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Abstract. Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new seg-
mentation algorithm that is based on the theory of two-dimensional hidden Markov models (2D-HMM). Unlike most 2D-HMM
approaches we do not apply the Viterbi algorithm; instead we present a computationally efficient algorithm that propagates the
state probabilities through the image. Our algorithm, called Complete Enumeration Iteration (CEP), is flexible in the sense that
it allows the use of different probability distributions as emission probabilities. Not only do we compare the performance of
different probability functions plugged into our framework but also propose three methods to update the distributions of each
state “online” during the segmentation process. We compare our algorithm with a 2D-HMM standard algorithm and Iterated
Conditional Modes (ICM) using real world images like a radiography or a satellite image as well as synthetic images. The ex-
perimental results are evaluated by the kappa coefficient (κ̂). In those cases where the average κ̂ coefficient is higher than 0.7
we observe an average relative improvement of 8% of CEP with respect to the benchmark algorithms. For all other segmenta-
tion tasks CEP shows no significant improvement. Besides that, we demonstrate how the choice of the emission probability can
have great influence on the segmentation results. Surprisingly, we observe that the normal distribution is an appropriate density
function for many segmentation tasks.
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1. Introduction

Image segmentation is a key competence of com-
puter vision and an active research field [15,20,23]. In
this work we present a new segmentation algorithm
that is based on the theory of hidden Markov mod-
els (HMM). Our goal is to provide reliable segmenta-
tions of images whenever the human eye cannot make
a solid classification. One example are satellite images
where it is important to estimate the quantity of cer-
tain crops like soybeans in order to predict the market
prices. Another example is the detection of pedestrians
in far infrared images [24].

*Corresponding Author: Josef Baumgartner, Laboratorio de In-
vestigación en Matemática Aplicada al Control, UNC, Córdoba,
Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; E-mail:
jbaumgartner@efn.uncor.edu.

In the last years, many techniques from the broad
field of computational intelligence have been success-
fully applied to image segmentation [25,29]. Unfor-
tunately the classical HMM are generally limited to
those areas where the observed data has only one di-
mension, such as protein sequences [2], the analysis of
biometric data [22] or supply chains [28]. To overcome
this limitation, there were attempts to first reorder two-
dimensional data in a one-dimensional way and then
run classical HMM. In image segmentation one can
think of lining up the rows or the columns of the im-
age before actually applying HMM [14]. The draw-
back of such an ordering is clearly the loss of informa-
tion because adjacent pixels in the original image are
torn apart.

Therefore, efforts were made to extend the clas-
sical one-dimensional HMM to higher dimensions
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[19]. The problem hereby is, that the standard method
of parameter estimation for one-dimensional HMM,
the Baum-Welch algorithm [1], is not feasible for
higher dimensions. Hence, the main question for two-
dimensional hidden Markov models (2D-HMM) is:
How can the computational complexity be reduced
in order to make the n-dimensional HMM feasible?
Hereby, one of the most common approaches is the
so called Path Constrained Viterbi Training (PCVT)
[17,18].

The problem of PCVT is that a pre-selection of
states is carried out before running a HMM decoder.
Thus, it is probable, that optimal states are discarded
before applying HMM-algorithms. To overcome this
problem we propose a new algorithm that considers
all states of all pixels and still is feasible. We call our
approach Complete Enumeration Propagation (CEP)
because the state probabilities are completely enumer-
ated and then propagated through the image.

We integrate the mathematical foundations of CEP
in a 2D-HMM framework that allows any probability
density function to be used as an emission probability.
Besides that, we propose three methods to update the
emission probabilities of each state “online” during the
segmentation process.

This paper is organized as follows: In Section 2 we
present the mathematical background of a 2D-HMM
and explain why further assumptions are necessary to
make the 2D-HMM feasible. Thereafter, we present
two feasible approximations of a complete 2D-HMM
in Section 3: PCVT and CEP. Next, we evaluate PCVT
and CEP for five test images in Section 4. To compare
the performance of PCVT and CEP to benchmark al-
gorithms like Iterated Conditional Modes (ICM) and
Maximum Likelihood (ML) we use Cohen’s κ̂ coeffi-
cient [3]. Finally, we present the conclusions in Sec-
tion 5 where we point out some important differences
between PCVT and CEP.

2. Theory of two-dimensional Hidden Markov
Models

In this section we describe the theoretical back-
ground of how to estimate the parameters of a 2D-
HMM. The presented algorithm can be derived di-
rectly from the Expectation-Maximization algorithm
(EM) [4,16].

A HMM is a probabilistic model that is used to an-
alyze and describe correlated noisy data. Given some
radiometric image observation O, the main goal is to

find the hidden state of each pixel. Therefore, we as-
sume that all states S, like the background, or objects,
are observed through a certain probability function.

