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a b s t r a c t 

In previous works, we proposed two methods for data clustering based on automatically discovered fuzzy 

predicates which were referred to as SOM-based Fuzzy Predicate Clustering (SFPC) [Meschino et al., Neu- 

rocomputing, 147, 47–59 (2015)] and Type-2 Data-based Fuzzy Predicate Clustering (T2-DFPC) [Comas et 

al., Expert Syst. Appl., 68, 136–150 (2017)]. In such methods, fuzzy predicates allow both data clustering 

and knowledge discovering about the obtained clusters. This last feature constitutes novelty comparing 

to other existing approaches and it is a major contribution in the data clustering field. Based on these 

previous methods, in the present paper a new automatic clustering method based on fuzzy predicates 

is proposed which uses Self-Organizing Maps (SOMs) and is called Type-2 SOM-based Fuzzy Predicate 

Clustering (T2-SFPC). The new method does not require any prior knowledge about the clustering ad- 

dressed. First, a random partition is defined on the dataset to be clustered and SOMs are configured and 

trained using the resulting data subsets. Second, an automatic clustering approach is applied on the SOM 

codebooks, discovering representative data of the different clusters, which are called cluster prototypes. 

Third, interval type-2 membership function formed by Gaussian-shape sub-functions and fuzzy predicates 

are defined, allowing data clustering and its interpretation. The proposed method preserves all the ad- 

vantages of the previous methods SFPC and T2-DFPC in relation to the knowledge extraction capabilities 

and their potential application on distributed clustering and parallel computing, but results obtained on 

several public datasets tested showed more compactness and separation of the clusters defined by the 

T2-SFPC, outperforming both the previous methods and the several classical clustering approaches tested, 

considering internal and external validation indices. Additionally, both clustering interpretation and op- 

timization capabilities are improved by the proposed method when compared to the methods SFPC and 

T2-DFPC. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Data clustering refers to grouping data according to a similar

criterion [1] revealing hidden structures in data. It has multiple

applications in very different fields such as: data mining, market-
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ng, machine learning, bioinformatics, image segmentation, pattern

ecognition, among others; and new methods are continually pro-

osed [2–5] . Clustering methods are primarily designed to assign

lusters to data, usually not requiring prior information about the

xpected results except for the number of clusters to be obtained,

hich is typically required. As a result, the outcome of the most

ommon methods typically consists of a vector containing the cor-

esponding cluster for each datum, including the cluster centroids

r prototypes of the type of data corresponding to each of the clus-

ers (called cluster prototypes). 

Despite traditional approaches of data clustering are only used

o group data; other potential applications can emerge. In fact,

lustering can be addressed as a set of data analysis techniques
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2017.07.012&domain=pdf
mailto:diego.comas@fi.mdp.edu.ar
mailto:diegoscomas@gmail.com
mailto:jpastore@fi.mdp.edu.ar
mailto:abouchet@fi.mdp.edu.ar
mailto:vballari@fi.mdp.edu.ar
mailto:gmeschin@fi.mdp.edu.ar
http://dx.doi.org/10.1016/j.knosys.2017.07.012


D.S. Comas et al. / Knowledge-Based Systems 133 (2017) 234–254 235 

w  

p  

b  

s  

a

 

s  

(  

t  

b  

e  

i

 

i  

T  

s  

w  

t  

c  

c  

u  

t  

h  

c  

0  

m  

p  

c  

t  

i

 

 

 

 

 

 

 

 

 

 

t  

d  

c  

n  

w  

f  

c  

t  

t  

t  

p  

d  

p

 

m  

m  

e  

S  

a  

d  

S  

i  

[  

i  

t  

c  

g  

f  

c  

s  

a

 

C  

2  

[  

0  

o  

m  

n  

t  

I  

d  

f  

n  

t  

d  

t  

s  

b  

v  

w  

p

 

n  

C  

i  

i  

u  

a  

t  

a  

l  

m  

b  

r  

c  

n  

t  

a  

[  

t  

o  

s  

m  

i  

u  

o

 

m  

t  

m  

M  

t  

f  

d  

l  

t  

p  
hich discover groups of similar data and their results can be ex-

loited extracting information about them. Such information could

e related to what the common properties of the data inside a

ame cluster are and how these properties differ from a cluster to

nother [3] . 

In this regard, Fuzzy Logic (FL), conceived as a natural exten-

ion of Boolean logic which introduces degrees of truth between 0

completely false) and 1 (completely true), is able to model linguis-

ic expressions and concepts, including imprecision and vagueness,

eing excellent for modeling and implementing human reasoning

xpressed by linguistic expressions, achieving interpretable cluster-

ng. 

