
1 23

Automated Software Engineering
An International Journal

ISSN 0928-8910
Volume 23
Number 3

Autom Softw Eng (2016) 23:501-532
DOI 10.1007/s10515-014-0175-x

An approach to prioritize code smells for
refactoring

Santiago A. Vidal, Claudia Marcos &
J. Andrés Díaz-Pace

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Autom Softw Eng (2016) 23:501–532
DOI 10.1007/s10515-014-0175-x

An approach to prioritize code smells for refactoring

Santiago A. Vidal · Claudia Marcos ·
J. Andrés Díaz-Pace

Received: 21 March 2014 / Accepted: 28 November 2014 / Published online: 14 December 2014
© Springer Science+Business Media New York 2014

Abstract Code smells are a popular mechanism to find structural design problems in
software systems. Consequently, several tools have emerged to support the detection of
code smells. However, the number of smells returned by current tools usually exceeds
the amount of problems that the developer can deal with, particularly when the effort
available for performing refactorings is limited. Moreover, not all the code smells
are equally relevant to the goals of the system or its health. This article presents a
semi-automated approach that helps developers focus on the most critical problems
of the system. We have developed a tool that suggests a ranking of code smells, based
on a combination of three criteria, namely: past component modifications, important
modifiability scenarios for the system, and relevance of the kind of smell. These
criteria are complementary and enable our approach to assess the smells from different
perspectives.Our approach has been evaluated in two case-studies, and the results show
that the suggested code smells are useful to developers.

Keywords Code smells · Refactoring · Software evolution · Design problems

S. A. Vidal (B) · J. A. Díaz-Pace · C. Marcos
ISISTAN, UNICEN, Tandil, Argentina
e-mail: svidal@exa.unicen.edu.ar

J. A. Díaz-Pace
e-mail: adiaz@exa.unicen.edu.ar

S. A. Vidal · J. A. Díaz-Pace
CONICET, Tandil, Argentina

C. Marcos
CIC, Buenos Aires, Argentina
e-mail: cmarcos@exa.unicen.edu.ar

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-014-0175-x&domain=pdf

502 Autom Softw Eng (2016) 23:501–532

1 Introduction

Software evolution and maintenance involve high costs in the development process
(April and Abran 2008; Seacord et al. 2003; Erlikh 2000), particularly as systems
become larger and complex. A usual concern that makes system maintenance and
evolution difficult is the existence of structural design problems, which were not suf-
ficiently taken care of in early development stages. These design problems are often
described as code smells (Fowler 1999). A code smell is a symptom in the source code
that helps to identify a design problem. In this way, code smells allow developers to
detect fragments of code that should be re-structured, in order to improve the quality
of the system. A technique commonly used to fix code smells is refactoring (Fowler
1999; Kim et al. 2012).

Different semi-automated tools have been proposed (Moha et al. 2010; Lanza and
Marinescu 2006) for identifying code smells in a system. However, a major limitation
of existing tools is that they usually find numerous code smells. This is a challenging
problem for the developer, for a number of reasons. First, she can get overwhelmed
by the amount of information to be analyzed. Second, the efforts needed to fix all
the smells usually exceeds the budget that the developer has available for refactoring.
Third, in practice, not all smells are equally important for the goals of the system or
its health (Demeyer et al. 2003). For example, some long classes, such as those that
implement a parser, are not necessarily a design problem. Therefore, the developer has
to manually peruse the list of smells and select a set of smells that will be fixed. In this
context, the provision of tool support for assisting the developer to quickly identify
high-priority code smells becomes essential.

In this work, we propose a semi-automated approach called smart identification
of refactoring opportunities (SpIRIT) that prioritizes the code smells of a system
according to their criticality. We define the critical problems as those smells that
compromise the architecture of the system. In particular,we usemodifiability scenarios
(Clements and Kazman 2003) to capture goals (or desired properties) of the system
with respect to evolution and architecture design. A scenario specifies a type of change
that the system must accommodate. For example, a scenario can specify changes to
a GUI feature wanted by a customer, which might affect several components (if the
feature is not properly encapsulated). Normally, developers seek to confine the effects
of changes specified by scenarios to narrow system areas in order to avoid the change
propagation across the system. From this perspective, code smells are obstacles to
satisfy the modifiability scenarios of the system. Modifiability problems can also be
spotted by analyzing change patterns across system versions (Gîrba et al. 2004).

Given an object-oriented system with a number of code smells, SpIRIT assists the
developer in the prioritization of the smells. The identification of the smells relies on
existing catalogs (Fowler 1999; Lanza and Marinescu 2006). The novel aspect of our
approach is that the prioritization of smells is based on assessing their relationships
with modifiability issues. Our assessment of a code smell instance is determined by
three factors: (i) the stability of the components that participate in a smell, (ii) the
impact of a smell on modifiability scenarios, and (iii) the relevance of the kind of code
smell. The relevance is a subjective value that a developer can assign to each kind of

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 503

smell to indicate how harmful she considers it. This value might vary from developer
to developer, or might also be system-specific (Mkaouer et al. 2014).

The contribution of this article is twofold. First, we develop a prioritization strategy
for code smells that combines different criteria,which account for code-level, evolution
and design-level information. Second, we propose a novel scenario-based criterion
(Kazman et al. 1996) to drive the prioritization, incorporating design knowledge about
modifiability.

We have evaluated our approach by means of two case-studies. In these studies,
SpIRIT was applied to Java applications of different sizes. We compared the rankings
of smells generated by SpIRIT with the smells ranked by expert developers. The results
show that SpIRIT ranks first the most critical smells.

The rest of this article is structured as follows. Section 2discusses themain problems
of fixing code smells. Section 3 describes the SpIRIT approach. Section 4 presents the
case-studies and their main results. Section 5 discusses related work. Finally, Sect. 6
presents the conclusions and outlines future work.

2 Improving design with code smells detection

Code smells are useful to identify structural problems of a system that relate to mod-
ifiability problems. In this way, a smell acts as an anti-pattern indicating code that
should be improved (Fowler 1999). Each smell can affect several components (e.g.
packages, classes, methods) of a system. Some of the symptoms used by code smells
include: duplicated code, very large methods or classes, long lists of parameters or
violations in the encapsulation of a class, among others. A popular catalog of code
smells is the one proposed by Fowler (Fowler 1999). Usually, in the catalogs, for
each smell a refactoring (or a group of them) is proposed to solve the problem. For
example, the smell God Class identifies the situation in which a class centralizes the
intelligence of the system (or a subsystem). In this case, the suggested refactoring is
to extract groups of related methods into new classes by using the Move Method and
Move Field refactorings (Fowler 1999). To help developers to find smells in systems,
several tools such as PMD,1 FindBugs2 and iPlasma3 are available.

A problem of existing tools is that they usually produce a large number of smells.
For example, after analyzing 9 kinds of code smells in SweetHome3D,4 a 84K LOC
open source application, 787 smells were found (Table 1). Refactoring of these smells
would be ideal but also time-consuming. In these situations, the developer might end
up overwhelmed by the analysis of all the smells. Furthermore, the refactorization of
some smells might not be urgent. For example, the refactoring of code smells in a class
with no change since its initial implementation (and not expected to be modified in the
future) may have low priority when compared to a code smell in a class that received
modifications in the last 10 most significant revisions. That is, fixing some code smells

1 http://pmd.sourceforge.net/.
2 http://findbugs.sourceforge.net/.
3 http://loose.upt.ro/reengineering/research/iplasma.
4 http://www.sweethome3d.com.

123

Author's personal copy

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
http://loose.upt.ro/reengineering/research/iplasma
http://www.sweethome3d.com

504 Autom Softw Eng (2016) 23:501–532

Table 1 Code smells found in
SweetHome3D

Code smell # instances

Brain class 6

Brain method 127

Data class 1

Dispersed coupling 210

Feature envy 114

God class 38

Intensive coupling 89

Refuse parent bequest 12

Shotgun surgery 190

Total 787

can be more urgent than fixing others. Regarding the priority of the components to
be refactored, some researchers have suggested that those components whose code
suffered many changes in the past, are more likely to be modified in the future than
those that did not changed (Gîrba et al. 2004; Mens and Demeyer 2001). For example,
in SweetHome3D 85 % of the detected smells were modified only in one or two
versions of the last 25 versions. For this reason, the refactoring effort should probably
be focused on the remaining 15 % of code smells.

Moreover,we argue that the impact of the code smells on keymodifiability scenarios
of the system should be taken into account, in order to determine the priority of fixing
a given smell. That is, if a given smell is touching a code area that is sensitive to
one or more key modifiability scenarios, the developer should pay close attention to
fixing that smell, in order to improve the satisfaction of the scenarios. Conversely,
less attention should be paid to smells that do not directly affect key scenarios. For
example, the God Class HomeComponent3D of SweetHome3D is directly involved
in the realization of a scenario that allows developers to change the 3D visualization
engine of the application. The visualization engine is critical in the architecture of
SweetHome3D, because it involves one of its main features. By capturing the scenario
above, it is meant that the engine should be easy to change, or that the effects of the
change should be as localized as possible in the design. Therefore, it is important to
fix the involved God Class, as it can negatively affect the satisfaction of the scenario.