Besides that, it is necessary to introduce transition
probabilities, which indicate the probability of being in
state st given the previous state st−1. Note, that transi-
tion probabilities are independent of the observations
and thus add pure contextual information to our model.
Without this information our model would reduce to a
simple ML classifier as show in Algorithm 3.

In the case of one-dimensional data, the use of
transition probabilities is straightforward. For two-
dimensional data – like the pixels of an image – we
need a more advanced notation.

First of all let’s assume, that the hidden states of
the data represent a Markov random field (MRF). This
means, that, given the image, the hidden state of pixel
(i, j) is conditionally independent of the pixels out-
side a certain neighborhood. For pixel (i, j) we define
(i
′
, j
′
) ≺ (i, j) if i

′
< i or i

′
= i and j′ < j. It can be

shown, that under the Markov assumption this defini-
tion leads to a 2nd order Markov Mesh which specifies
for state si,j :

P (si,j |si′ ,j′ : (i
′
, j
′
)≺(i, j))=P (si,j |si,j−1, si−1,j).

(1)

The two pixels (i, j−1) and (i−1, j) can be under-
stood as the “past” of pixel (i, j) as shown in Fig-
ure 1. In other words we are moving from the top-
left pixel to the bottom-right pixel. Along this way,
we assume, that the transition probabilities from states
si,j−1 and si−1,j to state si,j do not depend on the cur-
rent pixel. Therefore, we can gather all transition prob-
abilities from Equation (1) in a three-dimensional ma-
trix A which consists of

am,n,l = P (si,j= l|si,j−1 =m, si−1,j=n). (2)

Now, for a given image withM hidden states, the tran-
sition probabilities am,n,l are given by

am,n,l =

∑
i,j Hm,n,l(i, j)∑M

l′=1

∑
i,j Hm,n,l′ (i, j)

. (3)

In Equation (3), Hm,n,l(i, j) is the probability of a
transition from states m and n to state l at pixel (i, j).
The exact formula for Hm,n,l(i, j) – except a normal-



J. Baumgartner et al. / Image segmentation with 2D-HMM 3

(i,j)(i,j-1)

(i-1,j)

Fig. 1. Transitions among states in a 2nd order Markov Mesh. The
gray and the black pixels fulfill (i

′
, j
′
) ≺ (i, j) but the two black

pixels are sufficient statistics for pixel (i, j) under the Markov as-
sumption.

ization term – is given by

Hm,n,l(i, j) ∝
∑
s

I (m=si−1,j , n=si,j−1, l=si,j)

∏
(i′,j′)∈N

P
(
Oi′,j′ | θ

)
as

i
′−1,j

′ ,s
i
′
,j
′−1

,s
i
′
,j
′ .

(4)

In Equation (4), I(·) is the indicator function, Oi′,j′ is
the observation of pixel (i

′
, j
′
), N stands for all the pix-

els of the image and θ represents the parameters of the
emission probabilities of the different states. Without
going into detail, note, thatHm,n,l(i, j) depends on the
transition probabilities am,n,l from Equation (2) which
we were trying to calculate in first place. One solution
to this problem is to update am,n,l and Hm,n,l(i, j) it-
eratively, following the EM framework for latent vari-
ables. Still, there are some severe complexity issues in-
volved in the calculation of Hm,n,l(i, j). In the next
section we discuss this topic with more detail.

To complete our description of a 2D-HMM, we have
to define the initial probabilities and talk about the
emission probabilities of the hidden states. For our def-
inition of “past states”, the initial probabilities of the
2D-HMM depend only on the state of pixel (0, 0):

πl = P (s0,0 = l) ∀l ∈ S. (5)

In Equation (5), s0,0 refers to the state of the upper left
pixel of an image.

When it comes to emission probabilities, we would
like to point out, that the mathematical framework of
2D-HMM does not require a particular probability dis-
tribution to be used as an emission probability. In the
following, we show exemplary how to estimate the pa-
rameters of a normal distribution.

Let’s suppose we have observed state l ∈ S through
a normal distribution with mean µl and standard devi-
ation σl. Thus the emission probability bl(x) of state l
is the normal density function.

bl(x) = P (x|si,j = l) =

=
1

σl
√

2π
exp

{
−1

2

(
x− µl
σl

)2
}

(6)

The parameters µl and σl of Equation (6) can be esti-
mated by

µl =

∑
i,j Ll(i, j)Oi,j∑
i,j Ll(i, j)

(7)

σl =

∑
i,j Ll(i, j) (Oi,j − µl) (Oi,j − µl)T∑

i,j Ll(i, j)
(8)

where Ll(i, j) indicates the probability of pixel (i, j)
being in state l. Ll(i, j) is given by

Ll(i, j) ∝
∑
s

I(l = si,j)

∏
(i′,j′)∈N

P
(
Oi′,j′ |µsi′,j′ , σsi′,j′

)
as

i
′−1,j

′ ,s
i
′
,j
′−1

,s
i
′
,j
′

(9)

Note in Equation (9), that Ll(i, j) depends on µs
i
′
,j
′

and σs
i
′
,j
′ . Hence, the only way to find the latent vari-

ables µl, σl and Ll(i, j) is to run the iterative EM. And
just like in case of Hm,n,l(i, j) we are facing compu-
tational problems when calculating Ll(i, j), as we will
show in the next section.

