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Abstract In this paper, we characterize the sharp boundedness of the one-sided fractional maximal

function for one-weight and two-weight inequalities. Also a new two-weight testing condition for the

one-sided fractional maximal function is introduced extending the work of Mart́ın-Reyes and de la Torre.
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1 Introduction

Given an operator T defined on the set of medibles functions in R, we say that T is a one-
sided operator if Tf(x) depends only on the values of f in the interval [x,∞), in other words
Tf(x) = T (fχ[x,∞))(x). In a similar way, it can be considered Tf(x) = T (fχ(−∞,x])(x).

Examples of this kind of operators are the classical fractional integral Weyl operator I+
α and

the fractional integral Riemann–Liouville operator I−α , that are defined in the following way:
given 0 < α < 1 and f ∈ L1

loc(R)

I+
α f(x) :=

(
f(y) ∗ 1

|y|1−α
χ(−∞,0)(y)

)
(x) =

∫ ∞

x

f(y)
(y − x)1−α

dy

and

I−α f(x) :=
(

f(y) ∗ 1
|y|1−α

χ(0,∞)(y)
)

(x) =
∫ x

−∞

f(y)
(x − y)1−α

dy.

For 0 < α < n, let us consider the convolution with the kernel 1
|y|n−α , in this case, we obtain

the Riezs potential operator Iα:

Iαf(x) :=
(

f(y) ∗ 1
|y|n−α

)
(x) =

∫
Rn

f(y)
|x − y|n−α

dy.

For each of this operators, there exists a maximal function that gives a Coifman type
inequality. For the Weyl and Riemann–Liouville operators, these are the one-sided maximal
fractional functions M+

α and M−
α respectively and for the Riezs potential Iα, is the classical

fractional maximal function Mα.
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This operators are defined in the following way:
Let 0 ≤ α < n and f ∈ L1

loc(R
n), the fractional maximal operator is

Mαf(x) = sup
Q�x

1
|Q|1−α/n

∫
Q

|f(y)|dy.

For 0 ≤ α < 1 and f ∈ L1
loc(R), the one-sided fractional maximal operators are

M+
α f(x) = sup

h>0

1
h1−α

∫ x+h

x

|f(t)|dt, M−
α f(x) = sup

h>0

1
h1−α

∫ x

x−h

|f(t)|dt.

If α = 0, we write Mα = M , M+
α = M+ and M−

α = M− the classical Hardy–Littlewood
maximal function.

The Coifman type inequality is the following: Let p > 0. Then∫
Rn

|Tαf(x)|pw(x)dx ≤ C

∫
Rn

|Nαf(x)|pw(x)dx,

where Tα = Iα, I+
α , I−α , Nα = Mα, M+

α , M−
α and w ∈ A∞, w ∈ A+

∞ or w ∈ A−
∞ as appropriate.

These operators were studied by different authors. Some well known results are:
• In 1928, Hardy and Littlewood gave the first norm inequality in Lebesgue norm for the

Riezs potential for n = 1, see [7].
• In 1952, Hardy et al. proved the first norm inequalities for Lebesgue measure for the Weyl

fractional integral operator, see [8].
• In 1974, Muckenhoupt and Wheeden introduced the Ap,q classes of weights to study strong

and weak inequalities with one weight for Iα and Mα, see [20].
• In 1984/88, Sawyer proved weighted inequalities for pair of weights for Iα and Mα, intro-

ducing new classes of weight, see [22] and [23].
• In 1988, Andersen and Sawyer introduced the A+

p,q to study weighted inequalities with
one weight for I+

α , see [1].
• In 1993, Mart́ın-Reyes and de la Torre introduced the one-sided diadic maximal fractional

function. They studied the relation between this maximal function and M+
α and gave strong

inequalities with different classes of weights, see [16].
• In 1997, Lorente and Mart́ın-Reyes obtained the one-sided version of Sawyer’s results for

I+
α introducing new classes of weights, see [12] and [13].

• In 1989, Gabidzashvili and Kokilashvili gave weighted weak (p, q) type inequalities, 1 ≤
p < ∞, for I+

α , see [10].
All these results did not consider how the inequality depends on the weight constant. In

the last years, it has been studied how is this dependence, taking into account different classes
of weights. Some of the results are the following:

• In 2009, Moen studied weighted inequalities for Mα for different classes of weights, ob-
taining sharp bounds respect to the weight constant, see [18].

• In 2010, Lacey et al. obtained weak and strong sharp bounds respect to the weight class
Ap,q constant for Iα, see [11].

• In 2013, Recchi studied for Iα, weak and strong sharp bound dependence of the constant
in the extreme case, w ∈ A1,q, see [21].
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• In 2015, Mart́ın-Reyes and de la Torre obtained strong sharp bounds with one weight in
the class A+

p,q for M+
α , see [17].

In this paper, we find the dependence of the weak and strong weighted-norm, for the one-
sided operators, respect to the weight constant. Following Moen’s ideas in [18], we prove sharp
estimates for strong inequalities for the one-sided fractional function and different classes of
weights. Finally improving extrapolation results for Sawyer classes, we are able to obtain sharp
strong and weak bounds for the one-sided fractional operator respect to the weight constant,
and weak two weighted sharp bounded estimates for one-sided fractional maximal function.

2 Description of Main Results

In order to state the main results, we will first define several classes of weights. A weight w will
be a locally integrable function in R such that w ≥ 0. First we start with Sawyer A+

p,q classes
of weights, introduce by Andersen and Sawyer [1].

Definition 2.1 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, a pair of weights (u, v) ∈ A+
p,q, if and only if

‖(u, v)‖A+
p,q

= sup
h>0

ess sup
x∈R

(
1
|h|

∫ x

x−h

u(y)qdy

)(
1
h

∫ x+h

x

v(y)−p′
dy

)q/p′

≤ ∞,

where we understand for the case q = ∞ or p = 1 , ‖χ[x−h,x]u‖∞ and ‖χ[x,x,+h]v
−1‖∞ respec-

tively.

We say that w ∈ A+
p if and only if (w1/p, w1/p) ∈ A+

p,p , we denote by ‖w‖A+
p

the constant
‖(w1/p, w1/p)‖A+

p,p
.

Lorente and Mart́ın-Reyes proved in [12] and [13] that, for two positive locally integrable
function u and v and 1 < p ≤ q < ∞, I+

α is bounded from Lp(v) into Lq(u) if only if u and the
function σ = v1−p′

satisfy the testing conditions

[σ, u]S+
q′,p′

:= sup
I

(∫
I

u

)−1/q′( ∫
I

I−α (χIu)p′
σ

)1/p′

< ∞,

and

[u, σ]S−
p,q

:= sup
I

( ∫
I

σ

)−1/p( ∫
I

I+
α (χIσ)qu

)1/q

< ∞.

Moreover, their proof shows that actually

‖I+
α ‖Lp(v)→Lq(u) ≈ [σ, u]S+

q′,p′
+ [u, σ]S−

p,q
. (2.1)

On the other hand, in their characterization of the weak two-weight type inequality, for I+
α ,

they also showed that

‖I+
α ‖Lp(v)→Lq,∞(u) ≈ [σ, u]S+

q′,p′
. (2.2)

Combining (2.1) and (2.2), it follows that

‖I+
α ‖Lp(v)→Lq(u) ≈ ‖I+

α ‖Lp(v)→Lq,∞(u) + ‖I−α ‖Lq′ (u1−q′)→Lp′,∞(v1−p′ ).

If we set u = wq and v = wp, we obtain the one-weight estimate

‖I+
α ‖Lp(wp)→Lq(wq) ≈ ‖I+

α ‖Lp(wp)→Lq,∞(wq) + ‖I−α ‖Lq′ (w−q′ )→Lp′,∞(w−p′ ). (2.3)
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In [16], Mart́ın-Reyes and de la Torre introduced the one-sided diadic maximal fractional
function and studied the good weights for this diadic operator and the relation with the maximal
fractional function.

From now on, each time we write I− and I+, we will mean contiguous intervals of equal
length, not necessarily diadics. Given a pair of weight (u, v), we denote by σ the weight v1−p′

.
Let x ∈ R and consider the following family of diadic intervals

A+
x = {I− : I− is a diadic interval such that x ∈ I−}.

Definition 2.2 Let 0 ≤ α < 1, f ∈ L1
loc(R), the one-sided diadic maximal fractional function

is defined by

M+
α,df(x) = sup

I−∈A+
x

1
|I+|1−α

∫
I+

|f(t)|dt.

Mart́ın-Reyes and de la Torre showed that there exist constants C1
α and C2

α such that

M+
α f(x) ≤ C1

αM+
α,df(x) and M+

α,df(x) ≤ C2
αM+

α f(x). (2.4)

They also introduced the following classes of weights.

Definition 2.3 Given weights u, v, for 1 < p ≤ q, we say that
• (u, v) ∈ S+

p,q,α, if, for all interval I, there exists a constant C such that,
∫

I

σ < ∞ and
(∫

I

(M+
α σχI)qu

)1/q

≤ C

(∫
I

σ

)1/p

.