We think that the developer should not only be assisted in the detection of code
smells, as several tools currently do, but she should be assisted in the prioritization of
the detected smells as well.

3 SpIRIT approach

Wepropose a semi-automated approach that helps developers to achieve the refactoring
of an object-oriented system by focusing on themost critical code smells of the system.
We call this approach SpIRIT : Smart Identification of Refactoring opportunITies.

We envision the use of the SpIRIT approach (Fig. 1) in the following situation. Let
us assume a developer that is working in a project within an iterative and incremental
development process. The developer only has a couple of hours perweek to refactor the

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 505

SpIRIT

Suggesting
refactorings
strategies

Prioritizing

OO System OO Refactored
System

History scenarios
Code smell
relevance

Code smells

Code smells ranking

Identifying
Code

Smells

Developer

Fig. 1 The SpIRIT approach

system because she has to spend most of the time developing user-oriented features.
Given a large list of smells to be refactored, the developer will have to pick the smells
that are top-priority considering different criteria: the relation of the smells with the
architecture, the importance of the kind of smell; and the analysis of how likely is that
the source code related to the smell will be modified in future versions. We argue that
the use of multiple criteria helps to examine the smells from different perspectives and,
in this way, to discover if the smell is a critical problem. In this context, the developer
will use SpIRIT to analyze components of the system (such as packages, classes or
methods) that have potential modifiability problems. Then, the smells will be ranked
by SpIRIT based on their importance, which is determined by the aforementioned
criteria. Once the developer chooses a smell to be fixed, SpIRIT is expected to suggest
different refactoring alternatives for it. However, the assistance with refactorings is
out of the scope of this article.

The proposed approach is implemented as a tool.5 SpIRIT is built using Moose,6

a platform for software analysis. To analyze a system in SpIRIT, the system must be
loaded using aMSE file. MSE is a generic file format, similar to XML, used byMoose
to describe models of systems. AMSE file saves all the information related to a system
such as packages, classes,methods, attributes aswell as the relationships between them
(e.g. invocations and inheritance). There are several applications available to generate
MSE files from source code, such as VerveineJ7 and inFamix.8

In the next sections, we provide details of the techniques used by the approach.

3.1 Identifying code smells

The SpIRIT approach begins by identifying the code smells of an application. Cur-
rently, SpIRIT supports the identification of 10 smells (Table 2) following the detec-
tion strategies presented in the catalog of Lanza andMarinescu (Lanza andMarinescu

5 The latest version of SpIRIT is available from http://sites.google.com/site/santiagoavidal/projects/spirit.
6 http://moosetechnology.org/.
7 https://gforge.inria.fr/projects/verveinej/.
8 http://www.intooitus.com/products/infamix.

123

Author's personal copy

http://sites.google.com/site/santiagoavidal/projects/spirit
http://moosetechnology.org/
https://gforge.inria.fr/projects/verveinej/
http://www.intooitus.com/products/infamix

506 Autom Softw Eng (2016) 23:501–532

Table 2 Code smells supported by SpIRIT

Code smell Short description

Brain class Complex class that accumulates intelligence by brain methods

Brain method Long and complex method that centralizes the intelligence of a class

Data class Class that contains data but not behavior related to the data

Disperse coupling Method that calls one or few methods of several classes

Feature envy Method that calls more methods of single external class that their own

God class Long and complex class that centralizes the intelligence of the system

Intensive coupling Method that calls several methods that are implemented in one or few classes

Refused parent bequest Subclass that does not use the protected methods of its superclass

Shotgun surgery Method called by many methods that are implemented in different classes

Tradition breaker Subclass that does not specialize the superclass

2006). In this detection strategy, each smell is expressed as a rule combining different
metrics, which have to reach predetermined thresholds. For example, the rule to iden-
tify a God Class combines three metrics: weighted method count (WMC) to measure
the complexity of the class, access to foreign data (ATFD) to measure the coupling
with external, and tight class cohesion (TCC) to measure the internal cohesion of the
class. In this way, a God Class is determined by the rule:

GodClass = (WMC > VERY HIGH) and (ATFD > FEW) and (TCC < LOW)

The threshold values, such as, FEW, LOW or VERY HIGH are also the ones pro-
posed by Lanza and Marinescu. Although these detection strategies are predefined in
the SpIRIT tool, they are not per se a part of our approach, they are just a pluggable
module in the tool.

Once themodel of a system is generated and loaded into SpIRIT through aMSEfile,
the tool automatically detects the possible code smells. For each smell, SpIRIT shows
the elements that compose the smell.Wedistinguish twokinds of constitutive elements:
the class ormethod inwhich the smell ismainly implemented (wecall this class/method
the main class/method of the code smell) and the affected components. For example,
in the case of the God Class HomeComponent3D presented in Sect. 2, SpIRIT shows
the main class (HomeComponent3D) and all the external methods invoked by the class
and also the external methods that are invoking the class.

3.2 Prioritizing code smells

Once the smells are discovered they should be ranked according to their importance.
We argue that a code smell is important if it compromises the architecture of the
system. This aspect was analyzed by some works showing that by refactoring the
smells related to architectural problems the degradation of the architecture could be
stopped (Macia et al. 2012b, a; Arcoverde 2012). Additionally, since not all kinds of

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 507

smells are equally relevant to the architecture, the kind of code smell should also be
taken into account to determine the importance of a smell. Finally, since refactoring
is generally more beneficial in changing environments (Tsantalis and Chatzigeorgiou
2011), the smells found in classes or packages that are more likely to change should
be more important. We argue that the combination of these aspects should be used to
determine a ranking of smells. Along this line, we apply the following three criteria:

(1) Stability of related components (SRC): this criterion checks if the component
in which a smell is found has undergone many changes over the history of the
application.

(2) Relevance of a code smell (RCS): the developer can choose the kinds of smells
that are more important using an ordinal scale (e.g. 1–5 where 5 means that the
smell is very important).

(3) Related modifiability scenarios (RMS): this criterion helps to focus on those
smells that affect modifiability scenarios of the system.

We chose these criteria because they take into account: the stability of the component
in which the smell was found, the assessment that the developer makes of each kind of
smell, and furthermore, they allow the developer to focus in those parts of the system
that affects the quality of the architecture through the analysis of modifiability-specific
requirements that should be satisfied. The importance of using different criteria is
because they are complementary. For example, if only the relevance of the smell were
used, smells that are not architecturally relevant or that have not changed since their
implementation could be ranked first. Moreover, if only the criterion of history were
used, unimportant smells for the developer and the architecture could be prioritized
first. Similarly, if just the criterion of scenarios were used, while the prioritized smells
would still be architecturally relevant, there could be smells that have not changed for
a long time or kinds of smells that are not relevant for the developer. That is to say,
by using the three criteria the smells are analyzed from multiple perspectives with the
goal of determining the most critical smells.

In the following sections, each criteria is explained in detail aswell as the calculation
of the overall ranking.

3.2.1 Stability of related components (SRC)

The stability determines how often the class in which the code smell is mainly imple-
mented (main class) was modified during the lifetime of the system. By determining
the stability of the main class of the smell, we want to find if the smell is implemented
in a part of the system that is usually modified. Our assumption is that the smells
appearing in classes that changed often should be fixed first. For instance, a God Class
that has not beenmodified since it was implementedmight not represent a real problem
(Demeyer et al. 2003).

Previous works have analyzed the history of systems to determine the classes that
will change in the future based on those classes that change often (Gîrba et al. 2004;
Wong et al. 2011; Tsantalis and Chatzigeorgiou 2011).We follow this same hypothesis
to detect the unstable classes of the system.

123

Author's personal copy

508 Autom Softw Eng (2016) 23:501–532

To measure the stability of a class we use a Beta analysis (β). Beta is a financial
indicator that measures the volatility of a given asset relative to the volatility of the
market (Levy 2002). We have adapted Beta to use it in our context. An asset represents
a class and the market represents the system in which the class is defined. That is, Beta
allows us to know how important the changes are in the class with respect to the
changes in the system. By important we mean a large addition or modification of
methods. For example, a high value of Beta will indicate that when many methods are
changed in the system (comparing to the total number methods of the system), many
methods are also changed in the class (comparing to the total number of methods of
the class). We define the Beta of a class as:

βc = Cov(rc, rs)

Var(rs)

where rc measures the rate of return of the class, rs measures the rate of return of the
system, Cov(rc, rs) is the covariance between the rates of return, and Var(rs) is the
variance of the rate of return of the system. The rate of return of a class for version i is
calculated based on the metric LENON which is one of the underlying metrics used
by Gîrba et al. (2004) to predict class changes. This metric identifies the classes that
experienced most changes in the last versions of the system. In LENON, the classes
that most frequently changed are identified by weighting the change in the number of
methods (NOM) of a class between two adjacent versions. More formally:

LENOMj..k(C) =
k∑

i= j+1

| NOMi (C) − NOMi−1(C) | ×2i−k

where 1 ≤ j < k ≤ n being j the first version of the system analyzed, k the last
version analyzed and n the total number of versions of the system.