In summary, the main goal of a 2D-HMM is to find
the optimal hidden state map s∗ through an iterative
approach derived from EM. This objective can be for-
mally expressed by

s∗ = arg max
s

P (s|O, θ). (10)

In Equation (10), O are the observations and θ are the
parameters of the 2D-HMM, such as the initial prob-
abilities πl, the transition probabilities am,n,l and the
emission parameters µl and σl of each state. Because
we have strictly followed the EM framework so far we
have a theoretical guarantee that the iterative algorithm
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described in this section converges to a state map. The
problem with Equation (10) is, that s stands for all
possible state maps which is usually a infeasible high
number.

3. Approaches to two-dimensional Hidden
Markov Models

In the previous section we pointed out, that the cal-
culation of some parameters of the 2D-HMM is infea-
sible even for small images. In this section we inves-
tigate the complexity problems with more detail and
show different ways of how the exact 2D-HMM can
be approximated. Note, that by using approximations
instead of exact formulas, we leave the EM framework
and thus have no more a theoretical guarantee that our
2D-HMM converges. Still, it is our only choice if we
want to come up with a feasible model that – at least –
approximates the optimal hidden state map as defined
by Equation (10).

3.1. Parameter estimation

The exact formulas for the parameters of a 2D-
HMM are given by Equations (3) to (9) where we have
to sum over all possible state maps s. If you think of
an image of size w× z with M states there are (wz)M

possible state maps. This number is generally so high
that the exact algorithm is infeasible – not to mention
that for every single state map there have to be carried
out complex operations.

In order to reduce the computational burden, we pro-
pose an approximation of the transition probabilities
am,n,l and of the emission parameters µl and σl. In-
stead of summing over all possible state maps we sug-
gest to estimate all parameters by using only the state
map of the current iteration. For am,n,l in iteration step
p we get

a
(p)
n,m,l =

=

z−1∑
i=1

w−1∑
j=1

I
(
s

(p−1)
i−1,j =n, s

(p−1)
i,j−1 =m, s

(p−1)
i,j = l

)
z−1∑
i=1

w−1∑
j=1

I
(
s

(p−1)
i−1,j =n, s

(p−1)
i,j−1 =m

)
(11)

For the means and standard deviations of each state we
use

µ
(p)
l =

z−1∑
i=0

w−1∑
j=0

I
(
s

(p−1)
i,j = l

)
Oi,j

z−1∑
i=0

w−1∑
j=0

I
(
s

(p−1)
i,j = l

) (12)

σ
(p)
l =

=

z−1∑
i=0

w−1∑
j=0

I
(
s

(p−1)
i,j = l

)
(Oi,j−µl)(Oi,j−µl)T

z−1∑
i=0

w−1∑
j=0

I
(
s

(p−1)
i,j = l

)
(13)

One can think of these simplified formulas as “count
instead of evaluate”, because we are only taking into
account our currently best guess of the hidden state
map instead of evaluating all possible state maps.
Therefore, the approximations presented in Equations
(11), (12) and (13) are computationally extremely sim-
ple. All we have to do, is to process the state and the
observation of each pixel.

Note, that switching to another emission probability
– like a Gamma or a Weibull distribution – is straight-
forward in this context. All we have to do, is to replace
Equations (12) and (13) by the corresponding parame-
ter estimators. For maximum likelihood estimators of
many common probability distributions please refer to
[26].

3.2. Evaluation of a two-dimensional Hidden Markov
Model

After solving the problem of parameter estimation
in the previous section, we are left with the problem
of decoding our 2D-HMM in order to obtain a hidden
state map. First of all, remember our notion of “past”
as shown in Figure 1. This definition allows us to think
of each bottom-left to upper-right diagonal of the im-
age as one step in time, starting with the top-left pixel.
Thus, the diagonals T0, T1, T2 . . . are

T0 = (s0,0); T1 = (s1,0, s0,1);

T2 = (s2,0, s1,1, s0,2); . . .
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Because we are dealing with a 2nd order Markov Mesh
we can make the Markov assumption and get

P (s) =P (T0)P (T1|T0) . . .

P (Tz+w−2|Tz+w−3, . . . , T0)

=P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3).

(14)

In Equation (14), each diagonal operates as an “isolat-
ing element” between neighboring diagonals. Hence,
we have transformed the complex two-dimensional
model into a pseudo one-dimensional HMM.

