allows inferring an improved
composition model.

An approach fully driven by RESTful design principles is pre-
sented in Alarcon et al. (2011) (Id. 18). The authors propose a
hypermedia-driven approach based on the ad hoc language ReLL
(Resource Linking Language) and Petri-Nets. ReLL focuses on
hypermedia characteristics and serves as a description language
for RESTful services, while Petri-Nets allow modeling and early
assessing compositions. RESTful clients discover and decide which
link/controls to follow/execute at runtime satisfying the HATEOAS
principle. According to the authors, RESTful services consider
humans as their principal consumer, explaining the lack of
machine-readable descriptions that forces providers to describe
their APIs in natural language. In contrast, the authors explore the
impact of ReLL descriptions in supporting machines/clients to
automatically navigate, retrieve and compose Web resources. As in
(Id. 17), this approach proposes an ad hoc language to meet
RESTful principles as the authors argue that are not strictly fol-
lowed by available languages. Besides, the ReLL language provides
an automatic support for service discovery and composition,
which is out of the scope of JOpera.

The work in (de Vrieze et al., 2011) (Id. 19) presents a light-
weight Business Process Modeling (BPM) approach that eases the
specification of requirements for process-oriented enterprise
mashups. Firstly, the authors identify features that are inherent to
process-oriented mashups (excluding data-oriented mashups).
Process-oriented mashups fit within the enterprise information
system context, providing support for “upgrading” the mashup to
usage by colleagues with similar issues. They are simple, flexible
applications that solve daily problems; can be created in minutes,
hours, or days, and often by end-users. Also, process-oriented
mashups can be “situational” in nature, easily customised to meet
the unique needs of an individual or situation, by mashing up
functionality from different sources to support new insights.
Finally, process-oriented mashups often support self-service
application development, and they can help make SOA more
business-relevant and visible, increasing reuse of services and
widgets.

Furthermore, the paper propose a preliminary tool that pro-
vides those characteristics. As it is user-oriented, a key part of the
business process mashup tool is the control panel that allows
users to instantiate new processes, view their current processes,
and edit the available process models. After specifying the process
parameters, the user can review, and if necessary edit the process
model through the process viewer. The current state of imple-
menting process-oriented enterprise mashups is on-going. Unlike
previous approaches in this category, (Id. 19) is focused in con-
ceptual modeling of process-oriented mashups rather than
implementing the solution in a particular language.

Another lightweight service composition mechanism in Web
browsers, called hyperlink pipeline (Li et al., 2013) (Id. 20), allows
users to interactively chain distributed atomic Web Services into
composite services similar to using Unix pipelines. Although it is
designed for end-user service composition, hyperlink pipeline
provides advanced features. Unlike consumer-oriented mashup
tools that separate design and execution phases, applications
deployed through hyperlink pipeline can be changed on the fly,
which requires automatic data conversion and pipelining
mechanisms. Also, applications designed using a certain tool
cannot be ported to another tool without changes, while in this
case applications are fully portable as the approach leverages
standardized formats. The functional composition framework
facilitates recursive hyperlink pipeline construction and execution,
based on RESTful services and the HTML56 Microdata model.
Microdata annotates HTML elements with scoped name/value
pairs to customize the available vocabulary, allowing to extend the
entities that are representable (through tags) in the HTML hier-
archy. The proposed mechanism is implemented based on the Web
Real-Time Communication7 (WebRTC) API, which provides con-
structs to implement realtime multimedia applications within a
Web browser. Unlike (Id. 17) and (Id. 18), this approach relies in
existent and standardized models to comply with RESTful princi-
ples, namely HTML5 Microdata model and WebRTC.

The Bite composition language (Rosenberg et al., 2008) (Id. 21)
addresses RESTful service composition into Web-scale workflows.
Bite is a lightweight and extensible composition language that
uses RESTful services as its main composable entities. The Bite
language enables an agile, iterative and community-extensible
development approach, by means of an atomic life-cycle model
(processes are collections whose members are all running process
instances), a lightweight process model (a basic set of predefined
language constructs for specifying the flow), a script-like approach
(by adopting dynamic data types and allowing extensions in any
scripting language), language extensibility (new activity types)
and Web-human integration. The basic Bite process model com-
prises a flat graph containing atomic actions (activities) and links
between them. The set of core activities consist of basic HTTP
communication primitives for HTTP requests, utility activities for
waiting, calling local code, or terminating the flow, and control
helpers, such as external choice and loops. A Bite flow both uses
external services in its flow logic and exposes itself as a service.
The flow approach is similar to the idea of process-oriented
mashup in (Id. 19). Moreover, the Bite language could be an
interesting alternative to implement the business process mashup
tool proposed in (Id. 19).

Business Process Modeling and RESTful push services are
combined in Pautasso and Wilde (2013) (Id. 22) so that business
processes can be modelled and observed in a RESTful way, by
publishing process instances and tasks as resources. Traditional
Web-style interactions are often described as pull (the clients
pulling resource state from the server), and thus the com-
plementary functionality is often described as push, where
resource state changes are pushed to a client. Based on the push
notion, clients can subscribe to be notified via Atom feeds when
certain states in a business process are reached. Different alter-
natives can ensure a timely propagation of notifications, such as
PubSubHubbub8 (PuSH) and WebSocket (Fette and Melnikov,
2011) protocols. Traditionally, feeds are a RESTful pull-oriented
architecture, and clients need to repeatedly pull feeds to become
aware of updates. However, PuSH is a push-oriented protocol
based on Atom feeds that allows clients to be notified of feed
updates immediately, which makes this approach different to all
other approaches within this category. Moreover, the idea of using

http://www.w3.org/TR/html5/
http://www.w3.org/TR/webrtc/
https://code.google.com/p/pubsubhubbub/.

Table 8
Summary of advantages and drawbacks of the analyzed proposals (part I).

Group Id Advantages Drawbacks

Heterogeneous service
composition

01 Process-based composition language tailored to support the
specific properties and constraints of the REST architectural
style

Switching to RESTful services is not transparent, contrary to WSDL
documents wrapping RESTful services, which can cleanly maintain
the existing business process (Peng et al., 2009)

02 Fully automatic RESTful composition through machine-read-
able specifications of services

Semantic annotations are needed to specify RESTful services. This
requires extra effort from developers, potentially preventing its
adoption

03 Conceives RESTful mashups and SOAP-based compositions as
being the same thing from the end users' perspective

Several languages involved may discourage its adoption: WADL for
describing RESTful services, WSDL for atomic services, XUL for user
interfaces, BPEL for composite services

04 No need to create and maintain neither a complete BPM model
nor a workflow specified with an executable language

Spurious data events can led to inconsistent WED-states, thus a
mechanism to handle them properly is needed

05 Facilitates sharing and reusing of mashups through a highly
extensible platform

Limitations inherent to a DSL-approach (non-generic solution,
debugging issues, absence of primitives for GUI description)

06 Accessible, configurable and robust dynamic mashups through
re-binding

Requires semantically annotating atomic services to then compose
them, augmenting the composition burden

07 Combines both RESTful and SOAP based services to design
composite services in a semi-automatic fashion

MD approaches are very exhaustive and costly. The dynamic nature
of RESTful mashups encourages using lightweight approaches as
well as lightweight services

08 The main requirements of REST are explicitly mapped to BPEL
constructs that satisfy them as part of the composition
language

Handling long running processes is difficult and inefficient as REST
lack support to asynchrony. Apush mechanism rather than a polling
mechanism would be more suitable

09 Can be transparently used in current standard BPEL
2.0 execution environments over WSDL 1.1 without
modification

Generates WSDL descriptions for RESTful services, burying the
uniform interface and its various advantages under a RPC-like
envelope

Formalization of RESTful
composition

10 Automatic composition process. Process calculus enables a
straightforward connection to executable business process
languages

Requires formal descriptions and semantic annotations for services,
often unavailable

11 Formal description of the RESTful service composition pro-
blem. Situation calculus-based state transition system for
automatic composition

The proposed typification introduces the overhead of classifying
RESTful services prior to their composition. Adequate and mean-
ingful URIs could replace this classification

12 Iterative definition and refinement of the composition goals,
allowing users to explore potentially compatible services on
the fly

The problem of finding optimal plans is time consuming. SPPL
planners can not guarantee termination in polynomial time

13 A natural formal model for representing RESTful principles Models for complex systems are very large due to the number of
representations of application states and links. Discontinuation in
hyperlinks may introduce failures

14 Context-awareness, support for generic services and soft
constraint satisfaction guarantee “good enough” solutions (i.e.,
compositions) for most scenarios

The approach is not intended particularly for RESTful services but
for ‘generic services’. Thus, it is not compliant with the RESTful
principles listed in Table 2

15 A description language focused on resource-resource compo-
sition, rather than client-service interaction, which fosters
automation

Links between resources are not part of resource representations as
in conventional REST. This idea goes against REST HATEOAS
principle

16 Models both entity-oriented resources and transition-oriented
resources capturing particular semantics of data and
operations

The overhead of the ad hoc semantic resource representation over
OWL and XML metadata is not justified by the little reasoning
applied in the approach

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 45
BPM together with RESTful services is also fostered in (Id. 19), but
in a pull-oriented fashion.