• (u, v) ∈ S+
p,q,α,d if, for all intervals I− and I+, there exists a constant Cd such that

∫
I−∪I+

σ < ∞ and
(∫

I−∪I+
(M+

α,dσχI+)qu

)1/q

≤ Cd

(∫
I+

σ

)1/p

,

with
∫

I− u > 0.
We call the constant of the pair of weights (u, v) ∈ S+

p,q,α to the smallest of the constants C

and we denote it as ‖(u, v)‖S+
p,q,α

and we call the constant of the pair of weights (u, v) ∈ S+
p,q,α,d

to the smallest constant Cd and we denote it by ‖(u, v)‖S+
p,q,α,d

.

In an analogous way for 1 < p ≤ q, the classes S−
p,q,α and S−

p,q,α,d are defined.
Also we will need the following classes of pair of weights.

Definition 2.4 Let 0 ≤ α < 1 and 1 < q < ∞. Given u, v weights we say that
• (u, v) ∈ T+

q,α if, for all interval I, there exists a constant C > 0 such that
∫

I

σ < ∞ and
(∫

I

(M+σχI)(1−α)qudx

)1/q

≤ C

(∫
I

σdx

)1/q

.

• (u, v) ∈ T+
q,α,d if, for all intervals I− and I+, there exists a constant Cd

∫
I−∪I+

σ < ∞ and
(∫

I−∪I+
(M+

d σχI+)(1−α)qudx

)1/q

≤ Cd

(∫
I+

σdx

)1/q

,

with
∫

I− u > 0.
The smallest constant C will be called constant of the pair (u, v) ∈ T+

q,α and will be denoted
by ‖(u, v)‖T+

q,α
. Also, the smallest constant Cd, will be called constant of the pair (u, v) ∈ T+

q,α,d

and will be denoted by ‖(u, v)‖T+
q,α,d

.
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Recently, in [17], Mart́ın-Reyes and de la Torre proved the following result:
Theorem A ([17]) Let 0 ≤ α < 1, 1 < p ≤ q < ∞ with 1/p − 1/q = α, w ∈ A+

p,q and
f ∈ Lp(w). Then

‖M+
α f‖Lq(wq) ≤ C‖w‖(1−α)p′/q

A+
p,q

‖f‖Lp(wp),

where the exponent (1 − α)p′/q is sharp.
Now we are ready to state the results on sharp bounds depending on the constant of the

weight for the one-sided maximal fractional operators. This results will be proved in Sections 5
and 6.

Theorem 2.5 Let 0 ≤ α < 1, 1 < p ≤ q < ∞, (u, v) ∈ S+
p,q,α,d and f ∈ Lp(v). There exists

C > 0, which does not depend on the pair (u, v), such that

‖M+
α,df‖Lq(u) ≤ C‖(u, v)‖S+

p,q,α,d
‖f‖Lp(v).

Corollary 2.6 Let 0 ≤ α < 1, 1 < p ≤ q < ∞ , (u, v) ∈ S+
p,q,α and f ∈ Lp(v). Then

‖M+
α f‖Lq(u) ≤ C‖(u, v)‖S+

p,q,α
‖f‖Lp(v),

where the constant C does not depend on the pair (u, v). Moreover, the dependence of the norm
‖M+

α ‖Lp(v)→Lq(u) with respect to the constant ‖(u, v)‖S+
p,q,α

of the pair (u, v) is sharp.

Theorem 2.7 Let 0 ≤ α < 1, 1 < p < ∞, q such that 1/q = 1/p − α, (u, v) ∈ T+
q,α,d and

f ∈ Lp(v). Then there exists C > 0 that does not depend on the pair (u, v), such that

‖M+
α,df‖Lq(u) ≤ C‖(u, v)‖T+

q,α,d
‖f‖Lp(v).

Corollary 2.8 Let 0 ≤ α < 1, 1 < p < ∞, q such that 1/q = 1/p − α, (u, v) ∈ T+
q,α,d and

f ∈ Lp(v).Then there exists C > 0

‖M+
α f‖Lq(u) ≤ C‖(u, v)‖T+

q,α
‖f‖Lp(v),

where the constant C does not depend on the pair (u, v). Moreover, the dependence of the norm
‖M+

α ‖Lp(v)→Lq(u) respect to the constant ‖(u, v)‖T+
q,α

of the pair of weights (u, v) is sharp.

Theorem 2.9 Let 0 ≤ α < 1, 1 ≤ p ≤ q < ∞, with 1/p − 1/q = α, (u, v) ∈ A+
p,q and

f ∈ Lp(v). Then there exists C > 0 such that

‖M+
α f‖Lq,∞(uq) ≤ C‖(u, v)‖1/q

A+
p,q

‖f‖Lp(vp),

where the constant C does not depend on the pair (u, v). Moreover, the dependence of the norm
‖M+

α ‖Lp(vp)→Lq,∞(uq) with respect the constant ‖(u, v)‖A+
p,q

of the pair of weights is sharp.

Now we give the results about sharp boundedness, depending on the constant of the weight
for the Riemann–Liouville and the Weyl operators. To prove these results (see Sections 5 and 6)
we will need extrapolation theorems that will be stated in Section 4 and proved in Section 5.

Theorem 2.10 Let 0 < α < 1, 1 ≤ p < 1/α, q such that 1/q = 1/p − α. If w ∈ A+
p,q and

f ∈ Lp(wp), then there exists C > 0 such that

‖I+
α f‖Lq,∞(wq) ≤ C‖w‖1−α

A+
p,q

‖f‖Lp(wp), (2.5)

where the constant C does not depend on the weight w. Moreover, the dependence of the norm
‖I+

α ‖Lp(wp)→Lq,∞(wq) respect to the constant ‖w‖A+
p,q

of the weight w is sharp.



1260 Riveros M. S. and Vidal R. E.

As a corollary we obtain the following strong estimate

Theorem 2.11 Let 0 < α < 1, 1 < p < 1/α and q such that 1/q = 1/p − α. If w ∈ A+
p,q and

f ∈ Lp(wp), there exists C > 0 such that

‖I+
α f‖Lq(wq) ≤ C‖w‖(1−α) max{1,p′/q}

A+
p,q

‖f‖Lp(wp),

where the constant C does not depend on the weight w. Moreover, the dependence of the norm
‖I+

α ‖Lp(wp)→Lq(wq) respect to the constant ‖w‖A+
p,q

of the weight w is sharp.

The paper is organized as follows: In Section 3, we state and prove comparison of the
different constants of the weights; in Section 4, we state some extrapolation results; in Section 5,
we prove the main results and the extrapolation theorems and finally in Section 6, we show
that the bounds of theorems in Section 2 are sharp.

3 Comparison of Different Weights Constants

In this section, we establish the relation between the different classes of weights defined pre-
viously. The following lemma gives the relation between A+

p,q and A+
r . The proof follows

immediately from the definitions.

Lemma 3.1 Let 1 < p ≤ ∞ and 1 ≤ q ≤ ∞.
(i) (u, v) ∈ A+

p,q if, and only if (uq, vq) ∈ A+
r with r = 1 + q/p′. Moreover,

‖(u, v)‖A+
p,q

= ‖(uq, vq)‖A+
r
.

(ii) (u, v) ∈ A+
p,q if, and only if (v−p′

, u−p′
) ∈ A−

r with r = 1 + p′/q. Moreover,

‖(u, v)‖p′/q

A+
p,q

= ‖(v−p′
, u−p′

)‖A−
r
.

(iii) (u, v) ∈ A+
p,∞ if, and only if (u−p′

, v−p′
) ∈ A−

1 . Moreover,

‖(u, v)‖A+
p,∞ ≈ ‖(v−p′

, u−p′
)‖1/p′

A−
1

.

Mart́ın-Reyes and de la Torre proved the following relation between S+
p,q,α,d and S+

p,q,α,, and
A+

p,q and S+
p,q,α:

Theorem B ([16]) The pair (u, v) ∈ S+
p,q,α,d if, and only if (u, v) ∈ S+

p,q,α. Moreover, there
exist constants k1 and k2, only depending on p, q and α, such that

‖(u, v)‖S+
p,q,α,d

≤ k1‖(u, v)‖S+
p,q,α

and ‖(u, v)‖S+
p,q,α

≤ k2‖(u, v)‖S+
p,q,α,d

. (3.1)

Theorem C ([16]) Let 0 ≤ α < 1, 1 < p < 1/α, 1/q = 1/p − α and w a weight. Then

w ∈ A+
p,q if, and only if (wq, wp) ∈ S+

p,q,α. Moreover,

‖w‖A+
p,q

≤ Kp,q‖(wq, wp)‖q

S+
p,q,α

≤ Cp,q‖w‖(1−α)p′

A+
p,q

.

In the following results, we show the relation between T+
q,α and T+

q,α,d.

Theorem 3.2 Let 1 < q, 0 ≤ α < 1 and (1 − α)q > 1. Then (u, v) ∈ T+
q,α if, and only if

(u, v) ∈ T+
q,α,d. Moreover, there exists C1 and C2 not depending on u and v such that

‖(u, v)‖T+
q,α,d

≤ C1‖(u, v)‖T+
q,α

≤ C2‖(u, v)‖T+
q,α,d

. (3.2)
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Remark 3.3 Observe that if 1
p − 1

q = α, then (1 − α)q = (1 − 1
p + 1

q )q = q
p′ + 1 > 1 and the

hypothesis of the previous theorem is valid, so (3.2) is true.