At this point we could think of running a one-
dimensional HMM decoder like the Baum-Welch al-
gorithm [1], but once again we are facing computa-
tional issues. Remember, that in a w × z image the
diagonals consist of up to min(w, z) pixels. If there
are M states, a diagonal can be in one of min(w, z)M

superstates. So we are dealing with a one-dimensional
HMM with up tomin(w, z)M superstates at each time
step. Such a HMM is clearly not feasible.

Before we present two feasible 2D-HMM decoders
we have to make the assumption that the emission
probability of pixel (i, j) depends only on the current
state and not on neighboring states. Even though this
assumption is reasonable and not very restrictive, both
approaches require it.

3.2.1. Path Constrained Viterbi Training
In the last years, several approximations were pro-

posed to make the 2D-HMM feasible. One of the most
promising approaches is to cut down the superstates
of each diagonal to a certain number N and then run
the Viterbi algorithm [12]. This algorithm is named
Path Constrained Viterbi Training (PCVT) because the
number of superstates – and hence the number of paths
through the image – is constrained.

The selection of the N superstates is done by ML,
which means, that almost all superstates are discarded
without taking into account contextual information.
Thus, there is no guarantee, that the optimal hidden
state map is a subset of the chosen superstates. At
least the Viterbi algorithm considers all dependencies
among neighboring pixels when evaluating the N in-
dependently chosen superstates.

A sketch of the PCVT as presented by [12] is shown
in Algorithm 1. Note, that the computation of step 5)
has orderO((w+z−1)N2) for an image of sizew×z,
whereas the other steps have negligible computational
complexity.

Algorithm 1. Path-Constrained Viterbi Training (PCVT)
1. Initialize parameters µl and σl for l ∈ S.
2. Initialize state map using ML.
3. Calculate transition probabilities an,m,l for every
n,m, l ∈ S using Equation (11).

4. Choose theN best superstates for each diagonal us-
ing ML.

5. Run Viterbi algorithm.
6. Update parameters an,m,l, µl and σl using Equa-

tions (12), (13) and (11).
7. Iterate steps 4), 5) and 6) until convergence.

3.2.2. Complete Enumeration Propagation
In the following we present a new 2D-HMM decod-

ing algorithm, that, in contrast to the PCVT, does not
discard any possible hidden state and still is feasible.
Instead of grouping the states of a diagonal in a su-
perstate, we use complete enumeration to calculate the
state probabilities of each pixel. Then we propagate
the state probabilities through the image until we reach
the bottom-right pixel. Therefore, we call our approach
Complete Enumeration Propagation (CEP).

Let’s start with the state probability of pixel (i, j)
which is given by

P (si,j |si,j−1, si−1,j , Oi,j) ∝

P (si,j , si,j−1, si−1,j , Oi,j) =

=P (si,j−1,si−1,j)P (si,j |si,j−1,si−1,j)P (Oi,j |si,j).

(15)

If we now replace P (si,j |si,j−1, si−1,j) in Equation
(15) by the transition probability asi,j−1,si−1,j ,si,j and
consider two diagonal pixels to be independent we can
write

P (si,j |si,j−1, si−1,j , Oi,j) ∝

P (si,j−1)P (si−1,j)asi,j−1,si−1,j ,si,jP (Oi,j |si,j).

(16)

This is the main formula to calculate the state proba-
bilities of pixel (i, j) given the observation and the two
past states. Note, that the most restrictive assumption
here is to suppose independence of the two past pixels.
Nevertheless, PCVT has to make the same assumption
when searching for theN superstates of each diagonal.

Now the main idea of CEP is to use Equation (16)
to calculate P (si,j = l) for l = 1, 2, . . . ,M for all
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si-1,j

si,j-1 si,j

asi,j-1,si-1,j,si,j

T   d
ad,d+1,l

Fig. 2. While PCVT uses ad,d+1,l which represents the transition
probability from one diagonal to another, CEP applies the transition
probability asi,j−1,si−1,j ,si,j for each pixel.

possible combinations of past states, i.e. si,j−1 = m,
si−1,j = n form,n = 1, 2, . . . ,M according to Equa-
tion (17).

P (si,j = l|Oi,j) ∝
M∑
m=1

M∑
n=1

asi,j−1=m,si−1,j=n,si,j=l

P (si,j−1 = m)P (si−1,j = n)P (Oi,j |si,j = l)

(17)

This procedure is nothing else than complete enumer-
ation of P (si,j = l). Keep in mind, that before we can
go on with the next pixel, it is necessary to normalize
P (si,j = l) such that

M∑
l=1

P (si,j = l) = 1. (18)

See Algorithm 2 for a schematic description of CEP
and Figure 2 for a comparison of the state transitions
applied by PCVT and CEP.