We have found that our combination of Beta with LENON has in average a better
predictive precision than using only LENON (Hurtado et al. 2013). The rate of return
using LENON for version i of a class c is calculated as follows:

rci = | NOMi (C) − NOMi−1(C) | ×2i−n

where n is the total number of versions of the system and NOMi (C) is the number
of method of class C in version i. In this way, in our context, the rate of return is the
gain or loss of number of method in a class or system over a specified period which
are weighted benefiting the latest changes in history. For example, Table 3 shows the
variation of the NOM in a class Foo for 5 different versions of a system. The rate of
return of a class is calculated for each version taking into account the previous version.
For instance, the rate of return for version 2 is calculated as rFoo2 =| 4−3 | ×22−5 =
0.125. Note that while the change of NOM is the same in version 2 as in version 5,
the rc of version 5 is higher than the one of version 2 since 5 is the latest version.

The rs is calculated in the same way that rc but NOM is the sum of all the NOM of
the system classes for a specific version. The Var(rs) and Cov(rc, rs) are calculated
using the rate of return values of all the versions.

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 509

Table 3 Rate of return example

NOM v1 NOM v2 NOM v3 NOM v4 NOM v5

Foo 3 4 6 6 5

Rate of return – 1 × 2−3 = 0.125 2 × 2−2 = 0.5 0 × 2−1 = 0 1

Fig. 2 Example of God Class
impact

C

D

F

Class affected
by code smell

 RCS=5
 SRC=0.95

B
<<GodClass>>

While SpIRIT calculates the rate of return using NOM, this metric can be easily
configured by the user to other metric such as cyclomatic complexity or LOC, among
others. A discussion of the use of LENOM with other metrics can be found in Vidal
(2013).

Regarding the meanings of different values of β, if a class has a positive Beta it
means that the NOM of the class tends to increase when the NOM of the system
increases, and conversely, the class NOM tends to decrease when the system NOM
decreases. In contrast, if a class has a negative Beta, it means that the class NOM
generally moves opposite to the system NOM. A Beta value of zero indicates no
correlation between the class and the system. Beta = 1 means that the class is exactly
correlated with the system and if Beta>1 means that the class is correlated with the
system but the class is more volatile than the system (i.e. the class changes often and
at a greater rate than the system).

Finally, to compare the Beta values of classes among them, we normalize all the
beta values to the highest value of Beta. In this way, the class with the highest Beta will
have a normalized value of 1. For example, Fig. 2 shows that class B is a God Class
and that it affects classes C, D, and F. The main class of the smell is class B and its β

(or SRC) is 0.95. We here interpret that the class is unstable because it changed almost
in each system version. For this reason, the criterion is highlighted in the figure.

The SpIRIT tool allows to load the history of a system as a set of versions, and
each version is loaded by using its own MSE file. Once the history is loaded, SpIRIT
calculates automatically the SRC value for each class affected by a code smell.

3.2.2 Relevance of a code smell (RCS)

This second criterion specifies how relevant a kind of smell is for the developer. SpIRIT
allows the developer to choose a [1..5] ordinal scale for each kind of smell. In this

123

Author's personal copy

510 Autom Softw Eng (2016) 23:501–532

context, 1 means that the code smell is not relevant for the system and 5 means that it
is very relevant. In the example of Fig. 2, the RCS value chosen for God classes is the
maximum: 5.

This criterion allows SpIRIT to adapt the recommendation of code smells to the
preferences of the developer. By selecting the relevance of a kind of code smell, the
developer can select the smells that she believes are themost important to the system or
the kind of smells she is most familiar with. Additionally, the developer can indirectly
select which problems to deal with such as coupling, cohesion, or complexity. For
example, if the developerwants to improve the coupling of the system, shewould select
Intensive Coupling, Dispersed Coupling or Shotgun Surgery (Fowler 1999) as most
relevant by giving themvalues close to 5. Conversely, if the developerwants to improve
the cohesion, shewould selectGodClass, BrainMethod, or IntensiveCoupling asmost
relevant. Notice that some smells can influence positively or negatively more than one
aspect of design. For example, the refactoring of an Intensive Coupling smell can
reduce the coupling between classes but it can raise the complexity of the provider
class.

3.2.3 Related modifiability scenarios (RMS)

The third criterion analyzes the relation of smells with modifiability scenarios. By
using these scenarios, SpIRIT includes architectural information in the prioritization
of smells. We use modifiability scenarios because they can express the main goals and
constraints of the evolution of a system using natural language (Ozkaya et al. 2010).
A scenario briefly describes some anticipated or desired use of a system (Kazman
et al. 1996). For example, a modifiability scenario that describes the change of a 3D
visualization engine could be as follow: “A developer wish to change the visualization
engine that generates the 3D view. This change will be made to the code at design time
” (Fig. 3). In order to define the scenarios, it is desirable to have a software architecture
model of the system, so that the architects and developers can refer their scenarios to
that design model. In practice, architects generally know (e.g., via interactions with
the stakeholders, or just by their own experience) the parts of the system that need to
be modifiable. This perspective assumes that the architecture should be designed in
such way it somehow addresses the constraints imposed by each scenario. Although
scenarios clearly involve architectural aspects, they are also dependent on code-level
aspects of the architecture (Woods2012). This is themain reason for us to link scenarios
to code smells. Along this line, developers can normally identify the system features
implied by each scenario, and map them to the detailed design of the system (e.g.,
packages, classes, or methods).

An interesting benefit of using modifiability scenarios is that this information is
available since early stages of development. That is, developer can describe the changes
that the system must support since the architecture starts to be materialized. For this
reason, scenarios complement the analysis of historical changes, which is more useful
in late development stages.

Each system scenario can be mapped to one or more components or features of
the system that make it possible to realize the scenario. A feature is useful to define
a specific requirement that is implemented by a group of classes or packages. For

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 511

Fig. 3 Scenario wizard in SpIRIT tool

each scenario, the developer should specify the features, packages and/or classes that
compose it. For example, scenario I in Fig. 4 is mapped to classes A, B, andC. Also, to
distinguish the importance of each scenario, the developer could select from a ordinal
scale from 0 to 1 the importance of each scenario, being 1 the most important one. In
this example, scenario I has an importance of 0.6.

The SpIRIT tool presents a simple interface to load scenarios (Fig. 3). Specifically,
the developer must define the name of the scenario and provide a brief description of
it. Additionally, the developer must select the classes, packages, and/or features of the
system that compose the scenario by choosing from different lists given by SpIRIT
(the features can be defined by using other wizard provided by the tool). For example,
Fig. 3 shows the definition of a scenario called “Change 3D visualization engine”. The
left part of the wizard lists all the classes of the system under analysis. The right part
shows the classes that belong to the scenario.

A scenario is mapped to certain components that are key for fulfilling the scenario.
For this reason, our intuition behind the use ofmodifiability scenarios is that fixing first
the smells whose components compose the scenarios will make easier the satisfaction
of the scenarios. Thus, if the modifiability scenarios are satisfied, the impact of future
changes should be narrow.Along this line, using relatedmodifiability scenarios (RMS)
we perform a change impact analysis of the smells vis-a-vis with the scenarios. That
is, we determine which classes affected by a smell are also mapped by a scenario.

123

Author's personal copy

512 Autom Softw Eng (2016) 23:501–532

Fig. 4 Example of scenario

A

I
Importance=0.6

II
Importance=0.8

III
Importance=1

 RCS=5
 SRC=0.95

B
<<GodClass>>

C

D

EF

Scenario

Scenario

Scenario

Class affected
by code smell

Class mapped
from scenario

Heat map diagram Code smells ranked Ranking
value

(SRC RCS) (1-) RMS

Fig. 5 Ranking of code smells with α = 0.5 in the SpIRIT tool

The classes affected by a smell are determined for each kind of code smell taking
into account the classes that should be refactored to fix the smell (the worst case is
supposed). For example, the affected classes for a God Class are the main class in
which the scenario is implemented and also the classes that invoke and are invoked
by the God Class.

SpIRIT shows this kind of change impact analysis by means of the so-called heat
maps (D’Ambros and Lanza 2009). In Fig. 5, SpIRIT shows a heat map of the distrib-
ution of the affected packages by the smells of the system. The packages in color are
the ones in which the largest amount of classes affected by the smells of the system
under analysis were found. Bymeans of this kind of visual inspection of the scenarios,
SpIRIT helps developers to focus on the change impact that the refactoring of a smell
(or a group of them) will have in the scenarios.

The RMS value for a code smell is computed on the basis of the number of com-
ponents that belong to the scenarios that are affected by the smell. First, we sum up
the RCS value multiplied by the importance of the scenario that includes the affected
class if the class in which the smell is implemented is mapped to at least one scenario.
Then, for each class affected by the smell that is mapped to at least one scenario,

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 513

we sum the RCS value multiplied by the importance of the scenario and this value is
divided by the number of classes that are mapped by at least one scenario. In those
cases in which more than one scenario maps to a class, the scenario with the highest
importance is used. More formally:

RMS = RCS × importanceScenarios +
∑

RCS × importanceScenarios

allClasses A f f ectedByScenarios

The intuition behind this calculation is to givemore importance to those code smells
whose main classes and affected classes are both directly involved in scenarios.