The relation between the classes A+
p,q and T+

q,α, is the following:

Theorem 3.4 Let 0 ≤ α < 1, 1 < p < 1/α, 1/q = 1/p − α and w a weight. Then, w ∈ A+
p,q

if, and only if (wq, wp) ∈ T+
p,α. Moreover,

‖w‖A+
p,q

≤ Kp,q‖(wq, wp)‖q

T+
p,α

≤ Cp,q‖w‖(1−α)p′

A+
p,q

.

To prove the comparison results, we need some estimation in norms of different maximal
functions.

Definition 3.5 Let 0 ≤ α < 1 and μ be a positive regular Borel measure in R. For f ∈
L1

loc(R,dμ), the following maximal functions are defined as :

Mα,μf(x) = sup
I�x

1
μ(I)1−α

∫
I

|f(t)|dμ(t),

M+
α,μf(x) = sup

h>0

1
μ(x, x + h)1−α

∫ x+h

x

|f(t)|dμ(t),

M−
α,μf(x) = sup

h>0

1
μ(x, x + h)1−α

∫ x

x−h

|f(t)|dμ(t).

In [2], Bernal shows
Theorem D ([2]) Let 0 ≤ α < 1, 1 < p ≤ q < ∞ with 1/p − 1/q = α. Let μ be a positive
regular Borel measure in R and f ∈ Lp(μ). Then there exists Cp,q > 0 such that

‖Nf‖Lq(μ) ≤ Cp,q‖f‖Lp(μ),

where N denotes any of the maximal functions Mα,μf(x), M+
α,μf(x) or M−

α,μf(x) from the
previous definition. The constant Cp,q changes according to the maximal function but does not
depend on the measure μ.

Let us prove Theorems 3.2 and 3.4.

Proof of Theorem 3.2 By (2.4), we know that M+
d and M+ are equivalent. Therefore, if

(u, v) ∈ T+
q,α,d, then (u, v) ∈ T+

q,α.
Reciprocally, let I− be an interval. Then

( ∫
I−∪I+

(M+
d σχI+)(1−α)qudx

)1/q

≤ K

(∫
I−

(M+σχI+)(1−α)qudx

)1/q

+ K

(∫
I+

(M+σχI+)(1−α)qudx

)1/q

≤ K

(∫
I−

(M+σχI+)(1−α)qudx

)1/q

+ K‖(u, v)‖T+
q,α

(∫
I+

σ(x)dx

)1/q

.

We only have to prove that, for all interval I−, there exits a constant C not depending on u

and v such that( ∫
I−

(M+σχI+)(1−α)qudx

)1/q

≤ C‖(u, v)‖T+
q,α

( ∫
I+

σ(x)dx

)1/q

.
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Let I− = [a, b) and I+ = [b, c). Let us suppose first that
∫

I− σ ≤ ∫
I+ σ. Then

( ∫
I−

(M+σχI+)(1−α)qudx

)1/q

≤
( ∫

I−∪I+
(M+σχI+)(1−α)qudx

)1/q

≤ ‖(u, v)‖T+
q,α

( ∫
I−∪I+

σ(x)dx

)1/q

≤ 21/q‖(u, v)‖T+
q,α

( ∫
I+

σ(x)dx

)1/q

.

Now suppose that
∫

I− σ ≥ ∫
I+ σ, then we choose a sequence x0 = b > x1 > x2 > · · · > xk >

· · · > xN−1 > xN = a such that for k = 0, 1, . . . , N − 1,
∫ c

xk
σ = 2k

∫ c

b
σ and

∫ c

a
σ = r

∫ c

b
σ,

2N−1 < r < 2N . It follows that
∫ xk−1

xk
σ = 2k−1

∫ c

b
σ, 0 < k < N , and

∫ xN−1

a
σ ≤ 2N−1

∫ c

b
σ. If,

xk < x < xk−1, 1 < k ≤ N , and y ∈ I+, then∫ y

x

σχ(b,c) =
∫ y

b

σ ≤
∫ c

b

σ = 2−(k−2)

∫ xk−2

xk−1

σ ≤ 2−(k−2)

∫ y

x

σ.

Multiplying both sides of the inequality by (y − x)−1 and taking suprema, we get that for each
x such that xk < x < xk−1

M+(σχ(b,c))(x) ≤ 2−(k−2)M+(σχ(x,c))(x), k = 2, . . .N,

and for k = 1, we obtain trivially

M+(σχ(b,c))(x) ≤ M+(σχ(x,c))(x), x1 < x < b.

So finally,∫ b

a

(M+σχ(b,c))(1−α)qudx

=
N∑

k=1

∫ xk−1

xk

(M+σχ(b,c))(1−α)qudx

≤
N∑

k=2

2−(k−2)(1−α)q

∫ xk−1

xk

(M+σχ(xk,c))(1−α)qudx +
∫ b

x1

(M+σχ(x1,c))(1−α)qudx

≤
N∑

k=2

2−(k−2)(1−α)q

∫ c

xk

(M+σχ(xk,c))(1−α)qudx +
∫ c

x1

(M+σχ(x1,c))(1−α)qudx

≤ ‖(u, v)‖T+
q,α

[ N∑
k=2

2−(k−2)(1−α)q

∫ c

xk

σ +
∫ c

x1

σ

]

≤ ‖(u, v)‖T+
q,α

[ N∑
k=2

2−(k−2)(1−α)q2k + 2
] ∫ c

b

σ,

and as (1 − α)q > 1 the series converges and we obtain the desired result.

Proof of Theorem 3.4 Let u = wq, v = wp and σ = w−p′
. Observe that if (wq, wp) ∈ T+

q,α,
then w ∈ A+

p,q. To prove this assumption, we will use the equivalence between the classes T+
q,α,d

and T+
q,α (see Remark 3.3 ) and (3.2). By definition, (wq, wp) ∈ T+

q,α means
(∫

I−∪I+
(M+w−p′

χI+)(1−α)qwqdx

)1/q

≤ ‖(u, v)‖T+
q,α,d

(∫
I+

w−p′
dx

)1/q

.
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Then (∫
I−

(M+w−p′
χI+)(1−α)qwqdx

)1/q

≤ ‖(u, v)‖T+
q,α,d

(∫
I+

w−p′
dx

)1/q

.

So, using that (1 − α)q = 1 + q/p′, we get
∫

I−
wq(x)dx

(
1

|I+|
∫

I+
w−p′

)1+q/p′

≤
∫

I−
(M+

d (w−p′
χI+)(x))1+q/p′

w(x)qdx

≤ ‖(u, v)‖q

T+
q,α,d

(∫
I+

w−p′
dx

)
.

Therefore,

‖w‖A+
p,q

≤ ‖(wq, wp)‖q

T+
q,α,d

≤ C‖(wq, wp)‖q

T+
q,α

.

Reciprocally, let I be an interval. For x ∈ I, there exists hx such that (x, x + hx) ⊂ I and

M+(w−p′
χI)(x) ≤ 3

2hx

∫ x+hx

x

w−p′
χIdt.

Observe that

1
hx

∫ x+hx

x

w−p′
χIdt =

2
2hx

∫ x+ hx
2

x

w−p′
χIdt +

1
hx

∫ x+hx

x+ hx
2

w−p′
χIdt

≤ 1
2
M+(w−p′

χI)(x) +
1
hx

∫ x+hx

x+ hx
2

w−p′
χIdt,

then

M+(w−p′
χI)(x) ≤ 6

1
hx

∫ x+hx

x+ hx
2

w−p′
χIdt.

Using the A+
p,q condition and the relation between α, q and p, we have

M+(w−p′
χI)(x)1+q/p′ ≤

(
6
hx

∫ x+hx

x+ hx
2

w−p′
χIdt

)q/p′(1+p′/q)

≤ Cp,q‖w‖1+p′/q

A+
p,q

(
hx

2

( ∫ x+ hx
2

x

wq

)−1)1+p′/q

= Cp,q‖w‖1+p′/q

A+
p,q

(
1

wq(x, x + hx

2 )

∫ x+ hx
2

x

w−qwqdx

)1+p′/q

≤ Cp,q‖w‖(1−α)p′

A+
p,q

(
M+

wq(w−qχI)(x)
)1+p′/q

.

Recall that M+
wq is bounded in L1+p′/q(wq) and its norm does not depend on wq (see Theo-

rem D). Then∫
I

M+(w−p′
χI)(x)1+q/p′

wq(x)dx ≤ Cp,q‖w‖(1−α)p′

A+
p,q

∫
I

(
M+

wq (w−qχI)(x)
)1+p′/q

wq(x)dx

≤ Cp,q‖w‖(1−α)p′

A+
p,q

∫
I

w−q(1+p′/q)(x)wq(x)dx

= Cp,q‖w‖(1−α)p′

A+
p,q

∫
I

w−p′
(x)dx.
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Therefore

‖(wq, wp)‖q

T+
q,α

≤ Cp,q‖w‖(1−α)p′

A+
p,q

.