The work in Lanthaler and Gutl (2011) (Id. 23) features a
Semantic Description Language for RESTful Data Services based on
JSON (SEREDASj). JSON (JavaScript Object Notation) is a lightweight
data-interchange format based on a subset of the JavaScript9 stan-
dard. According to the authors, the major problem of RESTful ser-
vices is that no agreed machine-readable description format exists
to document them, which hinders their automatic discovery and
composition. SEREDASj semantic descriptions allow annotating JSON
elements to link them to concepts in an ontology and to further
validate them according flexible rules. Semantically annotated data
(in the form of JSON elements) is the first step for (semi-)automatic
integration with other data sources, i.e., SEREDASj could automate
data-oriented mashup development. Semantic annotation of
resources is a key aspect of the languages proposed in this approach
(SEREDASj) and in (Id. 18) (ReLL).

The approach proposed in Choi (2012) (Id. 24) transforms results
of atomic RESTful services into object instances in the Java language.
9 http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.
pdf.
Then, these object instances can interact with one another in a way
prescribed by the programmer to solve the composition problem.
However, the way in which object instances can interact and then
convert the results into a RESTful-compatible representation is not
addressed in (Id. 24). Easing the adoption of the composition
approach is also a key aspect in (Id. 19), (Id. 20) and (Id. 21), but
addressed in these cases through lightweight ad hoc composition
languages rather than a well-known paradigm as in (Id. 24).

The work in Sepulveda et al. (2014) (Id. 25) identifies key QoS
elements in a RESTful composition as an ontology, particularly for
the security domain. These elements serve to model hypermedia-
based, decentralized security descriptions. The security ontology is
inspired in the WS-Security model for SOAP-based services, but
adapted to a REST ecosystem. The three core concepts of the
ontology are security goals (confidentiality, integrity and identity
authentication), security tokens (hold by service consumers) and
protocols (such as OAuth). The security ontology is put on top of
ReLL service and composition descriptions. ReLL (resource linking
language) presented in (Id. 18) provides automatic discovery and
composition capabilities for RESTful services.

A unified approach to discover the interaction patterns offered
by a resource and its orchestration possibilities is presented in

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5346
Bennara et al. (2014) (Id. 26). To accomplish Linked Data principles
(Bizer et al., May 2009), authors extend a resource with a RDF
descriptor that contains meta-data about the resource together
with information about related resources. Then, from the URI of a
resource it is possible to get its descriptor too, following a generic
interaction pattern. The machine client (a browser plugin) takes
the URI of the first resource as input, then it follows links found in
the metadata and calls HTTP operations on the right resources
with the right data in order to fulfill the user needs. The navigation
process is manually done, but a reasoner could automate the task.
Web browser based discovery and composition was also discussed
in (Id. 20).

The work in Bellido et al. (2013) (Id. 27) analyses and imple-
ments fundamental control-flow patterns of RESTful compositions
through callbacks and redirections. Particularly, this is done
through the extension of the HTTP status codes (3XX). The
approach allows composed resources to delegate control flow to
different services in a decentralized way through status codes,
including sequence, unordered sequence, alternative, iteration,
parallel, discriminator, and selection control flows. For example,
the sequence code (311) indicates the invocation of a service
without any guard condition (sequence control flow), while the
alternative code (312) indicates that the client must choose one
service from a list of available services to be executed next. As in
(Id. 25), services are described by means of ReLL, the ad hoc
description and composition language presented in (Id. 18).

The RESTdoc framework (John and Rajasree, 2013) (Id. 28)
features a combination of microformat markup and RDF Schemas
to describe, discover and compose RESTful services by adding
semantics. Services are described using annotations in the HTML
Table 9
Summary of advantages and drawbacks of the analyzed proposals (part II).

Group Id Advantages

Pure RESTful services
composition

17 Recursive composition where composing a set of R
vices results in another RESTful service, transitively
architectural principles

18 Fully complaint with the HATEOAS (Hypermedia As
Of Application State) property, a core idea of REST

19 Clearly defines process-oriented enterprise applicat
their requirements and the features that they shou

20 Allows dynamic, lightweight and user-guided comp
supported by well-known and standardized model

21 Flexible, agile developing language for Web applica
vides collaborative facilities to build enterprise-sca

22 Push support for RESTful interactions, avoiding HTT
polling through lightweight Atom feeds and the PuS

23 Allows loosely coupled machine-to-machine comm
based on RESTful services automating interactions

24 Allows regular object-oriented programmers to com
services

25 Provides a Security Model upon REST that supports
widely used security approaches for the Web, insp
WS-Security standard for SOAP

26 The resource header is imbued with a lightweight
description that eases automatic service discovery
position with little overhead

27 Decentralized implementation of control-flow patt
most desirable RESTful properties for compositions

28 Reuses existing documentation of services making
readable through annotations

29 Runtime, semi-automatic decision-making support
current adaptation of multiple RESTful business pro
instances
code of Web pages, while RDF/RDFS is used to describe relation-
ships (links) between services. This enables either a Web browser
driven discovery or an automatic discovery approach, and finally
compose services as a graph of resources. However, this last cap-
ability is only superficially described. This approach is comparable
to other semantic description solutions such as SEREDASj (Id. 23)
and ReLL (Id. 18). However, RESTdoc provides a lightweight
semantic description embedded in the HTML code of Web pages
that contain resources, while the other approaches provide sepa-
rate representations of semantics as JSON (SEREDASj) or XML
(ReLL) documents.

Finally, the last work under analysis regarding pure RESTful
composition approaches is presented in (Lu et al., 2015) (Id. 29).
RESTfulBP is an architecture that uses REST in business process
design, implementation and execution to improve adaptability.
RESTfulBP business processes are modelled in a declarative way
and reusable process fragments are linked dynamically. Models are
described through BPMN plus ad hoc annotations that describe
both process fragment constraints (e.g., pre-/post-conditions) and
decision-making points where dynamic adaptation may take
place. An automatic decision-making module implements busi-
ness rules and policies as constraints. Such module performs
dynamic workflow adaptation and reshaping to maximize the
overall business value of the process, by dynamically linking pro-
cess fragments. Pure RESTful business processes are also discussed
in (Id. 19), (Id. 21) and (Id. 22), but in this approach the abstract
workflow shape can be dynamically modified by invoking different
process fragments.
Drawbacks

ESTful ser-
holding the

Poor support for content type negotiation, state managent, security
and scalability concerns

The Engine Ad hoc metamodel. Introduces coupling between clients and servers
(as both need to know the mediating metamodel). Generates sta-
ticcomposite services as a result

ions, with
ld provide

The process-oriented enterprise mashup system is at a preliminary
stage, which is insufficient to demonstrate the suitability of the
approach

osition
s and APIs

Client-side service description and hyperlink compatibility tests
imply extra burden which is not always acceptable for low-end
clients

tions. Pro-
le mashups

The Bite language does not give a direct representation for some of
the REST interaction primitives (e.g., the PUT verb is not supported)

P long
H protocol

Push interactions hinders understandability of the approach, having
different macro and micro roles in the interaction at the same time

unication The suitability of the semantic description language is not empiri-
cally demonstrated or deeply discussed in the context of RESTful
service composition

pose Supports only XML-formatted output for RESTful services, does not
address the re-conversion from objects execution results to the
output of a composite service

the most
ired in the

The ad hoc metamodel introduces coupling between clients and
servers. QoS is considered but only directed towards security

semantic
and com-

The descriptors only provide naïve information about resources,
which is easily deductible. The composition task is still manually
performed

erns holds The use of an ad hoc language goes against standardization making
the approach less interoperable

it machine- Composition is merely mentioned as an extension of discovery. Even
though RESTful properties are claimed to be satisfied, discussion
about this is very shallow

for con-
cess

The adaptation handler is fairly complex. This complexity is only
justified with a high number of similar users running workflow
instances in parallel

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 47
5. Discussion

When analyzing the RESTful service composition approaches
presented in Section 4, we identified different key aspects, which
are discussed in this section. As a summary, Tables 8 and 9 collect
the advantages and disadvantages of each analyzed approach.
5.1. Agreement to standards

Standards have been key enablers of SOAP-based Web Services
adoption and deployment in the past (Curbera et al., 2002).
However, when it comes to RESTful service composition, there is
no robust and common agreement on standards yet. Thus, it
becomes difficult to engage composition solutions, while stan-
dards remain narrowly adopted: only 20% of the analyzed
approaches (6/29) embrace consolidated standards. In certain
cases, some standards may be referred but the implementation is
based on stand-alone solutions.