For example, consider the situation presented in Fig. 4. Three scenarios are defined
in the system. Scenario I is mapped to classes A, B, and C and has an importance of
0.6. Scenario II is mapped to classesC,D, and E and has an importance of 0.8. Finally,
scenario III is mapped to class E and has an importance of 1. To calculate the RMS
value, the main class of the smell is analyzed. Since class B is mapped by scenario
I, the importance of scenario I (0.6) is multiplied by the RCS of the God Class (5).
Then, the classes affected by the smell must be analyzed. The class C is mapped by
scenarios I and II. Since scenario II has a higher importance than I, the importance
of the scenario II is used and 5 × 0.8 is summed. The class D is only mapped by the
scenario II thus 5 × 0.8 is summed again. Since no scenario defines class F, it is not
used in the RMS calculation. The resulting RMS for this example is:

RMS = 5 × 0.6 + 5 × 0.8 + 5 × 0.8

5
= 4.6

Note that in order to draw conclusions from this RMS value, such as whether it is
a high or low value, it would be necessary to compare it with the RMS values of other
smells. For instance, if there is a code smell in class C (Fig. 4) whose RCS is 4 but
it affects classes A, D, and E, its RMS value will be higher than the one presented
before:

RMS = 4 × 0.8 + 4 × 0.6 + 4 × 0.8 + 4 × 0.8

5
= 4.96

3.2.4 Ranking calculation

The ranking is calculated by aggregating SRC, RCS, and RMS. Specifically, a ranking
value is determined for each code smell as follows:

Ranking = α × (SRC × RCS) + (1 − α) × RMS

where 0 ≤ α ≤ 1. As it is shown, the values of SRC and RMS are increased according
to the value of RCS (note that RCS is also used to calculated RMS). Then the increased
values are combined to create the ranking. The first part of the equation, the one that
involves SRC, determines the severity of the smell taking into account the stability
of the component in which the smell is defined. Moreover, the second part, the one
involving the use of RMS, determines the impact of the smell from the perspective of

123

Author's personal copy

514 Autom Softw Eng (2016) 23:501–532

scenarios. The α value allows the developer to weight the contribution of a particular
part of the equation to the final ranking. For instance, using the example of Fig. 4 and
α = 0.5 the ranking is calculated as:

Ranking = 0.5 × (0.95 × 5) + 0.5 × 4.6 = 4.675

To create the ranking, SpIRIT allows the developer to use all the defined scenarios or
only a subset of them. Figure 5 shows a snapshot of a ranking generated by the SpIRIT
tool. On the left of the figure, the modifiability scenarios are listed. On the right, the
resulting ranking is shown. The ranking has four columns: (1) the kind of code smell
and the name of the system element in which the smell is mainly implemented, (2)
the ranking value for the smell, (3) the weight of the history in the ranking value [i.e.
α × (SRC × RCS)], and (4) the weight of the scenarios in the ranking value [i.e.
(1 − α) × RMS].

4 Case-studies

In order to evaluate our approach, we conducted two empirical studies, guided by the
following questions:

(1) Does SpIRIT ranks first the most critical code smells of a system?
(2) Are the smells ranked first by SpIRIT relevant to the developer?
(3) What value (or values) of α ranks first the most critical smells?

Questions 1 and 3 are answered in the study presented in Sect. 4.1 in which a Java
application of 8.5K lines of code with 47 smells is analyzed. In this case-study, the full
ranks of smells generated by SpIRIT with different values of α are compared against
a rank created by an application expert. The goal is to empirically test how the smells
of SpIRIT are ranked when compared to a baseline made by the application expert.

Question 3 is also analyzed in Sect. 4.2 along with question 2. In this study, a
middle-size Java application of 38K lines of code was analyzed. The last version of
this application reported a total of 523 smells. Since the analysis of each smell by
an expert was impractical, we analyzed if the top-10 smells ranked by SpIRIT, with
different values of α, were relevant to the expert.

The scopeof both case-studies involves the identification andprioritization of smells
whose refactoring could contribute positively to the evolution of the system. However,
we do not consider the refactoring step of SpIRIT inwhich the smells are actually fixed.
Also, in both case-studies SpIRIT is tested in smalls team settings where developers
work collocated.

4.1 Case-study #1: subscribers DB application

The target application is a Java sub-system of a publishing house9. This application
manages data related to the subscribers of its publications and it supports different

9 For confidentiality reasons, we can not publish details about the company or the source code of the
application.

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 515

queries on thedata.Also, the applicationmanages a printing service for the postal labels
that go with the publications when they are periodically distributed to subscribers. The
application has more than 15 releases. Its latest version has around 8.5K lines of code
and 193 classes. Themain subject in our studywas the lead application developer, who
has experience in software design and code smells. The analysis of the latest version
of the application reported 47 smells.

Since the lead developer is requested to give explicit feedback on each smell, we
chose an application with a low number of smells. An application with numerous
smells would do this experiment impractical.

4.1.1 Hypotheses and operation

In this study we analyze how similar the ranking given by SpIRIT is regarding the
ranking given by the lead developer of the application under analysis (the comparison
is made position by position). Our hypothesis is that a strong correlation should exist
between both rankings (i.e. they are very similar).We test this hypothesis by generating
SpIRIT rankings with different values of α.

This study involved an interview with the application developer. During the inter-
view the developer was asked to define the main modifiability scenarios of the appli-
cation. The developer defined three scenarios that map to 16 classes of the application
(8.3 % of the total number of classes). The developer spent 60 min to define the sce-
narios of the application. Table 4 describes the scenarios and the importance given by
the developer.

Also, during the interview, the developer was asked to select the relevance of differ-
ent kinds of code smells by using the ordinal scale of SpIRIT. The developer selected
as the most important smells those kinds of smells whose main entity is a class (i.e.
God Class, Brain Class and Data Class).

Finally, after defining the scenarios and smell relevances, the list of smells of the
latest application version was presented to the developer and she was asked to rank all
the smells according to their importance. During this process, the developer analyzed
the source code of each smell to have a deeper understanding of the problem.

Table 4 Scenarios mapping

Scenario name Short description # of mapped classes Importance

Add personal data A developer wish to add new
personal information to be stored in
the db

12 1

Modify labels A developer wish to change the
information that is printed in the
postal labels

2 0.4

Add search criterion A developer wish to add a new kind
of search to be accessible by the
users

2 0.6

123

Author's personal copy

516 Autom Softw Eng (2016) 23:501–532

Table 5 Smells marked to be refactored by the developer

Ranking Kind Main entity

1 God class SearchResults

2 Brain method SearchResults.printLabelsClicked()

3 Brain method SearchCriteriaForLabel.filterListOfPersons(List)

4 God class Person

5 Intensive coupling SearchResults.printLabelsClicked()

6 Shotgun surgery Label.getAssociatedFields()

7 Intensive coupling DatabaseManager.updatePerson(Person)

7 Intensive coupling AddPersonFrame.acceptButtonClicked()

8 Dispersed coupling SearchCriteriaForDonation.filterListOfPersons(List)

8 Dispersed coupling SearchCriteriaForLabel.toString()

9 Dispersed coupling Person.compare(Person, Person)

9 Dispersed coupling AddLabel.okButtonClicked()

9 Dispersed coupling AddEvent.okButtonClicked()

9 Dispersed coupling AddPersonToEvent.btnAddCurrentDateClicked()

9 Dispersed coupling AddPersonFrame.loadDistributors()

9 Dispersed coupling AddDonation.saveButtonClicked()

9 Dispersed coupling EditLabelsForPerson.okButtonClicked()

4.1.2 Analysis and interpretation

While no indicationswere given to the developer on how to prioritize the smells, she
decided to mainly rank them using the kind of code smell as the criterion. However,
the developer also used other criteria such as the importance of the class in which
the smell was implemented, the frequency of class modifications, and the relationship
with scenarios. Also, she ranked the smells taking into account if she considered that
the smell should be refactored in the short term (this information is shown in Table
5). The developer gave us several reasons for not refactoring a smell, namely: it was
implemented in a class that is not usually modified, the problem is not really important
(e.g. an intensive coupling that is coupled with an UI class), the smell is a false positive
[e.g. a shotgun surgerymethod that gets the instance of a singleton (Gamma et al. 1995)
class], among others. From a total of 47 smells, the developer indicated 17 smells to
be refactored. These 17 smells were, logically, the first ones in the ranking (Table 5).
In some ranking positions the developer indicated ties.

After analyzing the ranking we found that the developer ranked first many smells
that are related to the modifiability scenarios she previously had defined. A total of
14 smells out of 47 are related to these scenarios. The developer ranked 8 of these
14 smells to be refactored. The smells related to modifiability scenarios are those
highlighted in italic in Table 5.

Once the interviewwasfinished, themodifiability scenarios and the smell relevances
defined by the developer where loaded into SpIRIT along with the history of the

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 517

Fig. 6 Comparison of top ranked smells a α = 0 b α = 0.5 c α = 1

application (15 releases). We were interested in the influences of the code history and
the modifiability scenarios on the ranking. As discussed in Sect. 3, this influence is
weighted by parameter α. For this reason, after loading the scenarios and relevances,
the SpIRIT ranking was obtained using different configurations of α in the range
0 ≤ α ≤ 1.