4 Extrapolation Results

In this section, we will state some extrapolation results that are necessary to prove Theo-
rems 2.10 and 2.9.

The first results of extrapolation for the classes Ap,q were proved by Harboure et al. [5, 6].
Maćıas and Riveros in [14] obtained analogous results for the one-sided case. In these mentioned
papers, the authors do not take into account the weight constant dependence. Dragicevic et
al. in [3] and Lacey et al. in [11] improved the results in [6] taking into account the weight
constant dependence.

Theorem 4.1 Let T be a sublinear operator defined on C∞
c (R). If the inequality

‖Tf‖Lq0 (wq0 ) ≤ c‖w‖γ

A+
p0,q0

‖f‖Lp0 (wp0 )

holds for some pair (p0, q0), 1 < p0 ≤ q0 < ∞ and for all weights w belonging to the class
A+

p0,q0
, then for any pair (p, q) 1 < p ≤ q < ∞, satisfying 1

p − 1
q = 1

p0
− 1

q0
, and for any weight

w ∈ A+
p,q, the inequality

‖Tf‖Lq(wq) ≤ c‖w‖
γ max{1,

q0
p′
0

p′
q }

A+
p,q

‖f‖Lp(wp)

holds provided the left-hand side is finite.

Remark 4.2 Observe that if p0 = q0, the previous theorem can be written in the following
way:

Let T be an operator defined in C∞
c (R) and let 1 ≤ p0 < ∞ . If

‖Tf‖Lp0 (wp0 ) ≤ c‖wp0‖γ

A+
p0
‖f‖Lp0 (wp0 )

for all weight wp0 ∈ A+
p0

and some γ > 0, then

‖Tf‖Lp(wp) ≤ c‖wp‖γ max{1,
p0−1
p−1 }

A+
p

‖f‖Lp(wp)

for all 1 < p < ∞ and wp ∈ A+
p .

Corollary 4.3 Suppose that for some 1 ≤ p0 ≤ q0 < ∞, an operator T satisfies the weak-type
(p0, q0) inequality

‖Tf‖Lq0,∞(wq0 ) ≤ c‖w‖γ

A+
p0,q0

‖f‖Lp0 (wp0 )

for every w ∈ A+
p0,q0

and some γ > 0. Then, for any pair (p, q), 1 < p ≤ q < ∞, satisfying
1
p − 1

q = 1
p0

− 1
q0

, and for any weight w ∈ A+
p,q the weak inequality

‖Tf‖Lq,∞(wq) ≤ c‖w‖
γ max{1,

q0
p′
0

p′
q }

A+
p,q

‖f‖Lp(wp),

holds, provided the left hand side is finite.

Theorem 4.4 Let T be a sublinear operator defined on C∞
c (R), with values on the space of

measurable functions. Let us assume that T verifies

‖aT (f)‖∞ ≤ C(T, ‖(a, b)‖A+
β,∞

)‖fb‖β
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for every pair (a, b) of functions such that (a, b) ∈ A+
β,∞, 1 < β ≤ ∞.

If 1 < p < β, 1
q = 1

p − 1
β and (u, v) ∈ A+

p,q, then there exists C, depending only on p, q,

and of the operator T , such that

λuq ({x : |Tf(x)| > λ})1/q ≤ C(T, p, q)‖(u, v)‖1/q

A+
p,q

(∫
|f |pvpdx

) 1
p

for all λ > 0, provided the left-hand side is finite.

Remark 4.5 Observe that Theorems 4.1, 4.4 and Corollary 4.3 are obtained for f ∈ C∞
c (R).

This class of functions are dense in Lp(w) for w ∈ Ar, r ≥ 1 and 1 ≤ p < ∞. If the operator
T , for which the extrapolation result is applied, is only defined in C∞

c (R), we can extend its
definition, using a density argument, to all the space Lp(w). Then the theorems or corollaries
are still true with the same constants for every f ∈ Lp(w).

5 Proof of the Results

Proof of Theorem 2.5 To proof this theorem, we will follow Jawerth’s ideas, see [9]. Let f ≥ 0
and as usual, let σ = v1−p′

. Consider the maximal function MN,+
α,d , where we only consider the

dyadic intervals of length at most 2N . Let

Ωk = {x ∈ R : 2k < MN,+
α,d (f)(x) ≤ 2k+1}

for k ∈ Z. In order to study this sets, let us consider Ok = {x ∈ R : 2k < MN,+
α,d (f)(x)}. As Ok

is open, there exist dyadic maximal intervals I−k,j of length less equal 2N such that Ok =
⋃

j I−k,j

and

2k <
1

(I+
k,j)1−α

∫
I+

k,j

f.

Observe that, by the definition of MN,+
α,d , the intervals I−k,j and I+

k,j are contiguous and of equal
length. Let

Ek,j = I−k,j ∩ {x ∈ R : 2k < MN,+
α,d (f) ≤ 2k+1}.

The sets Ek,j are pairwise disjoints and Ωk =
⋃

j Ek,j . Then,∫
R

(
MN,+

α,d (f)
)q

u(x)dx

=
∑
k∈Z

∫
Ωk

(
MN,+

α,d (f)
)q

u(x)dx

≤
∑
k,j

∫
Ek,j

(2k+1)qu(x)dx

≤ 2q
∑
k,j

∫
Ek,j

(
1

|I+
k,j |1−α

∫
I+

k,j

f(y)dy

)q

u(x)dx

≤ 2q
∑
k,j

(
1

σ(I+
k,j)

∫
I+

k,j

f(y)σ−1(y)σ(y)dy

)q

u(Ek,j)
(

σ(I+
k,j)

|I+
k,j |1−α

)q

≤ 2q

∫
X

gdμ,
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where X = Z × N with the measure μ(k, j) = u(Ek,j)
( σ(I+

k,j)

|I+
k,j |1−α

)q, and

g(k, j) =
(

1
σ(I+

k,j)

∫
I+

k,j

f(y)σ−1(y)σ(y)dy

)p

.

Let Γλ = {(k, j) ∈ X : g(k, j) > λ} be the level set at the height λ > 0 and let Bλ = ∪{I+
k,j :

(k, j) ∈ Γλ}.
Observe that if

(
1

σ(I+
k,j)

∫
I+

k,j
f(y)σ−1(y)σ(y)dy

)q
> λ, then given x ∈ I+

k,j , we have that

Mσ(fσ−1)q(x) > λ, therefore Bλ ⊆ {x : Mσ(fσ−1)q(x) > λ}. Taking into account that the
dyadic intervals I−k,j , (with (k, j) ∈ Γλ), have length at most 2N , we can consider a subfamily
{I−r } of {I−k,j} with (k, j) ∈ Γλ, such as I+

r are maximal disjoints intervals. Then Bλ =
⋃

I+
r ,

where this union is disjoint. Also if I+
k,j ⊂ I+

r , then I−k,j ⊂ I−r ∪ I+
r .

Let us estimate μ(Γλ) using the weight condition:

μ(Γλ) =
∑

(k,j)∈Γλ

u(Ek,j)
(

σ(I+
k,j)

|I+
k,j |1−α

)q

≤
∑

(k,j)∈Γλ

∫
Ek,j

M+
α,d(σχI+

k,j
)qu(x)dx

≤
∑

r

∑
(k,j)∈Γλ,I+

k,j⊂I+
r

∫
Ek,j

M+
α,d(σχI+

k,j
)qu(x)dx

≤
∑

r

∫
I−

r ∪I+
r

M+
α,d(σχI+

r
)qu(x)dx ≤ ‖(u, v)‖q

S+
p,q,α,d

∑
r

σ(I+
r )q/p

≤ ‖(u, v)‖q

S+
p,q,α,d

σ(Bλ)q/p ≤ ‖(u, v)‖q

S+
p,q,α,d

σ{x : Mσ(fσ−1)q > λ}q/p.

Making the substitution λ = tq/p, dλ = q
p t

q
p dt

t , we get
∫

X

gdμ =
∫ ∞

0

μ(Γλ)dλ ≤ ‖(u, v)‖q

S+
p,q,α,d

∫ ∞

0

σ{x : Mσ(fσ−1)q > λ}q/pdλ

=
q

p
‖(u, v)‖q

S+
p,q,α,d

∫ ∞

0

(tσ{x : Mσ(fσ−1)p > t})q/p dt

t
,

and using that p ≤ q,∫ ∞

0

(tσ{x : Mσ(fσ−1)p > t})q/p dt

t

=
∑
l∈Z

∫ 2l+1

2l

(tσ{x : Mσ(fσ−1)p > t})q/p dt

t
≤ 2q/p log 2

∑
l∈Z

(2lσ{x : Mσ(fσ−1)p > 2l})q/p

≤ C

( ∑
l∈Z

2lσ{x : Mσ(fσ−1)p > 2l}
)q/p

≤ C

(∑
l∈Z

∫ 2l

2l−1
σ{x : Mσ(fσ−1)p > t}dt

)q/p

= C

( ∫ ∞

0

σ{x : Mσ(fσ−1)p > t}dt

)q/p

≤ C

( ∫
R

Mσ(fσ−1)pσdx

)q/p

≤ C

( ∫
R

fpσ1−pdx

)q/p

= C

( ∫
R

fpvdx

)q/p

, (5.1)

where the last inequality holds using that the maximal function Mσ is bounded in Lp(σ) (see
Theorem D).
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Finally, we get
∫

R

(MN,+
α,d (f))qu(x)dx ≤ C‖(u, v)‖q

S+
p,q,α,d

(∫
R

fpvdx

)q/p

and using the monotone convergence theorem, we obtain
∫

R

(M+
α,d(f))qu(x)dx ≤ C‖(u, v)‖q

S+
p,q,α,d

(∫
R

fpvdx

)q/p

.