Typical FL models are based on fuzzy inference systems us-

ng IF-THEN rules considering approaches such as Mamdani and

akagi–Sugeno–Kang [6–12] applied in image classification, image

egmentation, speech recognition, control, among others. Although

idely used, a fuzzy inference system requires defining fuzzifica-

ion, aggregation and defuzzification operators and its outcome is a

ontinuous variable. Considering data clustering applications, these

haracteristics of the fuzzy inference systems become difficult to

nderstand the relation between the data and their properties and

he system outcome, i.e. the assigned cluster [2,3] . On the other

and, models based on fuzzy predicates extend the Boolean predi-

ates, modeling degrees of truth of predicates with values between

 and 1 [13] . When applied on data clustering, fuzzy predicate

odels allow to implement knowledge about the clustering, ex-

laining which values of each feature are related to each of the

lusters and modeling these relationships using membership func-

ions and predicates. Such models have been successfully applied

n data clustering [2,3,14,15] , having the following features: 

• Each cluster is explained by a fuzzy predicate interpreted as

“The datum belongs to the cluster k”, being k a cluster; explaining

which values (which characteristics) of each feature are related

to each of the clusters. 
• In order to assign clusters to data, degrees of truth of the pred-

icates are computed for each datum using the membership

functions and the fuzzy operators and in each case the clus-

ter corresponding to the predicate with the maximum degree

of truth is assigned to the datum. 
• Resulting degrees of truth quantify in what grade each datum

meets the characteristics required to belong to a cluster (i.e.

how a datum is represented by their prototypes). 

In the traditional approach, it is required knowledge of experts

o define both the membership functions and the predicates. Once

esigned, the fuzzy predicates apply that knowledge for assigning

lusters to data. Nevertheless, in recent works an approach alter-

ative to the traditional one has been studied for data clustering

hich is based on the automatic generation of the membership

unctions and the fuzzy predicates by analyzing the data to be

lustered. Such approach has an enormous and immediate advan-

age in relation with the traditional approach: it not only allows

he data clustering, but also provides knowledge about the clus-

ering obtained by interpreting the membership functions and the

redicates generated. As a consequence, relevant information about

ata can be obtained, even when no prior information about the

roblem addressed is available [3] . 

In this regard, in the previous works [2,3] we proposed two

ethods for data clustering through fuzzy predicates in which

embership functions and fuzzy predicates are automatically gen-

rated from the data to be clustered. In [2] , a method based on

elf-Organizing Maps (SOMs) (a set of wide known unsupervised

nd nonparametric neural networks with remarkable abilities for

ealing with noise, outliers, and missing values) is proposed called

OM-based Fuzzy Predicate Clustering (SFPC). In the SFPC, a SOM

s automatically trained and set and, then, Fuzzy C-Means (FCM)
16] clustering is applied to the codebook of the SOM, extract-

ng cluster prototypes. From these prototypes, membership func-

ions and fuzzy predicates are defined, linguistically explaining the

lusters. The method includes a variant where several SOMs are

enerated from data subsets and predicates obtained from the dif-

erent SOMs are combined, which could be applied to distributed

lustering. Predicates are used to perform the data clustering and

ome analysis of the interpretation of the membership functions

nd predicates is given. 

In [3] , the method called Type-2 Data-based Fuzzy Predicate

lustering (T2-DFPC) is introduced. Unlike the SFPC, interval type-

 FL is used which defines a degree of truth by an interval in

0, 1] called interval of truth values, instead of a number between

 and 1 as in the case of type-1 FL, which adds additional degrees

f freedom considering data clustering. Interval type-2 FL provides

ore appropriate models than type-1 FL for dealing with vague-

ess and imprecision about the data characteristics and can reduce

he effect on cluster assignments in data affected by noise [3,13,17] .

n the T2-DFPC, the cluster prototypes are extracted directly from

ata without using SOMs, combining FCM with the Bayesian In-

ormation Criterion (BIC) [18,19] , defining automatically the proper

umber of clusters in each case. Before the cluster prototype ex-

raction, a random partition is performed on the data, obtaining

isjoint subsets. The method is also suitable for distributed clus-

ering. The T2-DFPC includes an analysis of the obtained member-

hip functions and predicates, describing how the knowledge can

e extracted. Additionally, it is also proposed a measure of inter-

als of truth values defining a methodology for interval comparing

hich allows the cluster assignment when interval type-2 fuzzy

redicates are used. 