For example, Fig. 6 shows the first 17 positions of the rankings of SpIRIT for three
reference values of α: no influence of the system history (α = 0), equal influence
of both history and scenarios (α = 0.5), no influence of the scenarios (α = 1). The
smells highlighted are those smells that are also present in the top-17 smells suggested
by the developer. Note that the rankings generated with α = 0 and α = 0.5 contain 9
out of the 17 most critical smells in their first 17 positions. Regarding the ranking of
α = 1, it contains 7 smells. As expected, the ranking generated with α = 0 contains
in the first positions the 8 smells related to scenarios marked to be refactored by the
developer. However, these 8 smells are also top-ranked with α = 0.5, meaning that
most of these smells are not only influenced by scenarios but also by history (although
in a smaller percentage).

Regarding the positions of the smells, Table 6 compares the positions suggested
by the developer for the smells marked to be refactored with their counterparts after
running SpIRIT. The cells highlighted in italic indicate the positions of the SpIRIT

123

Author's personal copy

518 Autom Softw Eng (2016) 23:501–532

Table 6 Comparison of positions of smells marked to be refactored

Code smell Ranking

Developer α = 0 α = 0.5 α = 1

God class—SearchResults 1 3 1 1

Brain method—SearchResults.
printLabelsClicked()

2 6.5 2 2

Brain method—
SearchCriteriaForLabel.
filterListOfPersons(List)

3 1 5 40

God class—Person 4 2 6 21

Intensive
coupling—SearchResults.
printLabelsClicked()

5 11 3 4.5

Shotgun surgery—
Label.getAssociatedFields()

6 8 12 17.5

Intensive
coupling—DatabaseManager.
updatePerson(Person)

7 25 7 4.5

Intensive
coupling—AddPersonFrame.
acceptButtonClicked()

7 25 33.5 29

Dispersed coupling—
SearchCriteriaForDonation.
filterListOfPersons(List)

8 6.5 20.5 40

Dispersed coupling—
SearchCriteriaForLabel.
toString()

8 5 16 40

Dispersed coupling—
Person.compare(Person,
Person)

9 19.5 15 8.5

Dispersed coupling—
AddLabel.okButtonClicked()

9 30 37 40

Dispersed coupling—
AddEvent.okButtonClicked()

9 40.5 43 40

Dispersed
coupling—AddPersonToEvent.
btnAddCurrentDateClicked()

9 40.5 28 19.5

Dispersed
coupling—AddPersonFrame.
loadDistributors()

9 19.5 35 32

Dispersed
coupling—AddDonation.
saveButtonClicked()

9 40.5 43 25

Dispersed coupling—
EditLabelsForPerson.
okButtonClicked()

9 19.5 18 13.5

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 519

ranking that are less than two positions away from the positions proposed by the
developer. For example, the God Class SearchResults ranked first by the developer
was also in the first position in the SpIRIT ranking for α = 1. Note that the ranking
generated with α = 0.5 is the most accurate when the ten first positions are compared.
In this case, 6 of the first 7 smells are ranked less than two positions away from the
positions proposed by the developer. This fact is important because it shows that the
first smells ranked by SpIRIT are not only those indicated as the most critical ones by
the developer but also that they are the ones marked to be refactored.

While the analysis above provides evidence that SpIRIT ranks in the first positions
themajority of the critical smells, it is important to analyzehowaccurate these positions
are. Given the ranking proposed by the developer, we need to determine how close
SpIRIT comes to the proposed ranking. Since the developer’s ranking preferences are
known, we apply the Spearman’s correlation coefficient (p) (Ricci et al. 2011). This
coefficient measures the strength of association between the developer’s and SpIRIT
rankings. Since the developer’s and SpIRIT rankings contain ties (i.e. more than one
smell have the same ranking position) we use the following method to calculate the
Spearman’s correlation:

p =
∑

i (xi − x̄)(yi − ȳ)
√∑

i (xi − x̄)2
∑

i (yi − ȳ)2

where xi and yi are the ranking positions for the same code smell instance in the
developer’s and SpIRIT rankings respectively. Regarding x̄ and ȳ, they are the means
of the ranking values of each ranking. In the case of tied smells, their ranking value
should be the average of the ranking position. For example, if the smells in positions 1,
2 and 3 of the SpIRIT ranking have the same ranking score, the ranking value assigned
to each of them must be 1+2+3

3 = 2. The coefficient can take values between 1 and
-1. If p=1, it indicates a perfect association between both rankings. If p=0, it indicates
no correlation between the rankings. If p=-1 indicates a negative association between
the rankings.

Figure 7 shows the variations of the p coefficient for different values of α. When
all the smells ranked were analyzed, we found that the coefficient varied between
0.58 ≤ p ≤ 0.62 for α values between 0 and 0.5. The highest value of p was found
after generating the ranking with α = 0.2. The Spearman’s correlation value sharply
decreased for a α value higher than 0.6. This means that the rankings proposed by
SpIRIT, when the modifiability scenarios are taken (to some extent) into account, are
very close to the ranking proposed by the developer. A similar behavior is observed
when only the smells marked to be refactored are taken into account to calculate the
correlation. In this case, the values of p are higher than those for the cases in which
all the smells were considered. The highest values of p ranges 0.8 ≤ p ≤ 0.88 for α

values between 0.1 and 0.6. In this case, the highest value of pwas found for α = 0.4.
Such high values of p, when only the smells marked to be refactored are taken into
account, means that this subset of smells is ranked by SpIRIT in almost the same
positions as the ones proposed by the developer.

123

Author's personal copy

520 Autom Softw Eng (2016) 23:501–532

Fig. 7 Spearman’s correlation results

Results Overall, we found that SpIRIT ranks first the most critical smells of an appli-
cation. The analysis of all the smells versus the ones marked to be refactored by the
developer shows that a combination of scenarios and history is appropriate to generate
the SpIRIT ranking. This is because the highest values of p where found for values of
α close to 0.5.

4.1.3 Threats to validity

Next, we analyze threats to four types of validity for this study.

Conclusion validity This threat concerns the statistical analysis of the results. In this
case, the main concern is that the study was made over one single application with
one developer. This could reduce the ability to draw correct results. For this reason,
we think that further experiments with other applications are necessary in order to
generalize our results.

Internal validity This threat concerns causes that can affect the independent variable
of the experiment without the researcher’s knowledge. The main threat in this case is
that we did not have a “second opinion” to contrast the scenarios and ranking given
by the developer. For example, other developers could have defined more scenarios
or made different mappings leading to different results. Also, it is unknown if other
developers could have prioritized first those smells related to modifiability scenarios.
However, we argue that the developer prioritized first the smells related to scenarios
because they are related with classes that are themain sources of problems. The person
that defined the scenarios and the ranking was the application developer, who had a
deep understanding of the application and of the kind of changes that could typically
occur. For this reason, the internal validity is not considered to be critical. Anyway,
the intervention of a second developer to contrast the definition of the ranking and the
scenarios should be considered in future works to mitigate this threat.

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 521

Construct validity It is concerned with the design of the experiment and the behavior
of the subjects. Our main concern if that the developer’s ranking could have been
influenced by the relevances of the smells and the description of the scenarios made at
the beginning of the experiment. That is, the developer could have followed a different
approach to rank the smells if the definition of the smell relevances and the scenarios
have been done after creating the ranking. However, it was emphasized during the
interview that the ranking did not necessarily depend on the relevances and scenarios.

External validity It is concerned with having a subject that is not representative of the
population. The main treat is that the application analyzed was small with a reduced
amount of code smells. However, the same analysis in larger applications is not always
viable because a developer must manually analyze each smell and suggest its ranking.
Also, another threat is that the experiment was conducted in a small team setting with
all developers collocated. Although scenario-based techniques have been regarded
as useful in the literature, the definition of a comprehensive set of scenarios can
be an expensive process in industrial contexts, particularly because it requires both
architects’ expertise and stakeholders’ commitment. This adoption barrier has been
discussed in (Bashroush et al. 2004; Woods 2012). In our approach, the value of the
modifiability scenarios stems from their ability to focus architects, stakeholders and
developers on important system areas. In addition to the scenario definition (at the
architectural level), a related threat has to do with relationships between the scenarios
and the code. In this experiment, having a small team of developers working collo-
cated helped them to reason and discuss about the system. Nonetheless, in larger or
geographically-distributed teams, reasoning about the internal system details and their
effects on code smells can be harder.

4.2 Case-study #2: beef-cattle farm simulator

We conducted an empirical study on a non-trivial Java application. The target appli-
cation is a beef-cattle farm simulator (BCFS) (Mangudo et al. 2012; Marcos et al.
2011) developed by a local software factory, and currently being used by several agro-
livestock companies. This application has been developed for 5 years so far following
an iterative, agile process. BCFS has around 38K lines of Java code and 425 classes.
The case-study involved the analysis of the latest version of this application. The main
subject in our study was the lead architect of BCFS, who has vast experience in the
design and implementation of this kind of systems. A first run of SpIRIT on BCFS
reported 523 smells. Figure 8 shows the distribution of the different kinds of smells.
While three kinds of smells represents the 70 % of the smells found, this does not
mean that these types of smells are the most relevant ones. It is in this situation that
the prioritization of SpIRIT becomes helpful.