Several initiatives have been conducted to provide standards
that enable adoption of RESTful services. For instance, WADL and
hRESTs have been incepted for creating functional descriptions,
which eases discovery and composition; or MicroWSMO and SA-
REST for semantically annotating services, which allows machine-
to-machine automatic interoperation. However, none of them
gained broad support so far to become an agreed standard (Lan-
thaler and Gutl, 2010; Peng et al., 2009; Pautasso, 2009; Nacer and
Aissani, September 2014). This is due to the fact that RESTful
approaches are less mature than SOAP-based approaches. Also, the
proposed standards for machine-readable RESTful services
descriptions have not been widely adopted so far. Machine-
readable descriptions allow to interpret the service documenta-
tion to then automatically build powerful discovery and compo-
sition methods. In contrast, SOAP-based services are experiencing
an increasing adoption of semantic descriptions, such as OWL-S, to
automate discovery and composition activities. In consequence,
RESTful services are almost exclusively oriented to human-
readable documentation describing the URIs and the data expec-
ted as service inputs and outputs (Lanthaler and Gutl, 2011;
Immonen and Pakkala, 2014).

The standardization process itself reflects the different decision
criteria that academia, vendors and users have. According to dif-
ferent authors, the standardization process also involves a social
dimension (Zur Muehlen et al., 2005; Vinoski, 2007). Academic
organizations run and support non-profit standardization ventures
such as W3C, which grants standards adopters with royalty-free
licenses of use. The economic interest, the sense of influence and
the ownership of software vendors as standards-submitting par-
ties may be affected by these policies. Thus, software vendors tend
to discuss their proposals in other organizations that they control,
such as OASIS. Moreover, industry users of standards join together
and run a different standardization process, which is centered on
the business rather than the technology. For industry users, the
agreement is more important than the technical details, and can
overcome any implementation inefficiencies. That is the case of
certain domain-oriented standards such as SWIFT (for the financial
industry), HL7 (for the healthcare industry) and ACORD (for the
insurance industry) (Zur Muehlen et al., 2005). In the case of
RESTful services, there is no prevailing organization leading the
standardization process yet, neither from the industry nor the
academia. However, these RESTful services are still maturing, and
following a natural process of practice dictating the upcoming
standards (Adamczyk et al., 2011).
5.2. Impact of legacy composition views

The current interest in Web Services is focused on issues that
have a long history in the workflow community (Zur Muehlen et
al., 2005). Several RESTful composition approaches have actually
adopted the workflow view alone or in combination with the
mashup view, totaling 35% of the analyzed approaches. Notably,
the majority of these approaches belong to the Heterogeneous
Service Composition category (presented in Section 4.1). The most
common solution for integration and interoperability between
RESTful and SOAP-based services has been bringing RESTful ser-
vices to the well-known field of workflow development. Likewise,
it is not a coincidence that a business-oriented language such as
BPEL had been selected in most cases for representing the work-
flow view in practice.

Another interesting finding is the low presence of the choreo-
graphy view among RESTful service composition approaches –

only 2 recent approaches presented choreography view. Choreo-
graphies track the message sequences between multiple Web
Services seen from the perspective of multiple parties. However,
RESTful composition is still seen from a one-party perspective: a
consumer (human or machine) navigating hyperlinks instead of a
composition of collaborating services without a centralized con-
trol. This evidences the preliminary evolution stage at which
RESTful service composition currently is w.r.t. global integration.
The developer has to manually generate integration layers
between services to build up the composition, which forces a
centralized control. The efforts to automate this process with, for
instance, semantic annotations (as in Id. 25, Id. 26), contribute to
decentralization of RESTful compositions, to eventually lead to
RESTful choreographies in a multiple-vendors service environ-
ment (Lanthaler and Gutl, 2010).

5.3. Takeoff from data-oriented mashups

In the early years of RESTful mashups they were mainly data-
oriented (Sheth et al., 2007). This means that mashups were
composed by piping one service output into the next service input
while filtering content and making slight format changes. This
approach limits the number of atomic services that can interact
into a mashup application. Typically, they deal with in-house
services of an organization, or services that have common out-
puts (such as RSS or Atom). Nowadays, the transition to RESTful
process-oriented mashups implies a takeoff from traditional
mashups, overcoming the data-level integration problem where a
50% of the mashup approaches proposed a process-oriented
mashup solution for the RESTful composition problem. Process-
oriented mashups bring RESTful services to the enterprise, solving
both business and IT challenges. This is particularly useful for
small, medium and virtual enterprises that have less resources to
create heavyweight BPM solutions – e.g., with SOAP-based services
and BPEL or other workflow approaches (de Vrieze et al., 2011).
However, these scenarios present challenges that mashups are still
immature to deal with, such as security, authorisation and QoS. In
contrast, these challenges are addressed by the different WS-n
protocols for SOAP-based services (Vinoski, 2007).

5.4. Tradeoffs between complexity of materialization and
interoperability

Figure 3 plots the tradeoff between complexity of materializa-
tion (x-axis) and interoperability (y-axis) of composition approa-
ches. Heavyweight approaches are rigorous, formal and standard-
oriented, fostering interoperability. However, they tend to be
costly to deploy and use, which hinders their adoption. On the
other hand, lightweight approaches can be built with minimal

Fig. 3. Plot of analyzed approaches according to two key dimensions: complexity of materialization and interoperability.

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5348
tooling, at low cost and with a low adoption barrier, but tend to be
ad hoc in terms of materializing technology, less maintainable,
small-scaled and restricted (Immonen and Pakkala, 2014).
Although most of the analyzed approaches are ad hoc, the trend
shows that composition solutions that pursuit large-scale inter-
operability are heavyweight. In terms of architectural decisions
(Pautasso et al., 2008), this tradeoff could be decomposed and
assessed at different technological dimensions of a RESTful
system:

� Payload format: The developer may choose among a variety of
MIME types for representing resources. This can hinder the
interoperability of a RESTful service, as – for example – clients
expecting data in a JSON format will not be able to parse a XML
payload. Also, a RESTful service capable of retrieving resources
in multiple representation formats requires more maintenance
effort. However, the benefit of preferring a lightweight format
such as JSON over XML can outweigh the extra effort and the
lack of interoperability with a significant reduction in network
overhead and parsing effort. Meanwhile, the agreement over a
payload format can foster interoperabiltiy in the future.

� Service description: RESTful services have adopted a human-
oriented approach based on informal, textual descriptions,
giving developers extensive documentation of the API of the
provided service. This is neither lightweight nor interoperable.
However, developers can use a variety of languages to describe
services, ranging from small-sized interfaces described in LPML
and microformats (lightweight), to complex interface descrip-
tions in BPEL4REST and WADL (heavyweight).

� Service composition: RESTful Web services can be composed
using the WSDL-based invocation abstractions provided by, for
instance, WS-BPEL (Overdick, 2008). Although this enables
REST/SOAP interoperability, the lack of formally described
interfaces for RESTful services and the possibility of not always
using XML messages can make the composition process cum-
bersome. The lightweight alternative for composition of RESTful
services are mashups, which are transitioning from their usage
in ad hoc data-level integration to enterprise-level integration,
as discussed in Section 5.3. However, the current maturity stage
of mashups still fits better for ad hoc integration over the Web.

Other technological dimensions such as the transport protocol
(HTTP), security (HTTPS over SSL) and service identification (URIs)
do not provide alternatives so far to balance the tradeoff between
complexity of materialization and interoperability.

5.5. REST principles adherence

As shown in Table 7, many of the analyzed solutions do not
fully adhere to REST principles: only two approaches satisfy all the
four properties. The average number of satisfied properties is
2 out of 4.

Lightweightness was discussed in Section 5.4, as a property
which has to be balanced with the interoperability of RESTful
composition approaches. This property is fulfilled by 41% of the
analyzed approaches.