Algorithm 2. Complete Enumeration Propagation (CEP)
1. Initialize parameters µl and σl for l ∈ S.
2. Initialize state map using ML.
3. Calculate transition probabilities an,m,l for every
n,m, l ∈ S using Equation (11).

4. Find new state map using Equations (16), (17) and
(18).

5. Update parameters an,m,l, µl and σl using Equa-
tions (12), (13) and (11).

6. Iterate steps 3), 4) and 5) until convergence.

When analyzing the computational complexity of
CEP, only the calculation of step 3) is worth mention-

ing. This step is of order O((w ∗ z)M3) for an image
of size w × z with M states.

A problem arises for the pixels on the left and up-
per edge of the image because there are no past states
si,j−1 or si−1,j . To solve this issue one can think of
two possible solutions. First, copy the first row and the
first column and use maximum likelihood to determine
the probabilities of these auxiliary pixels. Second, sup-
pose a uniform distribution for the nonexistent terms
P (si,j−1 = m) and P (si−1,j = n). This is equal to
leaving out the corresponding terms in Equation (16).
We prefer the second option, because otherwise noisy
observations on the edges are encouraged to stay in a
maximum likelihood state instead of adapting them-
selves to their neighborhood.

Once we have calculated the probabilities of all the
pixels we assign each pixel the most probable state.
The result is a hidden state map which, for now, is our
best guess of the optimal hidden state map s∗ as shown
in Equation (10). From this point on we use the formu-
las (11), (12) and (13) to update the parameters of the
emission probabilities. Then we iterate this procedure
until convergence.

3.3. Emission probabilities

As we have shown in Section 3.1, our 2D-HMM
framework allows different probability distributions as
emission probabilities. On the one hand we study the
performance of CEP using different probability func-
tions. Therefore, we use the following five distribu-
tions: Gamma, inverse Gaussian (also known as Wald
distribution), Nakagami, Normal and Weibull as de-
fined by [26]. On the other hand we propose to select
the appropriate distribution of each class online at the
beginning of each iteration step.

Let’s suppose CEP has just finished iteration i. At
this point we have a hidden state map and the obser-
vations. So instead of adjusting the parameters of a
given probability function to the corresponding obser-
vations, one can ask the question: Which distribution
explains best the observations of state l? Once we have
answered this question, we can switch to the chosen
distribution, adjust its parameters and keep on running
CEP.

In this section we present three ways to select a
emission distribution for a given set of observations.
In all three methods, the first step is to adjust the para-
meters of all candidate distributions to the correspond-
ing observations using a maximum likelihood estima-
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tor. As possible distributions we use the ones named at
the beginning of this section.

3.3.1. Bayes Theorem
The first method is based on Bayes Theorem. Sup-

pose we have a set of distribution families F =
{F1,F2, ...,Fn}where each family has the formFi =
{fi,θ : θ ∈ Θi} with Θi being the parameter space of
Fi. For example one Fi could be the family of Gaus-
sian distributions and Θi is the set of possible parame-
ters.

The approach based on Bayes Theorem assigns to
each state the probability density

fl = arg max
1≤i≤n,θ∈Θi

∏
si,j=l

fi,θ(Oi,j) (19)

where fi,θ(Oi,j) is the probability function of observ-
ingOi,j given that the emission density corresponds to
family Fi with parameter θ ∈ Θi.

3.3.2. Kolmogorov-Smirnov Test
The key idea behind the second method is to use the

p-value of the two-sample Kolmogorov-Smirnov test
(KS) [21] in order to determine which is most suit-
able distribution for state l. Therefore we draw sam-
ples from the adjusted distributions and compare them
with the observations. After calculating the p-value for
every possible distribution we choose the one with the
highest p-value.

3.3.3. Kullback-Leibler Divergence
Finally we propose a method that is based on the

Kullback-Leibler Divergence (KL). This time we look
at the histogram of the observations and evaluate the
fitted probability function at each point of the his-
togram. Then we calculate the Kullback-Leibler Di-
vergence of the probability densities and the his-
togram. The smaller the Kullback-Leibler Divergence,
the more likely that the observations come from the
tested distribution.

In the next section we present the experimental re-
sults for each emission probability as well as for each
distribution-adaptation-strategy.

4. Experimental results: Image segmentation

In this section we present the experimental results of
different image segmentation algorithms. To evaluate
the algorithms, we use Cohen’s κ̂ coefficient [3] which

Algorithm 3. Maximum Likelihood Classification (ML)
1. Initialize parameters µl and σl for l ∈ S.
2. Calculate P (si,j = l|Ii,j , θ) = P (Ii,j |si,j = l, θ)

for each pixel (i, j) and for each state l.
3. Assign pixel (i, j) the label given by si,j =

arg maxl∈S P (Ii,j |si,j = l, θ).

is a widely accepted statistical measure of agreement
[11,27]. It is defined as

κ̂ =
PO − PE
1− PE

. (20)

In Equation (20), PO is the relative observed agree-
ment between the segmented image and the ground
truth and PE is the hypothetical probability of chance
agreement.