4.2.1 Hypotheses and operation

SpIRIT is assumed to rank first the most important smells of the system. Our goal
was to empirically evaluate this hypothesis, from the perspective of a domain and

123

Author's personal copy

522 Autom Softw Eng (2016) 23:501–532

Fig. 8 Code smells of BCFS

development expert. Unlike case-study #1, it is not possible to ask the developer to
rank all the possible smells of the system, mainly because the number of smells is very
large. For this reason, in this case study we analyze the relevance for the developer of
the SpIRIT top-ranked smells. As in case-study #1, three reference values of α were
used (0, 0.5 and 1 respectively).

Hypotheses In this study, we consider that SpIRIT will rank first the most important
smells if at least 7 smells of the first 10 ranked are judged as important by the developer
(i.e. more than 60 % of the top-10 smells must be important). Along this line, we
formulated the following null hypotheses:

– H10 number of important code smells ≤ 60 % of the first 10 smells ranked with a
configuration of α = 0.

– H20 number of important code smells ≤ 60 % of the first 10 smells ranked with a
configuration of α = 0.5.

– H30 number of important code smells ≤ 60 % of the first 10 smells ranked with a
configuration of α = 1.

Also, we formulated the following alternative hypotheses:

– H11 number of important code smells > 60 % of the first 10 smells ranked with a
configuration of α = 0.

– H21 number of important code smells > 60 % of the first 10 smells ranked with a
configuration of α = 0.5.

– H31 number of important code smells > 60 % of the first 10 smells ranked with a
configuration of α = 1.

As for the variables selection in the study, the independent variables are those involved
in the configuration of SpIRIT, namely: the parameter α, the relevance of each kind
of smell, and the modifiability scenarios inputted into the tool. The main dependent
variable in our analysis is the ranking proposed by the tool.

Operation The evaluation process involved two rounds of interviews with the lead
developer of BCFS. While the developer had previous knowledge of code smells
and modifiability scenarios, she was given an introduction to the topic. However, the
developer was not aware of our hypotheses for the tool. In the first interview, we
tried to capture the main structural problems of BCFS. To this end, the developer

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 523

provided us with a list of the 10 classes that she believed were the most problematic
ones for the current system version. Then, we asked the developer to define a set of
modifiability scenarios that she considered as key for the current system goals. She
assigned a priority to every scenario, mapping each one to a group of related classes.
As a separate activity, she also defined the relevance of each kind of code smell, in the
context of BCFS.

After this first interview, we fed the modifiability scenarios and the relevances of
the smells into SpIRIT. Also, we loaded into SpIRIT the previous versions of the
application to take its history into account. Based on the three α configurations above
(0, 0.5, and 1), we executed the tool and obtained three corresponding rankings of
smells. Then, we came back to the lead developer for a second interview.We presented
the first 10 smells of each ranking to the developer in a random order, and asked her to
grade the importance of the smells for BCFS using a five-level ordinal scale (not at all
important, somewhat unimportant, neutral, somewhat important, and very important).
In particular, for every smell of the rankings, he was required to answer the question:
how important do you think code smell X is?

4.2.2 Analysis and interpretation

In this section the interviews with the developer are described and the results of them
are analyzed.

Analysis of the First Interview During the first interview, the developer ranked the 10
classes that he believed were the most problematic ones of the application (Table 7).
In addition, the developer defined 6modifiability scenarios for BCFS. These scenarios
mapped to 64 different classes, which represents the 15 % of the application classes.
The developer spent 120 min to define the scenarios of the application.

Also, the developer defined the God Class and the Brain Class as the most relevant
smells (Table 8). Note that the developer defined God Class and Brain Class as the
most relevant smells even when both had very few occurrences in the total list of
smells for BCFS (5.35 and 0.57 % respectively, as shown in Fig. 8). This supports the

Table 7 Developer’s ranking of
most problematic classes

Class

Farm

Animal

FeedIntake

GrowAnimals

FeedIntakeCalf

GrowCalf

MobExcelExportDecorator

FarmExcelExportDecorator

Cow

OrganizeMobs

123

Author's personal copy

524 Autom Softw Eng (2016) 23:501–532

Table 8 Relevance of code
smells given by the developer

Code smell Relevance

God class 5

Brain class 4

Brain method 3

Data class 3

Dispersed coupling 2

Feature envy 2

Intensive coupling 2

Shotgun surgery 2

Refused parent bequest 1

Tradition breaker 1

Table 9 Top-10 smells of the rankings generated by SpIRIT

α = 0 α = 0.5 α = 1

God class—Reproduction God class—
DefaultSimulationDatabase

God class—
DefaultSimulationDatabase

God class—Weaning God class—Simulation God class—Cow

God class—EarlyWeaning God class—EarlyWeaning God class—ReproDataSummary

God class—OrganizeMobs God class—Cow God class—Animal

God class—MoveMobs God class—Animal God class—SimulationFrontEnd

God class—
DefaultSimulationDatabase

God class—Weaning God class—Simulation

God class—Simulation Brain method—GrowAnimals.
SimulationStep(Simulation)

God class—FeedlotType

God class—GrowPasture Brain method—FeedIntake.
simulationStep(Simulation)

God class—Mob

God class—Economico Brain method—
ProductiveDataRecopilation.
simulationStep(Simulation)

God class MobCowCalfFeatures

Brain class—Hibrido Brain method—
DefaultSimulationDatabase.
insertStep(Simulation)

God class—ProductiveSummary

intuition that some smells are more important than others for the developer, regardless
of their density in the code.

With these values as input, SpIRIT generated three rankings. Table 9 shows the
top-10 smells of each ranking. All the rankings were primarily composed by God
classes, as follows::

– α = 0 9 instances of God Class and 1 instance of Brain Class.
– α = 0.5 6 instances of God Class and 4 instances of Brain Class.
– α = 1 10 instances of God Class.

These results can be explained by the fact that the God Class was defined as the
most relevant smell, and the main classes of the ranked God classes have high SRC
(relevance of a code Smell) values or they are mapped by scenarios.

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 525

Table 10 Overlapping between
SpIRIT rankings

α 0 (%) 0.5 (%) 1 (%)

0 – 40 20

0.5 40 – 40

1 20 40 –

Fig. 9 Coincidences between classes of the SpIRIT ranking and the developer’s ranking

The overlapping between the rankings generated with the three values of α was
relatively low (considering just the first 10 smells of each ranking). Only two smell
instances were present in the three rankings (although in different positions). This
means that the values chosen for α are sufficiently different to conduct the experiment.
Table 10 shows the percentage of overlapping between the top-10 smells of the three
rankings. For example, only four smells ranked in the top-10 of the ranking generated
with α = 0 are present in the top-10 generated with α = 0.5.

We also compared themain classes of the first 10 smells of the rankings generated by
SpIRIT against the 10 classes provided by the developer. Remember that the developer
defined her ranking before knowing the lists of smells outputted by SpIRIT. In the
SpIRIT ranking with α = 0.5, we found that the main classes of the first 4 smells (of
the list of 10 smells) matched some of the classes in the developer’ ranking (Fig. 9).
This matching shows that 40 % of the smells in the SpIRIT ranking are implemented
in problematic classes from the list given by the developer. If we analyze the values
for α = 0 and α = 1, the matching classes are lower than those for α = 0.5. Note that,
although a 40 % of matching is relatively low in terms of predictive power of SpIRIT,
it is important to know if the remaining smells (those whose main class is not in the
developer’s ranking) are actually problems that the developer might have overlooked.
This aspect is analyzed during the second interview. Table 9 highlights in italic those
smells of the SpIRIT ranking whose main class was ranked by the developer as a
source of problems. For example, the God Class Cow is highlighted in italic in Table
9 because this class was identified as a source of problems, as shown in Table 7.

We analyzed the number of main classes (of the smells) that received mappings
from at least one scenario, as a sanity check about the influence of scenarios according
to the value of α. This analysis was made for the first 10 smells ranked by SpIRIT.
Interestingly, we found that all main classes of the SpIRIT ranking using 0 ≤ α ≤ 0.5

123

Author's personal copy

526 Autom Softw Eng (2016) 23:501–532

Fig. 10 Coincidences between main classes of the code smells ranked and classes mapped by scenarios

Table 11 Developer’s agreement with the ranked smells

α Not at all important Somewhat unimportant Neutral Somewhat important Very important

0 – – 1 2 7

0.5 – – 1 2 7

1 – 4 1 – 5

had mappings from one or more scenarios (Fig. 10). This level of matching indicates
that when the scenarios are used for generating the ranking, the top positions of the
ranking are smells strongly related to those scenarios. This finding is worth noticing
because the scenarios only covered 15 % of the system classes. Regarding the main
classes of all the code smells, only 49 % of them are mapped by some scenario.

Analysis of the second interview To test the hypotheses, we used a binomial test
because we consider each smell as an independent trial and evaluated a finite number
of them. The test inputs were the developer’s answers to the statement “How important
do you think each code smell is?”. These answers are summarized in Table 11. The
table shows the agreement of the developer with the importance of the top-10 smells
of the rankings generated by SpIRIT with different values of α.