Observe that in the case p = q the equation (5.1) is easier because q/p = 1, then we obtain that∫ ∞

0

σ({x : Mσ(fσ−1)p > t})dt =
∫

R

Mσ(fσ−1)pσdx ≤ C

∫
R

fpσ1−pdx = C

∫
R

fpvdx.

The proof of Corollary 2.6 is a consequence of Theorem 2.5 and (2.4) and (3.1). In Section 6,
we will prove that the exponent of the constant ‖(u, v)‖+

Sp,q,α,d
is sharp.

Proof of Theorem 2.7 To prove this result we considered, as in Theorem 2.5, the dyadic
fractional maximal operator MN,+

α,d , and the sets Ok = {x ∈ R : 2k < MN,+
α,d (f)(x)} =

⋃
j I−k,j ,

where the dyadic intervals I−k,j and I+
k,j are contiguous and have equal length and satisfy

2k <
1

(I+
k,j)1−α

∫
I+

k,j

f.

Also we consider

Ek,j = I−k,j ∩ {x ∈ R : 2k < MN,+
α,d (f) ≤ 2k+1} = I−k,j ∩ Ωk,

which are pairwise disjoint and observe that Ωk =
⋃

j Ek,j .
Then ∫

R

(MN,+
α,d (f))qu(x)dx

≤ 2q
∑
k,j

∫
Ek,j

(
1

|I+
k,j |1−α

∫
I+

k,j

f(y)dy

)q

u(x)dx

≤ 2q
∑
k,j

(
1

σ(I+
k,j)1−α

∫
I+

k,j

f(y)σ−1(y)σ(y)dy

)q

u(Ek,j)
(

σ(I+
k,j)

|I+
k,j |

)(1−α)q

≤ 2q

∫
X

gdμ,

where (X, μ) is de space X = Z × N with measure μ(k, j) = u(Ek,j)
(σ(I+

k,j)

|I+
k,j |

)(1−α)q, and

g(k, j) =
(

1
σ(I+

k,j)1−α

∫
I+

k,j

f(y)σ−1(y)σ(y)dy

)q

.

Define the level set, for λ > 0, as Γλ = {(k, j) ∈ X : g(k, j) > λ}. Let Bλ =
⋃{I+

k,j : (k, j) ∈
Γλ}. Observe that if

(
1

σ(I+
k,j)

1−α

∫
I+

k,j
f(y)σ−1(y)σ(y)dy

)q
> λ, then for all x ∈ I+

k,j , we have

Mα,σ(fσ−1)q > λ, so Bλ ⊆ {x : Mα,σ(fσ−1)q > λ}.
As dyadic intervals I−k,j (with (k, j) ∈ Γλ) have length less equal 2N , we can consider

the subfamily {I−r } of {Ik,j} with (k, j) ∈ Γλ, such as I+
r are maximal and pairwise disjoint.

Observe that Bλ =
⋃

I+
r , where the union is disjoint. Also if I+

k,j ⊂ I+
r , then I−k,j ⊂ I−r ∪ I+

r .
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Let us estimate μ(Γλ) using the weight condition

μ(Γλ) =
∑

(k,j)∈Γλ

u(Ek,j)
(

σ(I+
k,j)

|I+
k,j |

)(1−α)q

≤
∑

(k,j)∈Γλ

∫
Ek,j

M+
d (σχI+

k,j
)(1−α)qu(x)dx

≤
∑

r

∑
(k,j)∈Γλ,I+

k,j⊂I+
r

∫
Ek,j

M+
d (σχI+

k,j
)(1−α)qu(x)dx

≤
∑

r

∫
I−

r ∪I+
r

M+
d (σχI+

r
)(1−α)qu(x)dx ≤ ‖(u, v)‖q

T+
q,α,d

∑
r

σ(I+
r )

= ‖(u, v)‖q

T+
q,α,d

σ(Bλ) ≤ ‖(u, v)‖q

T+
q,α,d

σ{x : Mα,σ(fσ−1)q > λ}.

Therefore ∫
X

gdμ =
∫ ∞

0

μ(Γλ)dλ

≤ ‖(u, v)‖q

T+
q,α,d

∫ ∞

0

σ{x : Mα,σ(fσ−1)q > λ}dλ

= ‖(u, v)‖q

T+
q,α,d

(∫
R

Mα,σ(fσ−1)qσdx

)

≤ C‖(u, v)‖q

T+
q,α,d

(∫
R

fpσ1−pdx

)q/p

= C‖(u, v)‖q

T+
q,α,d

(∫
R

fpvdx

)q/p

,

where the last inequality holds using that the maximal function Mα,σ is bounded from Lp(σ)
to Lq(σ) with 1/q = 1/p − α (see Theorem D).

Finally, we get
∫

R

(MN,+
α,d (f))qu(x)dx ≤ C‖(u, v)‖q

T+
p,α,d

(∫
R

fpvdx

)q/p

.

By using the monotone convergence theorem, we obtain
∫

R

(M+
α,d(f))qu(x)dx ≤ C‖(u, v)‖q

T+
p,α,d

(∫
R

fpvdx

)q/p

.

The proof of Corollary 2.8 is a consequence of Theorem 2.7 and inequalities (2.4) and (3.2).
Also in Section 6, we will see that the exponent of the constant ‖(u, v)‖T+

q,α
is sharp.

For the proof of Theorem 2.9 we will use the extrapolation Theorem 4.4. In Section 6, we
will prove that the exponent 1/q of the constant ‖(u, v)‖A+

p,q
is sharp.

Proof of Theorem 2.9 We will see M+
α satisfying the hypotheses of Theorem 4.4. Let β = 1/α

and (a, b) ∈ A+
β,∞. Let h > 0 and fix x ∈ R,

1
h1−α

∫ x+h

x

|f |dx =
1

h1−α

∫ x+h

x

|f |bb−1dx ≤ 1
h1−α

(∫ x+h

x

|f | 1
α b

1
α dx

)α( ∫ x+h

x

b
−1
1−α dx

)
1−α.

As a is finite for almost everywhere, let x such that a(x) ≤ ‖aχ[x−h,x]‖∞. Then

a(x)
(

1
h1−α

∫ x+h

x

|f |dx

)
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≤ ‖aχ[x−h,x]‖∞ 1
h1−α

(∫ x+h

x

|f |1/αb1/αdx

)α( ∫ x+h

x

b
−1
1−α dx

)1−α

≤ ‖(a, b)‖A+
β,∞

‖fb‖L1/α ,

taking supreme over h and next over x, we will obtain

‖aM+
α f‖∞ ≤ ‖(a, b)‖A+

β,∞
‖fb‖1/α. (5.2)

Now we can apply Theorem 4.4. Next for all weights (u, v) in A+
p,q, with 1/p− 1/q = α, we get

‖M+
α ‖Lp(vp)→Lq,∞(uq) ≤ C(T, q, p)‖(u, v)‖1/q

A+
p,q

.

Proof of Theorem 2.10 We apply weak extrapolation Corollary 4.3, with q0 = 1
1−α , p0 = 1

and wq. For this, we only have to see that

‖I+
α f‖Lq0,∞(u) ≤ C‖f‖

L1((M−u)
1

q0 )
(5.3)

for all weight u. Since by w ∈ A+
1,q0

is equivalent to M−(wq0)(x) ≤ ‖w‖A+
1,q0

wq0(x), for almost
everything x, and from the estimate (5.3) we conclude

‖I+
α f‖Lq0,∞(wq0 ) ≤ C‖w‖1−α

A+
1,q0

‖f‖L1(w).

From the weak extrapolation Corollary 4.3, with γ = 1 − α, we obtain

‖I+
α f‖Lq,∞(wq) ≤ C‖w‖

(1−α) max{1,
q0
p′
0

p′
q }

A+
p,q

‖f‖L1(wp)

for all 1 ≤ p < 1
α and q with 1/q = 1/p − α. Also as p0 = 1,

‖I+
α f‖Lq,∞(wq) ≤ C‖w‖(1−α)

A+
p,q

‖f‖L1(wp),

we give the estimate.
In order to prove (5.3), we note that ‖ · ‖Lq0,∞ is equivalent to a norm since q0 > 1. Hence,

we may use Minkowski’s integral inequality as follows

‖I+
α f‖Lq0,∞(u) =

∥∥∥∥
∫ ∞

·

|f(y)|
(y − ·)1−α

dy

∥∥∥∥
Lq0,∞(u)

≤ Cq0

∫
R

|f(y)| sup
λ>0

λu
({

x ∈ (−∞, y) : (y − x)α−1 > λ
}) 1

q0 dy.