As mentioned in Section 3, there is no theoretical
guarantee that our 2D-HMM converges. Still, we ob-
served that in more than 97% of the experiments PCVT
and CEP converged within 150 iterations. Only very
few times the 2D-HMM got stuck in an endless loop
where two to five pixels were constantly changing state
forward and backward. The reason for this behavior is
that once a pixel changes its state the transition proba-
bilities and the emission probabilities slightly change.
So in the next iteration the pixel might switch back to
its previous state and so on.

To stop PCVT and CEP in the case of some end-
lessly switching pixels, we set a maximum of 150 it-
erations. Nevertheless, the state-switching pixels have
almost no effect on the κ̂ coefficient.

In Figure 3, we compare how many iterations it
takes for PCVT and CEP to converge. Therefore we
gather the number of iterations of all experiments in
two histograms – one for PCVT and one for CEP. Fi-
nally, we place smooth curves over these histograms in
order to obtain a figure that is easy to interpret.

We observe that in general PCVT needs less itera-
tions than CEP. On the other hand the computational
complexity of a single iteration is higher in the case of
PCVT. As a result, the computing times of PCVT and
CEP are very similar as shown in Figure 6.

Another issue of iterative, statistical models is the
influence of the initial parameters on the final result.
Of course it would be advantageous to have a theoreti-
cal guarantee for the invariance of the final result, but,
as we pointed out in Section 2, Equation (10) is infea-
sible. Therefore we cannot expect to obtain the same
segmentation for different initializations.
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Fig. 3. Probability density estimation of iterations necessary until
convergence. In some cases (around 3% of all experiments) PCVT
and CEP did not converge.

To evaluate the influence of the initial parameters,
we started the experiments in this section from differ-
ent points and observed the resulting κ̂ values. In Fig-
ures 5, 6 and 8 we show the mean κ̂ coefficients as well
as the standard deviations for different initial parame-
ters. In most cases, the standard deviations of κ̂ are be-
low 0.05. This indicates that the initial parameters have
very little influence on the final segmentation.

Before we present the experimental results, we like
to point out, that on the one hand we want to evalu-
ate the performance of different emission probabilities
plugged into our 2D-HMM framework while on the
other hand we like to compare our approach to other
classification algorithms. As benchmark classifiers we
use PCVT as described in Algorithm 1, Maximum
Likelihood Classification (ML) as described in Algo-
rithm 3 and Potts Iterated Conditional Modes (ICM) as
described in Algorithm 4.

While ML is a classical non-contextual classifi-
cation method, ICM is an iterative algorithm that
rapidly converges to the local maximum of the func-
tion P (s|O, θ) closest to the initial segmentation pro-
vided by the user. ICM is a well studied contextual
algorithm that was used as a benchmark function in
many works [7,10]. The algorithm goes back to a work
of Geman and Geman [8], where they consolidated
the use of Gibbs laws as prior evidence in the pro-
cessing and analysis of images. Such distributions are
able to capture the spatial redundancy of the visual
information in a tractable manner. Among them, the
Potts model has become a commonplace for describing
classes.

In this work, the initial segmentation for ICM is
provided by ML and the parameter β is estimated ac-

Algorithm 4. Iterated Conditional Modes (ICM)
1. Choose a pixel’s visit scheme for the image.
2. Initialize parameters µl and σl for l ∈ S.
3. ML segmentation of O.
4. Estimate parameter β.
5. For each pixel (i, j), change the label given in the

previous iteration for the label l ∈ S that maxi-
mizes

g(l) = ln p(Oi,j |l, µl, σl) + βUi,j(l) (21)

where Ui,j(l) is the number of pixels in the neigh-
borhood of (i, j) with hidden state l.

6. Iterate step 4) and 5) until convergence.

Fig. 5. Evaluation of the X-ray image for different setups. The four
states of the image can be merged to two or three superstates. All
algorithms were started from different initial conditions. The mean κ̂
values and its standard deviations are shown, as well as the average
computing times. Note, that the computational complexity of CEP
rises with the number of states.

cording to [9]. Note, that ICM is an isotropic method
whereas PCVT and CEP are causal 2D-HMM [13].

We propose five different scenarios to evaluate and
compare ML, ICM, PCVT and CEP with its differ-
ent emission probabilities. The experiments consist of
three real images – an inverse digitized X-ray image,
a multispectral optical Landsat image and a standard
benchmark image – as well as an artificial image and
a database of 200 synthetic images that were observed
through different probability distributions.