We consider that a smell is important if the developer’s answer was Somewhat
important or Very important. That is, for α = 0 and α = 0.5 we have 9 important
smells.Analogously, forα = 1wehave 5 important smells. Table 9 shows in bold those
smells of the SpIRIT ranking that were judged as important by the developer. Note the
differences (and overlaps) with the smells considered as related to problematic classes
by the developer during the first interview (italic cells in the table). The differences
essentially say that SpIRIT uncovered problems that went undetected to the developer
(in her first analysis). Thus, with this additional information, the 40 % of problem
matching observed during the first interview for the ranking generated with α = 0.5
now goes up to a 90 % of matching.

The facts above, however, need to be checked from a statistical perspective. Let X
be the number of important smells and k = 0.6 the probability that we want to test
in the null hypotheses (H0). Then, the binomial test statistic is X ∼ B(10, 0.6). After

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 527

testing the data for α = 0 and α = 0.5 with a significance level of 5 %, we obtained
a p-value = 0.04636. Since p-value <0.05, it is possible to reject the null hypotheses
with a one-tailed test. This means that we accept the alternatives hypotheses H11 and
H21, which state that the number of important code smells (ranked in the first 10
positions) is greater or equal than 7 when α = 0 or α = 0.5 is used.

Similarly, we tested the data for α = 1 (H30) with a significance level of 5 % . In
this case, we obtained a p-value = 0.8338. Since p-value ≮0.05, it is not possible to
reject the null hypothesis with a one-tailed test. Thus, the number of important smells
(ranked in the first 10 positions) is equal or less than 60 % of the smells.

Results Overall, we investigated how important the first 10 smells ranked by SpIRIT
were, from the point of view of the developer. We verified that SpIRIT ranks at least 7
important smells in the first 10 positions of the ranking when α = 0 or α = 0.5. That
is, the best results are found when the ranking is influenced (to some extent) by the
modifiability scenarios. Since only 10 and 40 % (for α = 0 and α = 0.5 respectively)
of the smells ranked by SpIRIT were shared by the developer’s ranking, these results
indicate that SpIRIT is indeed useful to the developer as it reveals “new” problems in
the form of code smells. This finding is graphically shown in Table 9 by the smells in
bold that are not highlighted in italic.

Another interesting finding derived from the good results with α = 0 is that the
approach could also generate acceptable rankings when the history it is not available.
This case is specially relevant in early development stages of an application or when
there is little or no history of previous versions available. However, the mixture of
criteria had the best performance. This is because the ranking generated with α = 0.5
contains more smells that affects problematic classes than the rankings generated with
α = 0 and α = 1 see the smells highlighted in italic in Table 9).

4.2.3 Threats to validity

Our case-study and its results are subject to validity threats.

Conclusion validity While well-known statistical techniques were applied in the
experiment, the main concern is that the experiment was conducted over one sin-
gle application. This fact could reduce the power of the statistical test. For this reason,
we think that further experiments with other applications are necessary in order to
generalize our results.

Internal validity In our case, the main threat is the selection of the developer. Since
she defined the scenarios and also indicated the relevance of each code smell, having
other expert developers with a different background or perception of the system could
generate different results. To mitigate this threat, a second developer of the application
could be interviewed to corroborate the answers of the first developer.

Construct validity The main concern is that the previous knowledge of the developer
about certain kinds of code smells could havemade her prefer specific relevance values
for those smells, regardless of their importance in the application context. We think

123

Author's personal copy

528 Autom Softw Eng (2016) 23:501–532

that this is a minor threat because each developer would have different preferences
about the smells relevances.

External validity In this case, this threat concerns the generalization of the experiment
results to other environments. A minor threat is that the developer only analyzed the
first 10 positions of each ranking. However, the analysis of all possible values was not
viable. Also, this experiment is threatened by the concerns that we detail on case-study
#1 about the difficulty to define modifiability scenarios in some contexts and also on
how to map scenarios to source code in large or geographically-distributed teams.

5 Related work

The literature proposes various approaches to prioritize problems in object-oriented
systems.

Tsantalis and Chatzigeorgiou (2011) rank refactoring suggestions to deal with code
smells based on the analysis of past modifications. In this ranking, those refactorings
whose target code was modified in the past will have the highest priority. Similar
to us, the approach uses historical volatility models taken from the field of financial
markets to calculate the probability of change of a given component. However, the
way in which the volatility is calculated by the authors varies for each kind of code
smell. Thus, the volatility is based in each instance of the smell. That means that the
volatility can only be calculated since the creation of the smell ignoring important
information of changes that could have been done before. Additionally, since only the
volatility is taken into account to rank the smells, this approach can only be used in
late development stages. Also, instead of generating a unique ranking, this approach
generates a different ranking for eachkindof code smell. This could confuse developers
when a catalog of smells is used because of the high number of rankings. Moreover,
the developer would not knowwhich kind of smell to refactor first. Another difference
between this approach and the Beta analysis used by us is that Beta calculates the
volatility by comparing the change between the system and a class. That is, Beta
allows us to know how important the changes are in the class with respect to the
changes in the system.

Tsantalis and Chatzigeorgiou also present approaches to identify state-checking
problems (the use of if clauses to decide the behavior of an object instead of poly-
morphism) and the decomposition of large methods (Tsantalis and Chatzigeorgiou
2010, 2011). Differently from us, the ranking in these approaches is done according
to specific characteristics of the problems detected (e.g. number of instance variables
used). Also, this work only ranks problems of the same kind.

Gîrba et al. (2004) follow the hypothesis that those fragments of code that were
modified in the past are more likely to be modified in the future. This work analyzes
each class of a version of a system using an algorithm that determines the probability
of change of the class in future versions. The algorithm simply makes a ranking of the
most changed classes in the last n versions of the system, then selects the top X classes.
If the class is likely to change, then it is marked as candidate class to be refactored.
That is, differently to us the output of the approach is not a list of smells but simply

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 529

a list of classes that were modified frequently in the last versions of the system under
analysis. The work does not cover the analysis of possible problems in the classes
to be refactored or the suggestion of refactorings. To measure the change of a class
between versions, the authors introduce a metric called latest evolution of number of
methods (LENOM) that identifies the classes that experienced more changes in the
last versions of the system.

Lanza and Marinescu (2006) present a strategy to identify code problems called
disharmonies. The disharmonies are defined based on a combination of different met-
rics that have to exceed a predetermined threshold. They also propose the use of a
visualization technique called Class Blueprint in order to complement the detection
strategy. To prioritize the disharmonies to be refactored, the authors propose a naive
approach inwhich the classes (ormethods) that present a high number of disharmonies
should be refactored first. We think that analyzing the concentration of smells can be
an interesting complement for SpIRIT in the task of understanding the system under
analysis.

Marinescu (2012) proposes the measurement of the impact of code smells based on
three factors: (i) the negative influence of a kind of code smell in the architecture of a
system; (ii) the kind of entity that the smell affects (such as a method or a class); and
(iii) the values of the metrics used to identify each kind of code smell. This impact
score can be used to rank smells. Factors (i) and (ii) are similar to our RCS criteria. In
the case of factor (i) it is pre-calculated for each kind of code smells using a three value
nominal scale (low, medium, high). That is, not real assessment is performed of the
impact of a smell’s instance in the architecture of the system but an estimation of the
influence of a kind of smell. Regarding factor (iii), we think that a similar calculation
can be used to measure the benefits of fixing a smell.

Arcoverde (2012) presents an approach to prioritize code smells using heuristics.
The heuristics are based on different characteristics, namely: the number of changes
of a component (e.g. packages, classes) during the history of a system, the number of
bugs found in the component during its history, the concentration of smells in a class
or package, and architecture roles played by classes. The heuristics are used to rank
first those smells that affect components that meet the heuristics. While this approach
takes into account architectural information through the use of architectural roles,
the definition of architectural roles requires a thorough knowledge of architecture
(for example, some form of documentation of the architecture, which typically is not
available). Differently, to define the modifiability scenarios of our approach this kind
of information is not always necessary since developers generally know the parts of
the system that needs to be modifiable. Another difference with SpIRIT is that the
work does not take into account the relevance of each kind of code smell.

Moreover, in contrast to the aforementioned approaches, our approach relies on
modifiability scenarios as the lenses to look at important code smells. In this way,
SpIRIT prioritizes those parts of the application that need to be as modifiable as pos-
sible.

123

Author's personal copy

530 Autom Softw Eng (2016) 23:501–532

6 Conclusion

This article presents a semi-automated approach for prioritizing code smells before
deciding on suitable refactorings for them. The approach is based on three criteria: the
history of changes of the components in which a smell is implemented, the relevance
of the kind of smell for the developer, and how smells are affected by keymodifiability
scenarios. The approach is intended to help the developer choose which code smells
should be fixed based on how critical the smells are.