We can finally calculate the inner norm by

sup
λ>0

λu
({

x ∈ (−∞, y) : (y − x)α−1 > λ
}) 1

q0

=
(

sup
t>0

1
t
u {x ∈ (−∞, y) : (y − x) < t}

) 1
q0

=
(

sup
t>0

1
t

∫ t

y−t

u(t)dt

) 1
q0

= (M−(u)(y))
1

q0 .

Proof of Theorem 2.11 This result is an immediate consequence of Theorem 2.10 and the
equation (2.3). For a weight w ∈ A+

p,q, we have

‖I+
α ‖Lp(wp)→Lq(wq) ≈ ‖I+

α ‖Lp(wp)→Lq,∞(wq) + ‖I−α ‖Lq′ (w−q′ )→Lp′,∞(w−p′ )
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≈ ‖w‖1−α

A+
p,q

+ ‖w−1‖1−α

A−
q′,p′

≈ ‖w‖(1−α) max{1,p′/q}
A+

p,q
,

where the last inequality is obtain using Lemma 3.1 (‖w−1‖A−
q′,p′

= ‖wq‖p′/q
A1+q/p′ = ‖w‖p′/q

A+
p,q

).
Now we will prove the extrapolation results. To prove the extrapolation results, we need

some previous lemmas. Here we follow the ideas of Garcia Cuerva and Rubio de Francia in [4]
and also we take in consideration Theorem A, to obtain special control of the constant.

Lemma 5.1 Let v ∈ A+
p and 1 ≤ p0 < p < ∞. Then, for all h ≥ 0 in L(p/p0)

′
(v), there exist

S(h) ≥ h such that

• ‖S(h)‖L(p/p0)′ (v) ≤ Cp,p0‖v‖
p−p0
p−1

A+
p

‖h‖L(p/p0)′ (v),

• (hv, S(h)v) ∈ A+
p0

with ‖(hv, S(h)v)‖A+
p0

≤ C‖v‖
p0−1
p−1

A+
p

if p0 > 1 and ‖(hv, S(h)v)‖A+
1
≤ 1

if p0 = 1.

Proof We defined S(h) =
(
v−1M−(h

p−1
p−p0 v)

) p−p0
p−1 . It is easy to check that S(h) ≥ h for almost

all point x. Estimating directly the norm, using Theorem A, we obtain

‖S(h)‖L(p/p0)′ (v) =
(∫

v1−p′ (
M−(h

p−1
p−p0 v)

)p′) p−p0
p

≤ Cp,p0‖v1−p′‖p−p0

A−
p′

(∫
h(p/p0)′vp′

v1−p′
) 1

(p/p0)′

≤ Cp,p0‖v‖
p−p0
p−1

A+
p

‖h‖L(p/p0)′ (v).

To see the second part, we observe that if p0 = 1, then vS = M−(hv). Therefore
(hv, S(h)v) ∈ A+

1 with constant equal 1.
If p0 > 1, we take I− and I+ contiguous intervals with the same length, then for all t ∈ I+

we get
1

|I−|
∫

I−
h

p−1
p−p0 v ≤ 2M−(h

p−1
p−p0 v)(t).

Therefore(
1

|I−|
∫

I−
hv

)(
1

|I+|
∫

I+
(S(h)v)

−1
p0−1

)p0−1

=
(

1
|I−|

∫
I−

hv
p−p0
p−1 v1− p−p0

p−1

)(
1

|I+|
∫

I+

((
v−1M−(h

p−1
p−p0 v)

) p−p0
p−1

v

) −1
p0−1

)p0−1

≤
(

1
|I−|

∫
I−

h
p−1

p−p0 v

) p−p0
p−1

(
1

|I−|
∫

I−
v

) p0−1
p−1

· sup
t∈I+

(M−(h
p−1

p−p0 v)(t)−
p−p0
p−1

(
1

|I+|
∫

I+
v

−1
p−1

)p0−1

≤ C

(
1

|I−|
∫

I−
v

) p0−1
p−1

(
1

|I+|
∫

I+
v

−1
p−1

)(p−1)
p0−1
p−1

≤ C‖w‖
p0−1
p−1

A+
p

.

Lemma 5.2 Let v ∈ A+
p and 1 ≤ p0 < p < ∞. Then for all h ≥ 0 in L(p/p0)′(v), there exists

H ≥ h such that
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• ‖H‖L(p/p0)′ (v) ≤ 2‖h‖L(p/p0)′ (v);
• Hv ∈ A+

p0
with ‖Hv‖A+

p0
≤ C(p, p0)‖v‖A+

p
.

Let v ∈ A−
p and 1 ≤ p0 < p < ∞. Then for all h ≥ 0 in L(p/p0)′(v), there exists H ≥ h such

that
• ‖H‖L(p/p0)′ (v) ≤ 2‖h‖L(p/p0)′ (v);
• Hv ∈ A−

p0
with ‖Hv‖A−

p0
≤ C(p, p0)‖v‖A−

p
.

Proof We will only prove the first part of the lemma. Let v ∈ A+
p and 1 ≤ p0 < p < ∞.

Define H via the following convergent Neumann series:

H =
∞∑

n=0

Sn(h)
2n‖S‖n

,

where S is defined in Lemma 5.1 and ‖S‖ = ‖S‖L(p/p0)′ (v). It is clear that ‖H‖L(p/p0)′ (v) ≤
2‖h‖L(p/p0)′ (v). To prove the second item, first we observe that

S(H) ≤ 2‖S‖(H − h) ≤ 2‖S‖H.

Using Lemma 5.1, for p0 = 1, we get ‖S‖Lp′ (v) ≤ Cp‖v‖A+
p
. Furthermore,

M−(Hv) = M−(Hv)v−1v = S(H)v ≤ 2‖S‖Hv ≤ 2Cp‖v‖A+
p
Hv.

Now suppose p0 > 1. By Lemma 5.1, the pair (hv, S(h)v) lies in A+
p0

with constant bounded

by ‖v‖
p0−1
p−1

A+
p

and ‖S‖L(p/p0)′ (v) ≤ Cp,p0‖v‖
p−p0
p−1

A+
p

. We can now estimate ‖Hv‖A+
p0

:

(
1

|I−|
∫

I−
Hv

)(
1

|I+|
∫

I+
(Hv)

−1
p0−1

)p0−1

≤
(

1
|I−|

∫
I−

Hv

)(
1

|I+|
∫

I+
(S(H)v)

−1
p0−1

)p0−1

2‖S‖

≤ Cp,p0‖v‖
p0−1
p−1

A+
p

‖v‖
p−p0
p−1

A+
p

= Cp,p0‖v‖A+
p
.

Proof of Theorem 4.1 Let w ∈ A+
p,q. Assume first p > p0, thus q > q0 and

(∫
|Tf |qwq

)1/q

=
(∫

|Tf |q0gwq

)1/q0

holds with some g ≥ 0, ‖g‖L(q/q0)′ (wq) = 1. We observe that w ∈ A+
p,q if and only if wq ∈ A+

r

with r = 1+q/p′. Let us put r0 = 1+q0/p′0, h = g and v = wq. As r/r0 = q/q0, by Lemma 5.2,
there exists H ≥ g such that ‖H‖L(q/q0)′ (wq) ≤ 2 and Hwq ∈ A+

r0
with ‖Hwq‖A+

r0
≤ C‖wq‖A+

r
.

This implies H1/q0wq/q0 ∈ A+
p0,q0

with ‖H1/q0wq/q0‖A+
p0,q0

≤ C‖w‖A+
p,q

. Therefore, noting that
p0q/q0 = p0 + q (1 − p0/p),
(∫

|Tf |qwq

)1/q

≤
(∫

|Tf |q0(H1/q0wq/q0)q0

)1/q0

≤ C‖w‖γ

A+
p,q

(∫
|f |p0(H1/q0wq/q0)p0

)1/p0

= C‖w‖γ

A+
p,q

(∫
|f |p0wp0Hp0/q0w

q( 1
(p/p0)′ )

)1/p0

.

Using Hölder’s inequality, we have
( ∫

|Tf |qwq

)1/q

≤ C‖w‖γ

A+
p,q

[( ∫
|f |pwp

) p0
p

( ∫
H

p0
q0

( p
p0

)′w
q 1

( p
p0

)′ (
p

p0
)′
) 1

(p/p0)′
] 1

p0
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= C‖w‖γ

A+
p,q

( ∫
|f |pwp

) 1
p
( ∫

H( r
r0

)′wq

) 1
p0

− 1
p

≤ C‖w‖γ

A+
p,q

‖f‖Lp(wp).

Now if p0 > p, then q0 > q and we have
( ∫

|f |pwp

) 1
p

=
( ∫

(|fwp′ |p0)
p

p0 w−p′
) p0

p
1

p0

.

Therefore, there exists (see [8], Theorem 210) g ≥ 0 such that
∫

g
p

p−p0 w−p′
dx = 1 and

(∫
|f |pwp

) 1
p

=
(∫

|fwp′ |p0gw−p′
) 1

p0

.