4.1. Multimodal X-ray image

The first image comes from the field of diagnostic
radiography. Due to the sensing method and the pos-
terior digitization process, this type of imagery has a
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Original Ground Truth - 3 states ML ICM

PCVT CEP - Normal CEP - invGaussian CEP - optimize KL

Histogram Ground Truth - 4 states ML ICM

PCVT CEP - Normal CEP - Nakagami CEP - optimize KS

Fig. 4. Segmentations of an X-ray image with three and four states. The emission probability has great influence on the final segmentation.
Interestingly, the segmentation of the rat tooth is almost the same for three and four states when using CEP with a normal distribution. In this
case, CEP uses the extra state to model the background.

very low signal-to-noise ratio [5]. It shows a Wistar
rat’s jaw and forms part of a growth study of rats [6].
As ground truth we use a manual segmentation made
by a biologist.

The interesting aspect about this image is that it con-
tains four states (bone and tooth, tissue and flesh, car-
tilage and background) which can also be grouped into
two or three superstates, in accordance to the smooth
modes of the intensity histogram.

We run ML, ICM, PCVT and CEP for all three cases
(four states, two or three superstates) and evaluate the
performance using κ̂. Some of the segmentation results
of this scenario are shown in Figure 4. The evaluation
of this experiment with respect to different emission
probabilities is shown in Figure 5 and in Figure 6 we
present a comparison of all segmentation algorithms.

4.2. Multispectral, multimodal satellite image

The second experiment is a multispectral Landsat
TM image of an agricultural area in the humid pampa
of Argentina. It shows agricultural fields of different
sizes and orientations and two center-pivot irrigations.

In this case, the performance is evaluated in the parts
of the image that are shown in Figure 7, since we only
have ground truth labels for these regions. The ground
truth data consists of three states, but we have no in-
formation of how many states are present in whole the
image, so we evaluate all algorithms for three to five
states and show the results in Figure 8.

4.3. Synthetic imagery

In Section 3.3, we proposed three algorithms to find
the optimal emission probability “online” after each
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Fig. 6. Overall evaluation of the X-ray image. CEP outperforms the
other algorithms for all emission probabilities – except the inverse
Gaussian and the Weibull distribution.

Algorithm 5. Synthetic images
1. Design ground truth.
2. Choose order of states randomly (e.g. the back-

ground could be state two, etc.).
3. Choose the emission probability for each state ran-

domly.
4. Choose parameters of each probability function

randomly within certain limits.
5. Observe the ground truth according to the given dis-

tributions.
6. Repeat steps 2), 3) and 4) 200 times.

iteration step. In this section, we evaluate the perfor-
mance of these algorithms for a database of 200 syn-
thetic images. The idea is to find out, whether the pre-
sented algorithms can correctly identify the underly-
ing emission probabilities or not. Besides that, we want
to verify that our distribution-updating model achieves
better results in terms of κ̂ than ML or a common CEP-
model that uses only normal distributions as emission
probabilities.

First of all, we designed a synthetic image with
four states, as shown in Figure 10. This image serves
as the ground truth for our experiment. Starting from
that ground truth, a probability distribution is chosen
at random for every state and its parameters are var-
ied within certain limits. The applied probability func-
tions are: Gamma, inverse Gaussian, Nakagami and
Weibull. Once we have picked four distributions for the
four ground truth states, the observations are made ac-
cording to the density functions. The exact procedure
to obtain the synthetic images is described in Algo-
rithm 5.

Original Ground Truth

ML CEP - Normal

CEP - Gamma CEP - optimize KL

Fig. 7. Segmentations of band five of a Landsat image.

Fig. 8. Evaluation of the Landsat image. Above: Comparison of dif-
ferent emission probabilities in the CEP-framework. Below: Overall
performance comparing CEP with the benchmark classifiers. Note,
that independently of the emission probability CEP achieves the
highest κ̂ values.
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Fig. 9. Evaluation of the segmentation results of the synthetic im-
ages. Above: Average κ̂ for each algorithm. Below: Percentage of
correctly identified emission probabilities.

The performance of the three online algorithms was
very similar for the 200 test images. All methods cor-
rectly identified between 40% and 46% of the emission
probabilities and achieved average κ̂ values between
0.697 and 0.704. Still, the online methods have a rel-
ative improvement of 3% with respect to the normal
distribution and a 12% improvement compared to ML.
The average κ̂ values of this experiment are presented
in Figure 9 and in Figure 10 some of the segmentations
are shown.

4.4. Binary image

In this experiment we try to segment the logo of the
Technological National University (UTN). The ground
truth and some segmentations of this two-class prob-
lem are shown in Figure 11. In this experiment we ob-
serve the two states “logo” and “background” through
normal distributions with varying means. As a result,
we get images that are hard to segment for close means
and easy to segment when the means of the two states
are far from each other.