Based on these two previous methods, in the present paper a

ew clustering method called Type-2 SOM-based Fuzzy Predicate

lustering (T2-SFPC) is proposed, which automatically generates

nterval type-2 membership functions and fuzzy predicates, allow-

ng data clustering and knowledge discovery. The method proposed

ses SOMs in order to obtain cluster prototypes, exploiting their

dvantages for noise, outliers, and missing values dealing, as in

he SFPC; following the methodology used in that method for the

utomatic configuration and training of the SOMs. However, un-

ike the previous SFPC, in the method T2-SFPC, M SOMs are auto-

atically configured and trained from M disjoint subsets defined

y a random partition on the data, where M ∈ N is a method pa-

ameter. Once the M SOMs are defined, the clustering approach

ombining FCM with the BIC is applied not requiring knowing the

umber of clusters to be obtained. Once cluster prototypes are ex-

racted, interval type-2 membership functions and fuzzy predicates

re generated in a different way to that proposed in the T2-DFPC

3] . Specifically, the new proposal includes parametrizable interval

ype-2 membership functions, i.e. it is possible the optimization

f the parameters of the membership functions provided that a

pecific goal is defined, for instance adopting a clustering quality

easure. As a result of the proposed method, one fuzzy predicate

s defined for each cluster. The clustering assignment is performed

sing the methodology introduced in [3] by means of the measure

f interval of truth values. 

The contribution of the proposed method is a new general

ethodology for data clustering, which can be applied to most of

he clustering problems. The interval type-2 membership functions

erge all knowledge extracted of the cluster prototypes from the

 SOMs. The method T2-SFPC preserves all the characteristics of

he previous methods, mainly those related to the SOM abilities

or discovering natural data groupings and, also, to the knowledge

iscovery capabilities studied in the T2-DFPC. As in the T2-DFPC,

inguistic expressions extracted from the predicates can be adapted

o match the terminology of the domain experts, not requiring any

rior knowledge about the dataset or the clustering problem ad-
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dressed. Tests performed considering widely different datasets re-

veal better results from the proposed T2-SFPC than those obtained

both from the SFPC, the T2-DFPC and classical clustering meth-

ods, meaning that the proposed method is an excellent clustering

method choice when both data clustering and knowledge extrac-

tion from the clustering results are needed. 

The rest of this paper is structured as follow. In Section 2 , it

is presented an analysis of the main existing papers concerning to

SOMs used for data analysis as well as FL applications. Important

concepts related to SOMs and interval type-2 FL are presented in

Section 3 and, after that, the method proposed called T2-SFPC is

explained in detail. In Section 4 , experiments performed to the as-

sessment of the proposed method are described and their results

are presented, including an example of the interpretation of the

obtained clustering in the case of segmentation of brain magnetic

resonance images. Finally, in Sections 5 and 6 , discussion and con-

clusions are presented, commenting on the results and the limita-

tions of the method proposed as well as future work. 

2. Related works 

In the present Section, both some existing clustering ap-

proaches based on SOMs and some applications of FL concerned

to the method proposed are described. Given the wide number of

papers related to these issues, the present analysis is intended to

cover the most relevant papers on the topic. Nevertheless, further

reviews can be consulted in [2,7,11,20] . Descriptions of the methods

SFPC and T2-DFPC are omitted, as these were given in the previous

Section. 

As it has been mentioned, in order to generate membership

functions and fuzzy predicates from data, it is necessary to extract

representative examples of data which describe each cluster to be

obtained. Such examples can be achieved by applying data analysis

approaches and using their results as cluster prototypes [2,3] . 

A very interesting and widely applied data analysis method

consists of SOMs, which define a mapping from data to cells in the

SOM space. There are several papers proposing different clustering

approaches based on SOMs. In general, they include two-level clus-

tering schemes where a SOM is trained with the available data in

the first level. The second level clustering is performed using an-

other SOM fixing the number of cells to the number of clusters

[21] , crisp-clustering methods [2,22–24] , or fuzzy clustering meth-

ods such as FCM [25] . Grouping prototype vectors contained in a

SOM instead of directly grouping data has some advantages. First,

some clustering algorithms might have high computational cost

even considering small number of data [22] . Second, as the pro-

totypes in a SOM are computed averaging data, they are less sen-

sitive to noise effects. Third, considering problems with few data, a

SOM can generalize the data space making easier the discovery of

clusters than in the case of a clustering method applied directly on

the data. Some SOM-based clustering approaches are summarized

below. 