Some of the analyzed approaches heavily rely on a RPC (Remote
Procedure Call) operation-based model ignoring the under-
standable and declarative fundamental architectural properties of
REST. Instead of focusing on describing resource representations
they fall into an RPC-like model describing the inputs and outputs
for operations, which results in tight coupled, unclear and proce-
dural descriptions of services. Consequently, these approaches do
not align well with the RESTful services design principles (Lan-
thaler and Gutl, 2011). From the analyzed approaches, a 48% and
52% are understandable and declarative, respectively.

With regard to scalability, RESTful services are, by definition,
highly scalable. The Web itself is the best example, since it is a
worldwide REST-based architecture (Fielding, 2000). RESTful
composition approaches built upon this architecture should scale
in the same way. However, many of these solutions do not even
mention this issue. Some authors barely acknowledge scalability as
a RESTful property, and thus the proposed composition approa-
ches lack it: only 31% of them address scalability. It can be
expected that in the following years, RESTful approaches will put
more emphasis on this issue while they exploit lightweight,
understandable and declarative interfaces as well.

5.6. Support for full automation

Only 7% of the analyzed approaches support full automation of
the composition process, while 41% provide semi-automatic
mechanisms. Although automation can be seen as a desirable
feature, many proposals provide facilities for manual or semi-
automatic composition by end users, thus full automation is out of
their scope. Manual composition frameworks assist the user to

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 49
sketch the composition either graphically or through a text editor,
such as (Id. 17) and (Id. 20). Semi-automated composition tech-
niques make suggestions for service selection during the compo-
sition process, such as (Id. 06) and (Id. 12).

5.7. Dynamic definition and binding for flexible composition

Dynamic service composition enables for more flexible and
adaptive applications. This seems to be in line with the REST
principles that pursuit simplicity and flexibility, with 52% of the
analyzed approaches providing dynamic or hybrid service com-
position. On the other hand, static service composition suits better
for designing complex interaction patterns often present in B2B
applications which are easy to foresee at design time. Approaches
that bring RESTful services to business scenarios in the form of
process-oriented mashups are mainly static (or hybrid). However,
recent approaches for REST-enabled business processes show a
trend in dynamic binding and runtime adaptation.

5.8. Ad hoc service and service composition specifications

This feature identifies which specifications a composition sys-
tem supports for sketching either required services or composi-
tions. Interestingly, a high number of the analyzed approaches
(62%) developed their own ad hoc specifications for either atomic
services or compositions. This suggests that researchers do not
consider suitable any of the existing languages to describe services
and compositions. Probably, existing languages do not capture the
requirements of RESTful service composition, which is another
indicator that there is room for improving such languages.

5.9. Adaptation support

According to the literature (Benatallah et al., 2005; Esla-
michalandar et al., 2012; Motahari Nezhad et al., 2007; Cardellini
et al., 2012), adaptation can be performed from a concrete com-
position perspective and/or an abstract composition perspective.
In the former case, in turn, interface adaptation addresses
incompatibilities in service operation signatures, protocol adap-
tation addresses behavioural mismatches, and workflow re-
binding implies changing atomic services of a composition upon
detecting context changes, QoS infringements or component fail-
ures. In the present survey, 35% of the approaches addressed
adaptation at some extent from the concrete perspective. Incom-
patibilities at interface level do not affect RESTful compositions as
long as the uniform interface constraint is satisfied: their inter-
action is prescribed, at syntactic level, to the HTTP operations.
Adaptation from an abstract composition perspective (i.e., chan-
ging the composition shape at runtime) is only addressed by one
approach, particularly through runtime process fragment swap-
ping in the context of RESTful business processes (Lu et al., 2015),
which also comprises adaptation from a concrete perspective
(workflow re-binding). The majority of the approaches are not
concerned with adaptation as a key issue yet. Nevertheless, as
RESTful services are fine-grained, the required adapters may be
simple and easy to generate automatically.

5.10. Support for static/dynamic Verification and Validation

The Verification and Validation feature is addressed by a 35% of
the analyzed approaches. Verification checks the maintenance of
certain desirable properties of the composite service with respect to
the individual composed services. Five of the V&V-centered
approaches provide verification upon a formal basis such as Finite
State Machines, State Transition Systems or Planning. Other
approaches use runtime monitoring and testing to ascertain
properties of the composition. Recently, dynamic quality verification
have been seen as more and more crucial in development of service-
oriented systems (Immonen and Pakkala, 2014). However, Verifica-
tion and Validation remain unexplored in RESTful composition.
These topics could be addressed by extending the aforementioned
techniques and applying them considering the dynamic approach to
composition fostered by REST: it may become difficult to statically
verify properties of a composition at design-time. Thereby, testing at
run-time becomes critical to check properties of the composite
service while managing the independent evolution of the under-
lying RESTful services (Pautasso, 2009).

5.11. QoS-awareness

Notably, only 17% of the analyzed approaches mentioned
Quality of Service or Non-functional properties, albeit superficially.
RESTful services today ignore QoS requirements; their main con-
cern is providing functional interfaces (Adamczyk et al., 2011).
Machine-readable specifications for external services describing
functionality or QoS are still unrealistic. A mature Web Service
composition platform should support the specification, monitoring
and dynamic agreement of QoS (Garriga et al., 2015). As a first
step, a commonly agreed language for describing the QoS para-
meters and a mechanism to incorporate the description in the
HTTP payload is needed. A standard QoS description language, at
least for atomic RESTful services, might come from ontologies and
semantic descriptions proposed by the Semantic Web community,
such as SA-RESTS (Sheth et al., 2007) or SWEET (Maleshkova et al.,
2009). These descriptions define common ways of interpreting
information, such as QoS parameters, enabling all clients to
interpret them the same way. QoS ontologies have been suggested
recently on the basis of the specification benefits of ontologies in
general. However, the solutions are diverse, which reveals the lack
of standardization (Immonen and Pakkala, 2014). Despite ontolo-
gies, quality policies (ISO, 2008) can be used to generate quality
objectives, and they also serve as a general framework for QoS-
awareness. Moreover, model-driven approaches can define QoS in
any of the Platform Independent Models (PIMs), as outlined in the
Input Model of (Id. 07), where QoS is represented as constraints,
e.g., availability470% or responseTimeo0:5 s. These QoS notions
for atomic RESTful services could be extended in the future to
support QoS-aware RESTful service composition.

In contrast, SOAP-based approaches provide QoS-aware dis-
covery and composition mechanisms, either by leveraging typical
service descriptions (Al-Masri and Mahmoud, 2007) (represented
by the WSDL, UDDI and SOAP triad), by adding a semantic QoS
description in the form of ontologies, or by representing the
composition as an optimization problem (Strunk, 2010). QoS-
aware RESTful service composition might benefit from the work
in SOAP-based composition as well.
6. Future research possibilities

As we pointed out in the previous section, the analysis leads to
different research challenges in RESTful service composition.
However, it is still unclear how and in which order researchers
could address these challenges. In this section, we draw a paral-
lelismwith the evolution of SOAP-based service composition, in an
attempt to foresee the evolution of RESTful service composition.
We hypothesize that the latter could evolve in a similar way, but
the evolution of RESTful service composition has been taking place
with a difference of 5–10 years w.r.t. its close relative. Section 6.1
looks back at the challenges in early years of SOAP-based service
composition, and their current state in RESTful service composi-
tion. Section 6.2 points out current, open challenges in SOAP-based

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5350
service composition and their correlation with RESTful service
composition as well.

6.1. Early days of SOAP service compositions – how to define and
automate a service composition

In the early years of SOAP-based service composition, according
to different surveys (Rao and Su, 2004; Srivastava and Koehler, 2003)
the literature mainly focused on two aspects, discussed below.

Definition of clear/standard steps for Web Service composition:
Although sometimes named differently, the commonly agreed
steps for Web Service composition mainly consisted in:

� modeling the abstract composition, where a process generator
(either machine or human) tries to solve a certain complex
functional requirement by composing simpler, abstract
functionalities;

� composing (binding) abstract functionality from this composi-
tion model to concrete services, where the process generator
takes the functionalities of services as input, and outputs a set of
selected atomic services and the control/data flow among these
services in the process model;

� executing the composition, which basically consists in sending a
sequence of messages between concrete services according to
the process model. The data flow of the composite service is
defined as the transfer of output data from an executed atomic
service to the input of an atomic service to be executed; and
finally

� verifying the composition flow according to different properties
or by their overall utilities based on the non-functional attri-
butes provided by the process generator.