Let h = g−p′
0/p0 , v = w−p′

, r = 1+p′/q and r0 = 1+p′0/q0. Since (r/r0)′(−p′0/p0) = p/(p−p0),
we have

∫
h( r

r0
)′vdx = 1. On the other hand, w ∈ A+

p,q if and only if w−p′ ∈ A−
r with r = 1+p′/q

with ‖w−p′‖A−
r

= ‖w‖p′/q

A+
p,q

. By Lemma 5.2, there exists H ≥ h such that
∫

H( r
r0

)′w−p′ ≤
2 and Hw−p′ ∈ A−

r0
with ‖Hw−p′‖A−

r0
≤ C‖w−p′‖A−

r
. Hence [Hv−p′

]−1/p′
0 ∈ A+

p0,q0
with

‖[Hv−p′
]−1/p′

0‖A+
p0,q0

≤ C‖w‖
q0
p′
0

p′
q

A+
p,q

. Thus

(∫
|f |pwp

) 1
p

=
(∫

|fwp′ |p0gw−p′
) 1

p0

=
(∫

|f |p0h
− p0

p′
0 w−p′(1−p0)

) 1
p0

≥
(∫

|f |p0
[
H

− 1
p′
0 w

p′
p′
0
]p0

) 1
p0 ≥ C‖w‖

− q0
p′
0

p′
q

A+
p,q

(∫
|Tf |q0

[
H

− 1
p′
0 w

p′
p′
0
]q0

) 1
q0

.

By Hölder’s inequality, we have
( ∫

|f |pwp

) 1
p

≥ C‖w‖
− q0

p′
0

p′
q

A+
p,q

( ∫
|Tf |qwq

) 1
q
( ∫

H( r
r0

)′w−p′
) q−q0

q0q

≥ C‖w‖
− q0

p′
0

p′
q

A+
p,q

( ∫
|Tf |qwq

) 1
q

.

Proof of Corollary 4.3 Theorem 4.1 does not require T to be a linear operator. Then we can
simply apply the result to the operator Tλf = λχ{|Tf |>λ}. Fix λ > 0, then

‖Tλf‖Lq0 (wq0 ) = λwq0({x : |Tf(x)| > λ})1/q0

≤ ‖Tf‖Lq0,∞(wq0 ) ≤ C‖w‖γ

A+
p0,q0

‖f‖Lp0 (wp0 ),

where the constant C is independent of λ. If w ∈ A+
p,q, by Theorem 4.1, Tλ maps Lp(wp) →

Lq(wq) for all 1
p − 1

q = 1
p0

− 1
q0

, and we obtain

‖Tλf‖Lq(wq) ≤ C‖w‖
γ max{1,

q0
p′
0

p′
q }

A+
p,q

‖f‖Lp(wp),

where the constant c is independent of λ, therefore,

‖Tf‖Lq,∞(wq) = sup
λ>0

‖Tλf‖Lq(wq) ≤ C‖w‖
γ max{1,

q0
p′
0

p′
q }

A+
p,q

‖f‖Lp(wp).

Before proving Theorem 4.4, we need some previous results.
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Lemma 5.3 If Φ ∈ L1 and
∫ |Φ| = 1, then there exists h such that

∫ |h| ≤ 2 and ‖Φh−1‖∞ =
1.

Proof Let

h(x) =

⎧⎨
⎩

Φ(x), if Φ(x) �= 0,

e−π|x|2 , if Φ(x) = 0.

Clearly, ‖Φh−1‖∞ = 1 and∫
|h| =

∫
{x:Φ(x) 	=0}

|Φ| +
∫
{x:Φ(x)=0}

e−π|x|2 ≤ 2.

Corollary 5.4 Given f ∈ Lp(v), then there exists g ∈ Lp(v−
1

p−1 ), g ≥ 0, such that
∫

gpv−
1

p−1 ≤ 2 and
(∫

|f |pv
) 1

p

= ‖fv
1

p−1 g−1‖∞.

Proof If
∫ |f |pv �= 0 take

Φ =
|f |pv∫ |f |pv ,

then
∫ |Φ| = 1. Let h be the function given by Lemma 4.6. If we put

gp =

⎧⎨
⎩

v
1

p−1 h, v �= 0,

0, v = 0,

it follows immediately that
∫

gpv−
1

p−1 =
∫

h ≤ 2 and

1 = ‖Φh−1‖∞ =
1∫ |f |pv ‖|f |

pv
p

p−1 g−p‖∞.

The case
∫ |f |pv = 0 is clear.

Finally, we recall some definitions concerning the Lorentz L(p, q, μ) spaces. Let f be a
measurable function on a measure space (M,M, μ). The non-increasing rearrangement f∗ of f

is defined as

f∗(t) = inf{s : μ({x : |f(x)| > s}) ≤ t}
for t > 0. The function f is said to belong to the Lorentz space L(p, q, μ) if

‖f‖p,q,μ =
(

p

q

∫ ∞

0

[t
1
p f∗(t)]q

dt

t

) 1
q

< ∞,

whenever 1 < p < ∞ and 1 < q < ∞, and

‖f‖p,∞,μ = sup
t>0

t
1
p f∗(t),

when 1 < p ≤ ∞ and q = ∞. For more details see [24].

Proof of Theorem 4.4 Let f ∈ C∞
c (R), 0 < m =

∫ |f |pvp, and (u, v) ∈ A+
p,q. We define

b(x) =

⎧⎨
⎩

|f(x)|p/β−1v(x)p/βm
1
q , if |f(x)| > 0,

eπ |x|2
q v(x), if |f(x)| = 0.
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Thus ‖fv‖p = ‖fb‖β and
∫

b−qvqdx ≤ 2. Set

a(x) = (M+b−β′
(x))−

1
β′ .

It follows immediately that (a, b) ∈ A+
β,∞ with ‖(a, b)‖A+

β,∞
≤ 4. Let

Eλ = {x : |Tf(x)| > λ}.
Hence, by the Hölder’s inequality for Lorentz spaces, we have

uq(Eλ) =
∫

Eλ

uq =
∫

χEλ
(x)a−1(x)a(x)uq(x)dx

≤ ‖χEλ
‖(1+1/q,1,auq)‖a−1‖(q+1,∞,auq).

In order to estimate the second factor above, we observe that

λq+1

∫
{x:a(x)−1>λ}

auq ≤ λq

∫
{x:M+b−β′ (x)>λβ′}

uq. (5.4)

Recalling (u, v) ∈ A+
p,q implies (uq, vq) ∈ A+

s for s = 1+q/p′ with ‖(uq, vq)‖A+
s

= ‖(u, v)‖A+
p,q

, it
follows that M+ is weakly bounded from Ls(vq) into Ls(uq) with norm ‖M+‖Ls(vq,∞)→Ls(uq) ≈
‖(uq, vq)‖1/s

A+
s

(see [15]). Therefore

(5.4) ≤ C
λq

(λβ′)s
‖(u, v)‖A+

p,q

∫
(b−β′

)svq = C‖(u, v)‖A+
p,q

∫
b−qvq ≤ 2C‖(u, v)‖A+

p,q
.

We consider the non-increasing rearrangement of a−1 respect to the measure auq,

(a−1)∗(t) = inf{y : auq({x : |a−1| > y}) ≤ t}

≤ inf
{

y :
C‖(u, v)‖A+

p,q

yq+1
≤ t

}
=

(C‖(u, v)‖A+
p,q

t

) 1
q+1

.

Then, we have

‖a−1‖(q+1,∞,auq) = sup
t>0

t
1

q+1 (a−1)∗(t) ≤ (C‖(u, v)‖A+
p,q

)
1

q+1 .

A non-increasing rearrangement of χEλ
with respect to the measure auq is χ[0,R) with R =∫

Eλ
auq, then

‖χEλ
‖(1+ 1

q ,1,auq) =
q

q + 1

∫ R

0

t
q

q+1
dt

t
=

q

q + 1

∫ R

0

t−
1

q+1 dt = R
q

q+1 .

On the other hand, using ‖(a, b)‖A+
β,∞

≤ 4, we get

R =
∫

Eλ

auq ≤ λ−1

∫
Eλ

|Tf |auq ≤ λ−1‖aTf‖∞
∫

Eλ

uq ≤ Cλ−1‖fb‖β

∫
Eλ

uq.

Then

‖χEλ
‖(1+ 1

q ,1,auq) ≤ Cλ− q
q+1 ‖fb‖

q
q+1
β

( ∫
Eλ

uq

) q
q+1

.

Since f ∈ C∞
0 (R)), it follows that

uq(Eλ) ≤ Cλ− q
q+1 ‖fv‖

q
q+1
p (C‖(u, v)‖A+

p,q
)

1
q+1 (uq(Eλ))

q
q+1 ,

and as uq(Eλ) is finite, we get

uq({x : |Tf(x)| > λ}) ≤ C‖(u, v)‖A+
p,q

(
1
λp

∫
fpvp

) q
p

.
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6 Proof of Sharp Estimates

In this section, we will show that the constants obtained in the previous theorems are the best
possible, in other words the dependence of the different constants of the weights cannot be
improved.