In order to validate the benefits of the approach we conducted two case-studies.
These case-studies corroborated our assumptions about the advantages of our
approach, allowing the developer to refactor first the most critical smells. In the first
study, we compared the smells ranked by SpIRIT for a Java application with the smells
ranked by an expert in the application. We found that the ranking proposed by SpIRIT
generated with 0 ≤ α ≤ 0.5 were highly correlated with the one proposed by the
expert. In the second study, we analyzed how important the top-ten smells ranked by
Spirit are for the developer in the context of a mid-size Java application. We found
that SpIRIT ranks at least 7 important smells for the developer in the first 10 posi-
tions of the ranking when α = 0 or α = 0.5. That is, we found in both studies that
SpIRIT ranks first the most critical smells of an application when the three criteria
are combined. However, we also found that SpIRIT returns acceptable results when
the criterion based on modifiability scenarios is preferred over the history. This is
important because the history criterion has some drawbacks when used in isolation.
For example, since a number of past versions needs to be available for the analysis, the
results often come “late” in the lifecycle, when problems are harder to fix or impor-
tant efforts might have been committed to implementation. Moreover, results from the
second study showed that SpIRIT helps to reveal “new” problems in the form of code
smells that the developer was not aware of.

Although we found that the approach helps the developer during the prioritization
and refactoring of smells, the approach has still some limitations. First, since the Beta
analysis is currently based on changes in the number of methods, it does not identify
as a change the situation in which a number of methods of a class are removed and
a same number of new methods are added. It neither takes into account the case in
which the whole body of a method (or an important part of it) is replaced. Second, an
adoption challenge is that the definition of scenarios by the developer can take some
time and might require experience and knowledge of the system. Anyway, we believe
it pays off in terms of aligning the code smell analysis with the system goals. Third,
another limitation is that the criteria that takes into account the history of changes of
the application can only be used in late stages of development (when enough history
is available). However, we think that this criterion is complemented by the other two
which can be used from the beginning of the development.

As future work, we will propose strategies to suggest refactorings to fix smells.
Along with the suggestion of refactoring alternatives, we also plan to measure not only
their benefits but also the cost of applying each alternative. Thesemeasurements should
be based in different aspects: the number of refactorings of an alternative, the kind of
refactorings to apply, the number of classes affected, among others.Moreover, this cost
measurement could be integrated into SpIRIT as a new prioritization criterion. In this

123

Author's personal copy

Autom Softw Eng (2016) 23:501–532 531

way, the developer could prioritize the most critical smells with the lowest refactoring
costs. We also plan to test SpIRIT in other applications. For instance, we are interested
in using SpIRIT to assist novice developers who are tasked to do refactoring of a
system they might not be familiar with. In this situation, we conjecture that SpIRIT
can help these developers to be more productive in their analysis of smells. Also, we
will replicate some of the experiments and also analyze applications written in other
programming languages than Java.

Acknowledgments This work was partially supported by CONICET (Argentina) through PIP Project No.
112-201101-00078. We are grateful to Mauricio Arroqui and Carlos Machado for their valuable collabora-
tion in the BCFS case-study.

References

April, A., Abran, A.: Software maintenance management: evaluation and continuous improvement. IEEE
Computer Society (2008)

Arcoverde, R.L.: Prioritization of code anomalies basead on architecture sensitiveness. Master’s thesis,
Pontifícia Universidade Católica do Rio de Janeiro (2012)

Bashroush, R., Spence, I.T.A., Kilpatrick, P., Brown, T.J.: Towards an automated evaluation process for
software architectures. In: IASTED Conference on Software Engineering, pp. 54–58 (2004)

Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2003)

D’Ambros,M., Lanza,M.: Visual software evolution reconstruction. J. Softw.Maint. 21(3), 217–232 (2009)
Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns. Morgan Kaufmann, San

Francisco (2003)
Erlikh, L.: Leveraging legacy system dollars for e-business. IT Prof. 2(3), 17–23 (2000). doi:10.1109/6294.

846201
Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing

Co., Inc., Boston (1999)
Gamma, E., Helm, R., Johnson, R.E.: Design Patterns. Elements of Reusable Object-Oriented Software,

1st edn. Addison-Wesley Longman, Amsterdam (1995)
Gîrba, T., Ducasse, S., Lanza, M.: Yesterday’s weather: guiding early reverse engineering efforts by sum-

marizing the evolution of changes. In: ICSM, IEEE Computer Society, pp 40–49 (2004)
Hurtado, J.F., Sabadini, F., Vidal, S., Marcos, C.: Predicción del cambio a través de la historia del sistema.

In: 14thArgentine Symposium on Software Engineering (ASSE 2013), 42 JAIIO (Jornadas Argentinas
de Informática) (2013). In Spanish

Kazman, R., Abowd, G.D., Bass, L.J., Clements, P.C.: Scenario-based analysis of software architecture.
IEEE Softw. 13(6), 47–55 (1996)

Kim, M., Zimmermann, T., Nagappan, N.: A field study of refactoring challenges and benefits. In: Proceed-
ings of 20th International Symposium on the Foundations of Software Engineering (FSE) (2012)

Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice: Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented Systems. Springer, New York (2006)

Levy, H.: Fundamentals of investments. Financial Times, Prentice Hall (2002)
Macia, I., Arcoverde, R., Cirilo, E., Garcia, A., von Staa, A.: Supporting the identification of architecturally-

relevant code anomalies. In: 28th IEEE International Conference on Software Maintenance (ICSM),
pp. 662–665 (2012a). doi:10.1109/ICSM.2012.6405348

Macia, I., Arcoverde, R., Garcia, A., Chavez, C., von Staa, A.: On the relevance of code anomalies for
identifying architecture degradation symptoms. In: CSMR (2012b)

Mangudo, P., Arroqui, M., Marcos, C., Machado, C.: Rescue of a whole-farm system: crystal clear in action.
Int. J. Agile Extrem. Softw. Dev. 1, 6–22 (2012)

Marcos, C., Vidal, S., Abait, E., Arroqui, M., Sampaoli, S.: Refactoring of a beef-cattle farm simulator.
IEEE Lat. Am. Trans. 9, 1099–1104 (2011)

Marinescu, R.: Assessing technical debt by identifying design flaws in software systems. IBM J. Res. Dev.
56(5), 9 (2012)

123

Author's personal copy

http://dx.doi.org/10.1109/6294.846201
http://dx.doi.org/10.1109/6294.846201
http://dx.doi.org/10.1109/ICSM.2012.6405348

532 Autom Softw Eng (2016) 23:501–532

Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings of the 4th International
Workshop on Principles of Software Evolution, ACM, New York, IWPSE ’01, pp. 83–86 (2001).
doi:10.1145/602461.602476

Mkaouer,M.W.,Kessentini,M.,Bechikh, S.,ÓCinnéide,M.:A robustmulti-objective approach for software
refactoring under uncertainty. In: Le Goues, C., Yoo, S. (eds.) Search-Based Software Engineering,
Lecture Notes in Computer Science, vol. 8636, pp. 168–183. Springer International Publishing, New
York (2014)

Moha, N., Guéhéneuc, Y.G., Duchien, L., Meur, A.F.L.: Decor: a method for the specification and detection
of code and design smells. IEEE Trans. Softw. Eng. 36(1), 20–36 (2010)

Ozkaya, I., Díaz Pace, J.A., Gurfinkel, A., Chaki, S.: Using architecturally significant requirements for
guiding system evolution. In: CSMR, IEEE, pp. 127–136 (2010)

Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, New
York (2011). http://dblp.uni-trier.de/db/reference/rsh/rsh2011.html

Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software Technologies, Engineering
Processes, and Business Practices. Addison-Wesley Professional, Boston (2003)

Tsantalis, N., Chatzigeorgiou, : Identification of refactoring opportunities introducing polymorphism. J.
Syst. Softw. 83(3), 391–404 (2010)

Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring opportunities for the decom-
position of methods. J. Syst. Softw. 84(10), 1757–1782 (2011a)

Tsantalis, N., Chatzigeorgiou, A.: Ranking refactoring suggestions based on historical volatility. In: Kanel-
lopoulos, Y., Winter, A., Mens, T. (eds.) CSMR, pp. 25–34. IEEE Computer Society, Los Alamitos
(2011b)

Vidal, S.A.: (2013) Spirit: Smart identification of refactoring opportunities. Ph.D. thesis, UNICEN Univer-
sity

Wong, S., Cai, Y., Kim, M., Dalton, M.: Detecting software modularity violations. In: Taylor, R.N., Gall,
H., Medvidovic, N. (eds.) ICSE, pp. 411–420. ACM (2011)

Woods, E.: Industrial architectural assessment using tara. J. Syst. Softw. 85(9), 2034–2047 (2012)

123

Author's personal copy

http://dx.doi.org/10.1145/602461.602476
http://dblp.uni-trier.de/db/reference/rsh/rsh2011.html

	An approach to prioritize code smells for refactoring
	Abstract
	1 Introduction
	2 Improving design with code smells detection
	3 SpIRIT approach
	3.1 Identifying code smells
	3.2 Prioritizing code smells
	3.2.1 Stability of related components (SRC)
	3.2.2 Relevance of a code smell (RCS)
	3.2.3 Related modifiability scenarios (RMS)
	3.2.4 Ranking calculation

	4 Case-studies
	4.1 Case-study #1: subscribers DB application
	4.1.1 Hypotheses and operation
	4.1.2 Analysis and interpretation
	4.1.3 Threats to validity

	4.2 Case-study #2: beef-cattle farm simulator
	4.2.1 Hypotheses and operation
	4.2.2 Analysis and interpretation
	4.2.3 Threats to validity

	5 Related work
	6 Conclusion
	Acknowledgments
	References