These aspects are still under discussion for RESTful composition,
where some efforts consider humans as the principal consumer/
composer for RESTful services (Alarcon et al., 2011; Rosenberg et
al., 2008), which explains the lack of machine-readable descrip-
tions, and the massification of user-driven composition
approaches. However, other authors claim that the absence of an
agreed machine-readable description format is a major problem,
which severely hinders the definition of techniques for automatic
discovery and composition (Lanthaler and Gutl, 2010; Nacer and
Aissani, September 2014).

Classification and characterization of Web Service composition
solutions: On one side, industry and business solutions are mainly
workflow-based, where the interface description of Web Services
is typically defined in WSDL. Service interactions and message
exchange are described in a standard business protocol specifica-
tion language (such as BPEL4WS), which specifies the allowed
roles and message exchange schemes. The industry approach looks
at composite services mainly from the perspective of runtime
functions, data and control flow. On the other side, academic
solutions are mainly based upon the Semantic Web and planning
notions from the AI field. Service developers annotate service
capabilities, inputs (pre-conditions) and outputs (post-conditions)
in some semantic language such as OWL-S, relying on ontologies
to formalize the domain concepts shared among services. Then,
given a goal description, a planner outlines the appropriate plan
for composing published Web Services.

This classification seems to hold for RESTful services as well.
Process-oriented mashups (de Vrieze et al., 2011), extended busi-
ness composition languages (such as BPEL4REST (Pautasso, 2009))
and RESTful compositions with an alike workflow view align with
the notions found in SOAP-based compositions used in the
industry and business solutions. In contrast, RESTful composition
approaches based on semantic annotations (Lanthaler and Gutl,
2011), planning (Riabov and Liu, 2005) and formalization (Zhao et
al., 2011) align with academic solutions from the SOAP side.
6.2. Present days of SOAP service compositions – how to achieve
adaptive, scalable, trustworthy service composition approaches

Nowadays, the issues related to defining, classifying and char-
acterizing composition solutions mentioned in the previous sec-
tion are assumed as solved. However, according to the literature
(Sheng et al., 2014; Issarny et al., 2011) new open issues have
arisen in SOAP-based service compositions because of the chal-
lenges posed by new usage scenarios/research areas which were
born in the last years, such as the Internet of Services, Mobile
Computing and Pervasive Computing. Some of them are partially
solved by current approaches, but need further improvement.
Also, some advantages of RESTful services such as lightweightness
and scalability can be exploited in this context.

Correctness: In recent years, model checking and verification of
SOAP-based service compositions have become active research
topics. However, more research is needed for developing novel
solutions and tool sets for correct services composition. As seen in
Section 5.10, this aspect also remains rather unexplored for
RESTful compositions.

Malleability: Nowadays, the environment in which composite
services are developed and executed has become more open,
dynamic, and ever changing. This raises several malleability issues
including self-configuring, self-optimizing, self-healing, and self-
adapting. This may involve devices with limited resources and
computational capabilities. Thus, the algorithms for designing and
dynamically adapting the compositions need to be efficient. In this
sense, RESTful services could be the way ahead because of their
lightweightness and simplicity.

Pervasiveness: Composing services across multiple mobile
devices presents new challenges from that of traditional services
composition settings. In particular, composition in pervasive
environments must address context awareness, heterogeneity,
contingencies of devices, and personalization. In this context,
further research in RESTful services could provide interesting
solutions due to their inherent technological portability. A perva-
sive environment also raises the need of adopting appropriate
semantic technologies, shared standards and mediation, which are
required to assure semantic interoperability (Guizzardi, 2005;
Nacer and Aissani, September 2014) of heterogeneous entities
such as mobile devices, sensors, and networks.

Security support Apart from functional aspects, non-functional
composition properties concerning security and trust are crucial
for the adoption of composition technologies. Security issues must
be considered to adequately handle critical data from users. Sev-
eral specifications for SOAP-based Web Service security have been
proposed as a part of the WS-n stack, such as WS-Security, WS-
Trust and WS-Federation, although none of them has been broadly
adopted. In contrast, RESTful composition only supports HTTPS
(HTTP over SSL) as the default security mechanism so far.

Scalability: In a new environment which empowers users who
are now becoming “prosumers” (Issarny et al., 2011) (i.e., both
producers and consumers), it is still unclear how to combine the
need to aggregate several services, maintain their QoS, and keep
the composition coupling level as low as possible. In the context of
REST, notions of enterprise mashups could be exploited to com-
pose RESTful services at large, while QoS have not been addressed
yet. Additionally, the coupling level increases as different partici-
pant RESTful services have different URIs which are not directly
interchangeable.

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 51
6.3. Conclusions

RESTful service composition and mashups are in an earlier
stage of evolution compared to SOAP-based composition. They are
transitioning from the mere description and classification of ser-
vices and compositions to more advanced features such as those
already addressed for SOAP-based services. This is evidenced by
the challenges of RESTful services composition discussed so far,
which still include:

� an explicit, machine-readable description format to represent
RESTful services, ranging from a Microformat or RDF tagging, to
more complex ontologies such as OWL-S, which will allow
machine reasoning upon RESTful services and compositions.
However, dealing with ontologies is already hard, as the
heterogeneity problem has now moved to the ontology abstrac-
tion level itself – i.e., it is also a problem about ontological
foundations (Guizzardi, 2005). Meanwhile, those semantic
descriptions for RESTful services must also cover REST princi-
ples. This can led to tradeoffs, as discussed for the lightweight
principle in Section 5.4;

� a composition language tailored for RESTful services, which
allows users to construct a composite RESTful service and
effectively deal with the dynamic, heterogeneous nature of
RESTful services; and

� a state management method, intended to handle the state of the
application which is not attributable to RESTful services since
they are stateless by definition.

We believe that open standard agreement is the basic prerequisite
for achieving high interoperability and compatibility, being a key
issue to be addressed. A standardized service composition
approach can assure compatibility with any third-party service
and achieve greater re-usability. Finally, standardized composite
services can collaborate with partners for better data portability.
7. Final remarks

In this paper, we have presented a survey of recent proposals in
the newborn field of RESTful service composition. We employed
two sets of features to analyze, compare and contrast current
composition approaches: eight general features applicable to both
RESTful and SOAP-based composition approaches, and four spe-
cific features inherent to REST properties.

RESTful composition approaches are fairly new but in our view
a significant maturation is expected in the following years. To the
best of our knowledge, the first approaches appeared in 2008 and
their number is gradually increasing year by year. Meanwhile,
RESTful service composition is experiencing a transition to a
robust and holistic framework. In addition, recent efforts have
demonstrated the potential of integrating both SOAP-based and
RESTful Web Services in a proper new service ecosystem or
“Internet of Services”, in which machine readable descriptions
allow automatic discovery, composition and communication of
collaborative services (Lanthaler and Gutl, 2010). The adoption of
SOA principles also allows for decomposing complex and mono-
lithic systems into ecosystems of simpler and well-defined ser-
vices (Schroth and Janner, 2007). The use of principles such as
common interfaces and standard protocols gives a horizontal view
of an enterprise system (Atzori et al., 2010).

In addition, while analyzing the proposals we found different
perspectives in the “REST vs. SOAP” debate. However, according to
different authors, the alleged debate seems meaningless, since
RESTful and SOAP-based services have different objectives, are
better suited for certain contexts, and can even be used in
conjunction (Vinoski, 2007; Pautasso et al., 2008; Farokhi et al.,
2012). Individually, RESTful services can be more scalable, reliable
and visible, and better fitting for ad hoc integration at Internet-
scale. However, composition approaches built upon RESTful ser-
vices may lack some of these properties – e.g., scalability. SOAP-
based services can be used for enterprise level application inte-
gration where QoS, reliability and message-level security are cri-
tical (Pautasso et al., 2008; Lanthaler and Gutl, 2010). Recent
efforts in large-scale legacy system migration to services have
demonstrated the suitability of SOAP-based technologies and
standards (Rodriguez et al., 2013). In this sense, both perspectives
could benefit each other: incorporating concepts from SOAP-based
composition will endow the Web 2.0 platformwith a powerful and
highly usable integration paradigm; while REST architectural
principles – and the Web platform as a whole – may enrich the
enterprise community by integrating RESTful services with tradi-
tional back-end systems (Rosenberg et al., 2008).