Let us prove now that the constant in Corollary 2.8 is sharp. Consider the pair (wq
δ , w

p
δ ),

by Theorem 3.4, we have

‖(wq
δ , w

p
δ )‖T+

q,α
≤ Cp,q‖wδ‖(1−α)p′/q

A+
p,q

,

therefore the dependence here is sharp, if not it won’t be the one in Theorem A.
In a similar way, it can be proved that the constant in Corollary 2.6 is sharp.
Now we will show that the dependency of the norm related to the one-sided fractionary

maximal respect to the constant ‖(u, v)‖A+
p,q

in Theorem 2.9 is sharp. We follow Muckenhoupt’s
ideas in [19]. We will prove that

‖(u, v)‖1/q

A+
p,q

≤ 2(1−α)+ 1
q ‖M‖Lp(vp)→Lq,∞(uq).

Suppose first that p > 1. Given a pair of fix intervals (a, b) and (b, c) with a < b < c and

b−a = c−b, we define A =
(∫ c

b
v−p′

(y)dy
)q/p′

. If A = ∞, (u, v) ∈ A+
p,q implies

∫ b

a
uq(y)dy = 0.

Either the case A = ∞ or A = 0, trivially we get

0 =
(

1
b − a

∫ b

a

uq(y)dy

)(
1

b − c

∫ c

b

v−p′
(y)dy

)q/p′

≤ ‖M+
α ‖q

Lp(vp)→Lq,∞(uq).

Let 0 < A < ∞ and f(x) = v(x)−p′
, if x ∈ (b, c) and f(x) = 0, if x /∈ (b, c). Then

Ap′/q

(b − c)1−α
=

1
(b − c)1−α

∫ c

b

v−p′
(y)dy ≤ 21−αM+

α f(x)

for all x ∈ (a, b). Therefore, (a, b) ⊂ {x ∈ R : M+
α f(x) > Ap′/q

2(2(b−c))1−α } and
∫ b

a

u(x)qdx ≤ uq

({
x ∈ R : M+

α f(x) >
Ap′/q

2(2(b − c))1−α

})

≤ ‖M+
α ‖q

Lp(vp)→Lq,∞(uq)

2(2(b − c))(1−α)q

Ap′

( ∫
R

f(x)pv(x)pdx

)q/p

≤ ‖M+
α ‖q

Lp(vp)→Lq,∞(uq)

2(2(b − c))(1−α)q

Ap′

( ∫ c

b

v−p′
(x)dx

)q/p

≤ ‖M+
α ‖q

Lp(vp)→Lq,∞(uq)2(2(b − c))(1−α)qA−1.

Multiplying by (b − c)−(1−α)qA both sides of the inequality, and as 1 + q/p′ = (1 − α)q, we
obtain (

1
b − a

∫ b

a

uq(x)dx

)(
1

b − c

∫ c

b

v−p′
(x)dx

)q/p′

≤ 2(1−α)q2‖M+‖q
Lp(vp)→Lq,∞(uq),

which proves the statement for p > 1.
For p = 1, observe that for every pair of intervals (a, b) and (b, c) such that a < b < c and

b − a = c − b if

1
b − a

∫ b

a

u(y)qdy ≤ 4‖M‖q
L1(v)→Lq,∞(uq) ess inf

x∈(b,c)
v(x)q, (6.1)
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then for almost every x ∈ R and h > 0, we have

1
h

∫ x

x−h

u(y)qdy ≤ 4‖M‖q
L1(v)→Lq,∞(uq)v(x)q.

So, ‖(u, v)‖A+
1,q

≤ 4‖M‖q
L1(v)→Lq,∞(uq).

As (1 − α)q = 1, it is enough to prove (6.1). Fix (a, b) and (b, c) such that a < b < c and
b − a = c − b. If ess inf x∈(b,c) v(x)q = ∞, then (6.1) holds. If ess inf x∈(b,c) v(x)q < ∞, for all
ε > 0, there exists a medible set E ⊂ (b, c) such that |E| > 0 and v(x) < ε + ess inf y∈(b,c) v(y)
for all x ∈ E. Let f(x) = χE(x). Then

|E|
(b − c)1−α

=
1

(b − c)1−α

∫ c

b

χE(y)dy ≤ 21−αM+
α f(x)

for all x ∈ (a, b). Then (a, b) ⊂ {x ∈ R : M+
α f(x) > |E|

2(2(b−c))1−α } and
∫ b

a

u(x)qdx ≤ uq

({
x ∈ R : M+

α f(x) >
|E|

2(2(b − c))1−α

})

≤ ‖M+
α ‖q

L1(v)→Lq,∞(uq)

4(b − c)
|E|q

(∫
E

v(x)dx

)q

≤ ‖M+
α ‖q

L1(v)→Lq,∞(uq)4(b − c)
(
ε + ess inf

y∈(b,c)
v(y)

)
.

Using that c − b = b − a, we get

1
b − a

∫ b

a

u(x)qdx ≤ 4‖M+
α ‖q

L1(v)→Lq,∞(uq)

(
ε + ess inf

y∈(b,c)
v(y)

)

for all ε > 0 , then (6.1) is true.
Now let us show the dependence of the norm ‖I+

α ‖Lp(wp)→Lq,∞(wq) respect to the constant
‖w‖A+

p,q
of the weight in Theorem 2.10 is sharp. For p ≥ 1, observe that (2.5) is equivalent to

‖I+
α f‖Lq,∞(wq) ≤ C‖wq‖1−α

A+
1+q/p′

‖f‖Lp(wp),

and if wq ∈ A+
1 , then

‖I+
α f‖Lq,∞(wq) ≤ C‖wq‖1−α

A+
1
‖f‖Lp(wp).

Let u = wq. Putting uαf = wqαf , the last equation is equivalent to

‖I+
α (uαf)‖Lq,∞(u) ≤ C‖u‖1−α

A+
1
‖f‖Lp(u).

We will prove that in the last inequality the exponent is sharp. This will imply that the
exponent in (2.5) is also sharp. Let uδ(x) = |x|δ−1, observe that uδ ∈ A+

1 with

‖uδ‖A+
1
≤ 1

δ
. (6.2)

Let fδ = χ[0,1], it is easy to check that

‖fδ‖Lp(uδ) =
(

1
δ

)1/p

. (6.3)

Let 0 < ξ < 1 be a number to be choose later. Then

‖I+
α (uα

δ fδ)‖Lq,∞(uδ) ≥ sup
λ>0

λ

(
uδ

{
0 < x < ξ :

∫ 1

x

y(δ−1)α

(y − x)1−α
dy > λ

})1/q
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≥ sup
λ>0

λ

(
uδ

{
0 < x < ξ :

∫ 1

x

y(δ−1)α

(2y)1−α
dy > λ

})1/q

= sup
λ>0

λ

(
uδ

{
0 < x < ξ :

2α−1

αδ
(1 − xδα) > λ

})1/q

≥ 2α−2

αδ

(
uδ

{
0 < x < ξ :

2α−1

δα
(1 − xδα) >

2α−2

αδ

})1/q

≥ 2α−2

αδ

(
uδ

{
0 < x < ξ :

(
1
2

) 1
αδ

> x

})1/q

≥ 2α−2

αδ
(uδ[0, ξ])1/q

,

where the last inequality holds by choosing ξ =
(

1
2

) 1
αδ . Then for 0 < δ < 1, we have

‖I+
α (uα

δ fδ)‖Lq,∞(u) ≥ 2α−2

αδ

(
ξδ

δ

)1/q

= cα,q

(
1
δ

)1+1/q

. (6.4)

Finally combining (6.2)–(6.4), we get

cα,q

(
1
δ

)1+1/q

≤ ‖I+
α (uαf)‖Lq,∞(u) ≤ C‖u‖1−α

A+
1
‖f‖Lp(u) ≤ C

(
1
δ

)1+1/q

,

so we get that the dependence of the norm ‖I+
α ‖Lp(wp)→Lq,∞(wq) respect to the constant ‖w‖A+

p,q

of the weight is ‖w‖1−α

A+
p,q

.

Finally, let us prove that the dependence of the norm ‖I+
α ‖Lp(wp)→Lq(wq) respect to the

constant ‖w‖A+
p,q

of the weight is sharp. If f ≥ 0 then M+
α f(x) ≤ I+

α f(x).

Now, consider wδ = |x|(1−δ)/p′
de A+

p,q and fδ(x) = |x|δ−1χ[−1,0](x). If p′/q ≥ 1, then
(1 − α) max{1, p′/q} = (1 − α)p′/q, and we obtain

C

(
1
δ

)1+1/q

≤ ‖M+
α fδ‖Lq(wq

δ) ≤ ‖I+
α fδ‖Lq(wq

δ) ≤ ‖wδ‖p′/q(1−α)

A+
p,q

‖fδ‖Lp(wp
δ ) ≤

(
1
δ

)1+1/q

,

which shows that the dependence of the weight norm is sharp for the case p′/q ≥ 1.
If p′/q < 1, we use a duality argument. Let w ∈ A+

p,q. Then w−1 ∈ A−
q′,p′ .

If we apply an analogous argument to the operator I−α , the adjoint operator of I+
α , and

Lemma 3.1, we get

‖I+
α ‖Lp(wp)→Lq(wq) = ‖I−α ‖Lq′ (w−q′ )→Lp′ (w−p′ ) ≈ ‖w−1‖(1−α)q/p′

A−
q′,p′

= ‖w‖(1−α)

A+
p,q

,

where the dependence is sharp.
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