We observe, that the classical CEP with normal dis-
tributions has problems separating the two states when
their means are close to each other but shows excel-
lent results for more separated states. The same holds
for CEP when it is used together with the distribution-
updating algorithms. Like in the case of the synthetic
image, KL shows slightly better results than Bayes and
KS. The evaluation of this experiment is presented in
Figure 12.

Ground Truth Probability functions

Observation ML (0.77)

CEP-Normal (0.85) CEP-optimize Bayes (0.89)

CEP-optimize KS (0.87) CEP-optimize KL (0.89)

Fig. 10. Synthetic image: ground truth, one set of probability func-
tions, the corresponding observation and the segmentations with κ̂
values in brackets.

4.5. Standard test image

Finally, we evaluate the segmentation algorithms for
a more complex image, denominated “Cameraman”.
There is no texture in the image, besides a slight decol-
orization in the sky behind the cameraman. We run the
segmentation algorithms with five states and show the
results in Figure 13. Note, that CEP is the only method
that finds the building in the background, but its sen-
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Original Observation

ML, (0.87) PCVT, (0.88)

CEP-Normal, (0.99) CEP-optimize KL, (0.98)

Fig. 11. Segmentation of the logo of the National University of
Córdoba. In this case the two states are observed according to
Logo ∼ N(50, 25) and Background ∼ N(65, 25). κ̂ values in
brackets.

sitivity also makes it highlight shadows in the sky be-
hind the cameraman. Another point is, that CEP - just
like ICM - shows very good results when it comes to
segmenting the solid ground of the picture, whereas
ML and PCVT do not assign one unique class to the
ground.

To evaluate this experiment, we run all algorithms
50 times with random initial conditions and present the
average number of pixels that changed state from one
iteration to another in Figure 14. Besides that we show
the intensity histogram of the original picture and the
means and standard deviations found by the segmen-
tation algorithms in Figure 15. One can see that ICM
does not end up far away from the initial states given
by ML. In contrast to that PCVT and CEP have made
reasonable adjustments to the initial normal distribu-
tions. In the next section we discuss the experimental

Fig. 12. Segmentations of a binary logo image observed for different
normal distributions. The standard deviation of the two distributions
is fixed at 5 while the difference of the two means varies between
1 and 30 (x-axis). Hence, the closer the Gaussians, the harder the
segmentation task.

results and draw conclusions when to prefer PCVT and
when to use CEP.

5. Conclusions

In this work, we presented a new image segmen-
tation framework. Unlike most of the 2D-HMM al-
gorithms, our approach leads to a feasible 2D-HMM
without discarding any hidden states. Therefore we
have to assume that two diagonal pixels are indepen-
dent.

The experimental results show that CEP outper-
forms the benchmark algorithms when the segmenta-
tion task is well defined. As a rule of thumb, CEP
should be the first choice when the κ̂ coefficient is ap-
proximately 0.7 or higher. For this class of segmenta-
tion problems, CEP achieved an average relative im-
provement of 8% with respect to ICM and PCVT.

On the other hand, ICM and PCVT led to better
results for images with very low signal-to-noise ra-
tios. Besides that, ICM and the non-contextual ML al-
gorithm demand significantly less computational re-
sources than PCVT and CEP. Note in this context, that
the complexity of CEP depends above all on the num-
ber of states and that for more than four states CEP is
generally slower than PCVT.

When it comes to the emission probability, we ob-
served that the applied probability function can have
great influence on the final segmentation. Surprisingly,
the normal distribution is appropriate for a wide range
of segmentation problems – although it is often crit-
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Original Histogram

ML ICM

PCVT CEP - Normal

CEP - Weibull CEP - optimize Bayes

Fig. 13. Segmentations of a standard test image “Cameraman”.

icized for being too narrow. In addition to that, we
sometimes obtained very unexpected results for certain
probability functions. An example therefore is the seg-
mentation of the X-ray image with an inverse Gaussian
distribution.

In order to tackle the problem of which emission
probability to use, we proposed three methods to up-
date the emission probabilities online after each iter-
ation. The methods are based on Bayes theorem, the
Kolmogorov-Smirnov test and the Kullback-Leibler
Divergence. All three methods showed very similar re-

Fig. 14. “Cameraman” test image: Average convergence of ICM,
PCVT and CEP for 50 runs with random initial conditions.

Fig. 15. Histogram of the “Cameraman” test image and the means
and standard deviations of every segmentation method.

sults despite that they are very different approaches.
Even though the results of the three methods are not
bad, further research has to be done in this area to im-
prove the presented methods.

In conclusion, the CEP is not only a challenge to
other HMM algorithms like ICM or PCVT but also
a complementary. Especially for images with not too
low signal-to-noise ratios CEP should be preferred to
the benchmark algorithms. In future works, the 2D-
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CEP-framework could be extended to higher dimen-
sions.
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