However, RESTful services still suffer from shortcomings on
semantically describing, finding and composing services as well as
the absence of a holistic framework covering the entire service
lifecycle. The main reason for these issues is the lack of an agreed
standard to materialize RESTful services and compositions. None
of the proposed approaches or their satellite languages have
gained broad support so far (Lanthaler and Gutl, 2010). Conse-
quently, it is expected that research efforts in the area will focus on
addressing these issues, which are indeed critical for the success of
RESTful services and compositions.
Acknowledgements

We acknowledge the financial support provided by grants PICT
2012-0045 (ANPCyT), and 04/F001 (UNComa). We would like to
thank the anonymous reviewers for their helpful comments to
improve the quality and scope of this work.
References

Adamczyk P, Smith PH, Johnson RE, Hafiz M. REST and Web Services: in theory and
in practice. REST: from research to practice. New York, USA: Springer; 35–57.

Alarcon R, Wilde E, Bellido J. Hypermedia-driven RESTful service composition. In:
Maximilien E, Rossi G, Yuan S-T, Ludwig H, Fantinato M, editors, Service-
oriented computing. Lecture notes in computer science, vol. 6568. Berlin,
Heidelberg: Springer; 2011. p. 111–20. [Online]. Available from: 〈http://dx.doi.
org/10.1007/978-3-642-19394-1_12〉.

Al-Masri E, Mahmoud QH. Qos-based discovery and ranking of web services. In:
Proceedings of 16th international conference on computer communications
and networks (ICCCN). IEEE; 2007. p. 529–34. Honolulu, Hawaii.

Atzori L, Iera A, Morabito G. The internet of things: a survey. Comput Netw 2010;54
(15):2787–805.

Awodey S. Category theory. New York, USA: Oxford University Press; 2010.
Bartak R, Salido M. Constraint satisfaction for planning and scheduling problems.

Constraints 2011; 16(3): 223–7. [Online]. Available from: 〈http://dx.doi.org/10.
1007/s10601-011-9109-4〉.

Bellido J, Alarcón R, Pautasso C. Control-flow patterns for decentralized RESTful
service composition. In: ACM Transactions on the Web vol. 8(December (1)),
2013. p. 5:1–30. [Online]. Available from: 〈http://doi.acm.org/10.1145/2535911〉.

Benatallah B, Casati F, Grigori D, Nezhad H, Toumani F. Developing adapters for web
services integration. In: Pastor O, Falcao e Cunha J, editors, Advanced infor-
mation systems engineering. Lecture notes in computer science, vol. 3520.
Berlin, Heidelberg: Springer; 2005. p. 415–29. [Online]. Available from: 〈http://
dx.doi.org/10.1007/11431855_29〉.

Bennara M, Mrissa M, Amghar Y. An approach for composing RESTful linked ser-
vices on the web. In: Proceedings of the 23rd international conference on
World Wide Web Companion (WWW Companion); 2014. p. 977–82. [Online].
Available from: 〈http://dx.doi.org/10.1145/2567948.2579222〉.

Benslimane D, Dudstar S, Sheth A. Service mashups: the new generation of web
applications. IEEE Internet Comput 2008;12(5):13–5.

Berbner R, Spahn M, Repp N, Heckmann O, Steinmetz R. Heuristics for QoS-aware
web service composition. In: Proceedings of the international conference on
web services (ICWS). IEEE; 2006. p. 72–82, Chicago, USA.

http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref1
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref1
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref1
http://dx.doi.org/10.1007/978-3-642-19394-1_12
http://dx.doi.org/10.1007/978-3-642-19394-1_12
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref4
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref4
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref4
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref5
http://dx.doi.org/10.1007/s10601-011-9109-4
http://dx.doi.org/10.1007/s10601-011-9109-4
http://doi.acm.org/10.1145/2535911
http://dx.doi.org/10.1007/11431855_29
http://dx.doi.org/10.1007/11431855_29
http://dx.doi.org/10.1145/2567948.2579222
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref10
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref10
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref10

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–5352
Bizer C, Heath T, Berners-Lee T. Linked data – the story so far. Int J Semant Web Inf
Syst May 2009;5(3):1–22.

Bojanic P. The joy of XUL 〈https://developer.mozilla.org/en-US/docs/The_Joy_of_
XUL〉; 2003.

Boley H, Athan T, Paschke A, Tabet S, Grosoft B, Bassiliades N, et al. RuleML version
1.0; April 2012. 〈http://ruleml.org/1.0/〉.

Bozkurt M, Harman M, Hassoun Y. Testing and verification in service-oriented
architecture: a survey software testing. Verif Reliab 2013;23(June(4)):261–313.

Canfora G, Di Penta M, Esposito R, Perfetto F, Villani M. Service Composition (re)
binding driven by application-specific qos in service-oriented computing
(ICSOC). In: Dan A, Lamersdorf W, editors, Lecture notes in computer science,
vol. 4294. Berlin, Heidelberg: Springer; 2006. p. 141–52. [Online]. Available
from: 〈http://dx.doi.org/10.1007/11948148_12.

Cardellini V, Casalicchio E, Grassi V, Iannucci S, Lo Presti F, Mirandola R. MOSES: a
framework for QoS-driven runtime adaptation of service-oriented systems.
IEEE Trans Softw Eng 2012;38(September–October (5)):1138–59.

Cardoso J, Sheth A, Miller J, Arnold J, Kochut K. Quality of service for workflows and
web service processes. Web Semant: Sci Serv Agents World Wide Web 2004;1
(3):281–308.

Chakraborty D, Joshi A. Dynamic service composition: state-of-the-art and research
directions. Technical Report TR-CS-01-19, University Of Maryland, Baltimore;
December 2001.

Choi M. RESTful web service composition. In: Park JJJH, Leung VC, Wang C-L, Shon T,
editors, Future information technology, application, and service. Lecture notes
in electrical engineering, vol. 164. Netherlands: Springer; 2012. p. 569–76.
[Online]. Available from: 〈http://dx.doi.org/10.1007/978-94-007-4516-2_58〉.

Crasso M, Rodriguez JM, Zunino A, Campo M. Revising WSDL documents: why and
how. IEEE Internet Comput 2010;14(5):48–56.

Crasso M, Zunino A, Campo M. A survey of approaches to web service discovery in
service-oriented architectures. J Database Manag 2011;22(January–March
(1)):102–32.

Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana S. Unraveling the
web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet
Comput 2002;6(2):86–93.

Daniel F, Pernici B. Web service orchestration and choreography: enabling business
processes on the web in e-business models, services and communications. In:
Lee I, editor. IGI global; 2008. p. 250–73 chapter 12.

De Giorgio T, Ripa G, Zuccala M. An approach to enable replacement of SOAP ser-
vices and rest services in lightweight processes. In: Current trends in web
engineering. Daniel F, Facca FM, editors, Lecture notes in computer science, vol.
6385. Berlin, Heidelberg: Springer; 2010. p. 338–46. [Online]. Available from:
〈http://dx.doi.org/10.1007/978-3-642-16985-4_30〉.

de Vrieze P, Xu L, Bouguettaya A, Yang J, Chen J. Building enterprise mashups.
Future Gener Comput Syst 2011;27(5):637–42.

Eslamichalandar M, Barkaoui K, Motahari Nezhad HR. Service composition adap-
tation: an overview. In: Proceedings of the international workshop on
advanced information systems for enterprises (IWAISE). IEEE; 2012. p. 20–7.
Constantine, Algeria.

Farokhi S, Ghaffari A, Haghighi H, Shams F. MDCHeS: model-driven dynamic
composition of heterogeneous services. Int J Commun Netw Syst Sci 2012;5
(September (9A)):644–60.

Fette I, Melnikov A. The websocket protocol; 2011. [Online]. Available from: 〈http://
www.hjp.at/doc/rfc/rfc6455.html〉.

Fielding R. Architectural styles and the design of network-based software archi-
tectures [Ph.D. dissertation]. University of California, CA, USA; 2000.

Fujii K, Suda T. Dynamic service composition using semantic information. In: Pro-
ceedings of the 2nd international conference on service-oriented computing
(ICSOC). ACM; 2004. p. 39–48. New York, USA.

Garriga M, Flores A, Cechich A, Zunino A. Web services composition mechanisms: a
review. IETE Tech Rev 32 (5), 2015, 376-383.

Guizzardi G, Ontological foundations for structural conceptual models. CTIT, Centre
for Telematics and Information Technology; Enschede, The Netherlands; 2005.

Hadley MJ. Web application description language (WADL). Technical Report SMLI
TR-2006-153, Sun Microsystems, Inc., Mountain View, CA, USA; 2006.

Haupt F, Fischer M, Karastoyanova D, Leymann F, Vukojevic-Haupt K, Service
composition for REST. In: Proceedings of the 18th international enterprise
distributed object computing conference (EDOC). IEEE; September 2014. p. 110–
19. Ulm, Germany.

Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M, et al. SWRL: a
semantic web rule language combining OWL and RuleML W3C consortium.
W3C Members Submission SWRL-20040521 May 2004.

Immonen A, Pakkala D. A survey of methods and approaches for reliable dynamic
service compositions. Serv Oriented Comput Appl 2014;8(2):129–58.

I.O. for Standardization Commitee, ISO 9001:2008 quality management systems –

requirements; 2008. 〈https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-4:v2:
en〉.

Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadist P, Autili M, et al. Service-
oriented middleware for the future internet: state-of-the-art and research
directions. J Internet Serv Appl 2011;2(1):23–45.

John D, Rajasree M. RESTdoc: describe, discover and compose RESTful semantic
web services using annotated documentations. Int J Web Semant Technol
2013;4(January (1)):37–49.

Kitchenham B, Pfleeger SL. Software quality: the elusive target. IEEE Softw 1996;13
(1):12–21.

Kopecky J, Gomadam K, Vitvar T. hRESTs: an HTML microformat for describing
RESTful web services. In: Proceedings of the international conference on web
intelligence and intelligent agent technology (WI-IAT), vol. 1. IEEE/WIC/ACM;
2008. p. 619–25. Sidney, Australia.

Lanthaler M, Gutl C. Towards a RESTful service ecosystem. In: Proceedings of the
4th international conference on digital ecosystems and technologies (DEST).
IEEE; 2010. p. 209–14. Dubai, UAE.

Lanthaler M, Gutl C, A semantic description language for RESTful data services to
combat semaphobia. In: Proceedings of the 5th international conference on
digital ecosystems and technologies conference (DEST). IEEE; 2011. p. 47–53.
Daejeon, South Korea.

Leenen L, Ghose A. branch and bound algorithms to solve semiring constraint
satisfaction problems. In: Ho TB, Zhou ZH, editors, Proceedings of the trends in
artificial intelligence conference (PRICAI). Lecture notes in computer science,
vol. 5351. Springer: Berlin, Heidelberg; 2008. p. 991–7.

Li L, Chou W, Categorial link: REST service composition based on category theory.
In: International conference on web services (ICWS). IEEE; June 2014. p. 431–8.
Alaska, USA.

Li L, Chou W, Cai T, Wang Z. Hyperlink pipeline: lightweight service composition for
users. In: International joint conferences on web intelligence (WI) and intelli-
gent agent technologies (IAT). IEEE; Atlanta, USA; 2013. p. 509–14.

Liu D, Li N, Pedrinaci C, Kopecky` J, Maleshkova M, Domingue J. An approach to
construct dynamic service mashups using lightweight semantics. In: Harth A,
Koch N, editors, Current trends in web engineering. Lecture notes in computer
science, vol. 7059. Springer, 2012; p. 13–24. Berlin, Germany.

Lu Q, Xu X, Zhang W, Zhu L, Li S. Business-driven process fragment selections in
RESTful business processes. Int J u- e- Serv Sci Technol 2015; 8(1): 173–188.
[Online]. Available from: 〈http://dx.doi.org/10.14257/ijunesst.2015.8.1.16〉.

Majithia S, Walker D, Gray W. A framework for automated service composition in
service-oriented architectures. In: Bussler C, Davies J, Fensel D, Studer R, edi-
tors, The semantic web: research and applications. Lecture notes in computer
science, vol. 3053. Berlin, Heidelberg: Springer; 2004. p. 269–83. [Online].
Available from: 〈http://dx.doi.org/10.1007/978-3-540-25956-5_19〉.

Maleshkova M, Pedrinaci C, Domingue J. Semantically annotating RESTful services
with sweet. In: Proceedings of the 8th international semantic web conference
(ISWC); 2009. p. 25–9. [Online]. Available from: 〈http://oro.open.ac.uk/23102/ 〉.

Martin D, Burstein M, McDermott D, McIlraith S, Paolucci M, Sycara K, et al.
Bringing semantics to web services with owl-s. World Wide Web 2007;10
(3):243–77.

Mateos C, Crasso M, Zunino A, Ordiales Coscia J. Revising WSDL documents: why
and how-part 2. IEEE Internet Comput 2013;17(5):46–53.

Maximilien M, Ranabahu A, Gomadam K. An online platform for web APIs and
service mashups. IEEE Internet Comput 2008;12(5):32–43.

Motahari Nezhad HR, Benatallah B, Martens A, Curbera F, Casati F, Semi-automated
adaptation of service interactions. In: Proceedings of the 16th international con-
ference on World Wide Web (WWW). ACM; 2007. p. 993–1002. Seoul, Korea.

Nacer H, Aissani D. Semantic web services: standards, applications, challenges and
solutions. J Netw Comput Appl 2014;44(September):134–51.

Nakajima S. Model-checking Verification for reliable web service. In: Proceedings of
the workshop in object-oriented web services (OOWS). ACM; 2002. Seattle,
USA.

Narayanan S, McIlraith S. Simulation, Verification and automated composition of
web services. In: Proceedings of the 11th international conference on World
Wide Web (WWW). ACM; 2002. p. 77–88. New York, USA.

Overdick H. Towards resource-oriented bpel. In: Emerging web services technology,
vol. 2. Springer; 2008. p. 129–40. Basel, Switzerland.

Paik I, Chen W, Huhns M. A scalable architecture for automatic service composition.
IEEE Trans Serv Comput 2012;7(January (1)):82–95.

Pautasso C, Wilde E. Push-enabling RESTful business processes. In: Kappel G,
Maamar Z, Motahari-Nezhad H, editors, Service-oriented computing. Lecture
notes in computer science, vol. 7084. Berlin, Heidelberg: Springer; 2011. p. 32–
46. [Online]. Available from: 〈http://dx.doi.org/10.1007/978-3-642-25535-9_3〉.

Pautasso C, Alonso G. The JOpera visual composition language. J Vis Lang Comput
2005;16(1):119–52.

Pautasso C, Zimmermann O, Leymann F. RESTful web services vs. “big” web ser-
vices: making the right architectural decision. In: Proceedings of the 17th
international conference on World Wide Web (WWW). ACM Press; 2008. p.
805–14. New York, USA.

Pautasso C. RESTful Web service composition with BPEL for rest. Data Knowl Eng
2009;68(9):851–66.

Pautasso C. Composing RESTful services with JOpera. In: Bergel A, Fabry J, editors,
Software composition. Lecture notes in computer science, vol. 5634. Berlin
Heidelberg: Springer; 2009. p. 142–59. [Online]. Available from: 〈http://dx.doi.
org/10.1007/978-3-642-02655-3_11〉.

Pautasso C, On composing RESTful services. In: Leymann F, Shan T, van den Heuvel
WJ, Zimmermann O, editors, Proceedings of the dagstuhl software service
engineering seminar; 2009. [Online]. Available from: 〈http://drops.dagstuhl.de/
opus/volltexte/2009/2043〉.

Pedrinaci C, Liu D, Maleshkova M, Lambert D, Kopecky J, Domingue J. iServe: a
linked services publishing platform. In: Ontology repositories and editors for
the semantic web workshop at the 7th extended semantic web conference
(ESWC), vol. 596. 2010.

Peenikal S. Mashups and the enterprise mphasis. HP White Paper; September 2009.
Peltz C. Web services orchestration and choreography. IEEE Comput 2003;36

(10):46–52.
Peng Y, Ma S, Lee J. REST2SOAP: a framework to integrate SOAP services and

RESTful services. In: Proceedings of the international conference on service-
oriented computing and applications (SOCA). IEEE; 2009. p. 1–4.

http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref12
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref12
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref12
https://developer.mozilla.org/en-US/docs/The_Joy_of_XUL
https://developer.mozilla.org/en-US/docs/The_Joy_of_XUL
http://ruleml.org/1.0/
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref15
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref15
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref15
http://dx.doi.org/10.1007/11948148_12
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref17
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref17
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref17
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref17
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref18
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref18
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref18
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref18
http://dx.doi.org/10.1007/978-94-007-4516-2_58
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref21
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref21
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref21
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref22
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref22
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref22
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref22
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref23
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref23
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref23
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref23
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref24
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref24
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref24
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref24
http://dx.doi.org/10.1007/978-3-642-16985-4_30
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref26
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref26
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref26
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref28
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref28
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref28
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref28
http://www.hjp.at/doc/rfc/rfc6455.html
http://www.hjp.at/doc/rfc/rfc6455.html
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref36
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref36
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref36
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref37
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref37
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref37
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-4:v2:en
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-4:v2:en
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-4:v2:en
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref39
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref39
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref39
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref39
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref40
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref40
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref40
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref40
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref41
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref41
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref41
http://dx.doi.org/10.14257/ijunesst.2015.8.1.16
http://dx.doi.org/10.1007/978-3-540-25956-5_19
http://oro.open.ac.uk/23102/
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref52
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref52
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref52
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref52
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref53
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref53
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref53
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref54
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref54
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref54
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref56
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref56
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref56
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref60
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref60
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref60
http://dx.doi.org/10.1007/978-3-642-25535-9_3
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref62
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref62
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref62
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref64
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref64
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref64
http://dx.doi.org/10.1007/978-3-642-02655-3_11
http://dx.doi.org/10.1007/978-3-642-02655-3_11
http://drops.dagstuhl.de/opus/volltexte/2009/2043
http://drops.dagstuhl.de/opus/volltexte/2009/2043
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref69
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref69
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref69

M. Garriga et al. / Journal of Network and Computer Applications 60 (2016) 32–53 53
Rao J, Su X. A survey of automated web service composition methods. In: Pro-
ceedings of the international workshop on semantic web services and web
process composition (SWSWPC); 2004. p. 43–54.

Rauf I, Iqbal M, Malik Z. UML based modeling of web service composition – a
survey. In: Proceedings of the international conference on software engineering
research (SERA). IEEE; 2008. p. 301–7. Prague, Czech Republic.

Riabov A, Liu Z. Planning for stream processing systems. In: Proceedings of the
national conference on artificial intelligence. AAAI; 2005. p. 1205–10. Pitts-
burgh, USA.

Riabov AV, Boillet E, Feblowitz MD, Liu Z, Ranganathan A. Wishful search: inter-
active composition of data mashups. In: Proceedings of the 17th international
conference on World Wide Web (WWW). ACM; 2008. p. 775–84. New York,
USA.

Richardson L, Ruby S.RESTful web services. O'Reilly Media, Inc.; 2008. Sebastopol,
USA.

Rodrigues MC, Ferreira JE, Pu C, Web services composition through data events
approach. In: Proceedings of the international conference on services com-
puting (SCC). IEEE; 2013. p. 320–327. Santa Clara, USA.

Rodriguez JM, Crasso M, Mateos C, Zunino A. Best practices for describing, con-
suming, and discovering web services: a comprehensive toolset. Softw: Pract
Exp 2012;43(6):613–39.

Rodriguez JM, Crasso M, Mateos C, Zunino A, Campo M. Bottom-up and top-down
COBOL system migration to web services: an experience report. IEEE Internet
Comput 2013;17(2):44–51.

Rosenberg F, Curbera F, Duftler M, Khalaf R. Composing RESTful services and col-
laborative workflows: a lightweight approach. IEEE Internet Comput 2008;12
(5):24–31.

Schroth C, Janner T. Web 2.0 and SOA: converging concepts enabling the internet of
services. IT Prof 2007;9(3):36–41.

Sepulveda C, Alarcon R, Bellido J. QoS aware descriptions for RESTful service
composition: security domain World Wide Web 18 (4), 2015, 767-794.

Sheng QZ, Qiao X, Vasilakos AV, Szabo C, Bourne S, Xu X. Web services composition:
a decade's overview. Inf Sci 2014;280(0):218–38.

Sheth A, Gomadam K, Lathem J. SA-REST: semantically interoperable and easier-to-
use services and mashups. IEEE Internet Comput 2007;11(6):91–4.

Singh M. Being interactive: physics of service composition. IEEE Internet Comput
2001;5(3):6–7.

Srivastava B, Koehler J, Web service composition – current solutions and open
problems. In: Proceedings of the workshop on planning for web services
(ICAPS), vol. 35; 2003. pp. 28–35.
Strunk A. QoS-aware service composition: a survey. In: Proceedings of the 8th
European conference on web services (ECOWS). IEEE; 2010. p. 67–74. Aiya
Napa, Cyprus.

Un P, Genevski P, Gorroñogoitia Y, Radzimski M, Ripa G, Mos A, Norton B, et al.
SOA4All project deliverable: D6. 3.3 evaluation and final design of the light-
weight context-aware process modeling language European commission.
Technical Report FP7- 215219, SAP; 2010.

Vinoski S. REST eye for the SOA guy. IEEE Internet Comput 2007;11(1):82–4.
Weerawarana S, Curbera F, Leymann F, Storey T, Ferguson DF. Web services plat-

form architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable messaging and more. Upper Saddle River, NJ, USA: Prentice Hall PTR;
2005.

Wu B, Lin R, Chen J, Integrating RESTful services into BPEL business process on
service generation system. In: Proceedings of the international conference on
services computing (SCC). IEEE; June 2013. p. 527–34. Santa Clara, USA.

Xie C, Cai H, Jiang L. Ontology combined structural and operational semantics for
resource-oriented service composition. J Univers Comput Sci 2013;19(July
(13)):1963–85.

Yu Q, Liu X, Bouguettaya A, Medjahed B. Deploying and managing web services:
issues, solutions, and directions. VLDB J 2008;17(3):537–72.

Zhang Y, Wang J, Yan Y, Context-aware generic service discovery and service
composition. In: International conference on mobile services (MobServ). IEEE;
June 2014. p. 132–139. Alaska, USA.

Zhao H, Doshi P. Towards automated RESTful web service composition. In: Pro-
ceedings of the international conference on web services (ICWS). IEEE; 2009. p.
189–96. Los Angeles, USA.

Zhao X, Liu E, Clapworthy G, Ye N, Lu Y. RESTful web service composition:
extracting a process model from linear logic theorem proving. In: Proceedings
of the 7th international conference on next generation web services practices
(NWeSP). IEEE; 2011. p. 398–403. Salamanca, Spain.

Zimmerman O, Tomlinson M, Peuser S. Perspectives on web services – applying
SOAP, WSDL and UDDI to real-world projects. 1st ed. Berlin, Germany:
Springer-Verlag; 2003.

Zur Muehlen M, Nickerson J, Swenson K. Developing web services choreography
standards – the case of REST vs. SOAP. Decis Support Syst 2005;40(1):9–29.

Zuzak I, Budiselic I, Delac G. Formal modeling of RESTful systems using finite-state
machines. J Web Eng 2011;10(4):346–60.

http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref77
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref77
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref77
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref77
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref78
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref78
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref78
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref78
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref79
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref79
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref79
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref79
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref80
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref80
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref80
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref82
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref82
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref82
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref83
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref83
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref83
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref84
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref84
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref84
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref88
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref88
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref89
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref89
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref89
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref89
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref91
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref91
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref91
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref91
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref92
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref92
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref92
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref96
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref96
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref96
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref97
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref97
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref97
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref98
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref98
http://refhub.elsevier.com/S1084-8045(15)00293-3/sbref98

	RESTful service composition at a glance: A survey
	Introduction
	Background
	Related Work

	Features to characterize RESTful service composition
	General features
	Composition view
	Automation level
	Definition and binding
	Standards conformance
	Service and service composition specification
	Adaptation perspective
	Verification and Validation (V&V)
	QoS awareness

	REST-specific features
	Lightweight
	Understandable
	Scalable
	Declarative

	Restful service composition approaches
	Heterogeneous service composition
	Formalization of RESTful compositions.
	Pure RESTful service composition

	Discussion
	Agreement to standards
	Impact of legacy composition views
	Takeoff from data-oriented mashups
	Tradeoffs between complexity of materialization and interoperability
	REST principles adherence
	Support for full automation
	Dynamic definition and binding for flexible composition
	Ad hoc service and service composition specifications
	Adaptation support
	Support for static/dynamic Verification and Validation
	QoS-awareness

	Future research possibilities
	Early days of SOAP service compositions – how to define and automate a service composition
	Present days of SOAP service compositions – how to achieve adaptive, scalable, trustworthy service composition approaches
	Conclusions

	Final remarks
	Acknowledgements
	References