A multilayer SOM approach is proposed in [21] by Lampinen

and Oja. The authors assure that unsupervised learning techniques

such as SOMs can reduce the training required in complex data

clustering problems. The method allows to find the most represen-

tative prototype vectors for a given dataset and, also, to make a

topological mapping from the feature space to the map space, pre-

serving the input topographic space. A two-level SOM-clustering

algorithm is studied in Vesanto and Alhoniemi [22] , using agglom-

erative clustering in the second level. Each datum in the original

dataset belongs to the same cluster than its nearest prototype. It is

indicated that this approach can reduce the computational cost of

clustering revealing that, in most of the cases, it is better to group

the codebook of a trained SOM than to apply clustering directly on

data. 
More complex clustering approaches based on SOMs are re-

orted in other papers. In [26] , Kiang extends SOMs in order to in-

lude a contiguity-constrained clustering method to perform clus-

ering based on the cell map generated by a SOM. The method

onsiders an agglomerative approach to recursively merging groups

rom a SOM until a desired number of clusters is reached. In [27] ,

arlin and Eklund apply a SOM-FCM two-level scheme, performing

he clustering on the SOM codebook and assigning a partial mem-

ership of each cell to each cluster, obtaining overlapping clus-

ers. This approach allows to analyze the membership degree in

he self-discovered clusters using SOMs. In [24] , Ortiz et al. pro-

ose a SOM-based method for segmentation of brain magnetic res-

nance images. The proposal includes image acquisition and pre-

rocessing, feature extraction (including texture features), feature

election based on genetic algorithms and image segmentation us-

ng SOMs. It is proposed a SOM-clustering approach defining clus-

er constrains by considering the map space and the relation-

hip with the input space (data space) using an entropy-gradient

unction computation to group the cells of the SOM codebook.

he SOM quality is evaluated considering quantification and topo-

raphic errors. In [23] , Ta ̧s demir et al. indicate that SOMs find an

ptimal distribution of the prototype vectors in the data space such

hat they better approximate the unknown density distribution of

he data. As a result, once a SOM is trained, it contains knowledge

bout the training data providing relevant information about the

lusters, which is extracted by means of explanatory visualization

r clustering. The authors affirm that typical visualization meth-

ds require expert knowledge in order to interpret the information

ontained in a trained SOM. Therefore, they propose an automated

lustering method for SOMs using hierarchical agglomerative clus-

ering and a connectivity matrix. 

In all the SOM-based methods previously described, SOMs are

sed for clustering and analysis of data by means of very differ-

nt approaches which define clusters on the SOM codebooks. The

ethods were applied on data corresponding to different problems

howing that SOM is a proper approach when data analysis and ex-

loration is required. In the method proposed in the present work

T2-SFPC), this characteristic of SOM is exploited in order to obtain

luster prototypes from the SOM codebooks, i.e. examples of data

orresponding to different clusters, but unlike the previous men-

ioned methods, the extracted cluster prototypes are not used to

roup the original dataset. Instead, they are used to generate mem-

ership functions and fuzzy predicates defining a FL system which

llows both clustering of the original dataset and knowledge ex-

raction about the clustering problem in the form of linguistic ex-

ressions. In other words, in the method proposed, SOMs are used

or data analysis in order to generate an interpretable FL system

or clustering. 

In relation to FL applied to data clustering and classification,

ost of existing applications are based on inference systems with

F-THEN rules designed from experts’ knowledge, see for instance

he works analyzed in the surveys [7] and [11] . However, the gen-

ration of models based on FL disregarding experts’ knowledge

s also addressed by some authors, including methods based on

OMs. 

In [10] , Mansoori proposes a fuzzy rule-based clustering algo-

ithm in order to perform an unsupervised cluster analysis. The

uthor states that the main limitation of both fuzzy and crisp clus-

ering algorithms is their sensitivity to the number and the initial

ositions of the clusters. Additionally, he explains that the discov-

red knowledge from typical approaches is not easily understand-

ble for humans. The proposed algorithm tries to find the potential

lusters and to identify them with some interpretable fuzzy rules. 

Bodenhofer and Bauer [28] make a general analysis of meth-

ds for membership functions interpretation, observing that when

embership functions are defined, especially whether it is done
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y means of an automatic method, it is important to preserve the

emantic meaning of the natural language expressions in order to

chieve interpretable descriptions. In other words, for example, a

embership function associated to the attribute “low” should cor-

espond to lower values than a membership function associated

o the attribute “high”. Moreover, the authors explain that inter-

retability is the key property of a FL system. As a result, according

o the authors, if a FL system is not focused on the interpretabil-

ty, then it can be replaced by methods which are more abstract

nd computationally less expensive. In this regard, in [29] Zadeh

ndicates that the meaning of the natural language expressions is

ontained both in membership functions and fuzzy predicates and,

herefore, their interpretation are strongly related to the knowl-

dge. 

SOMs are used by Drobics et al. in [20] in order to extract

inguistic and interpretable descriptions from clusters, proposing

 three-stage approach which combines SOMs and FCM for ex-

racting cluster prototypes. Once cluster prototypes are defined,

he authors propose to analyze the prototypes feature by feature,

onsidering membership functions located in predefined positions.

inally, predicates are defined by means of an optimization al-

orithm considering the attributes described by the membership

unctions and different fuzzy operators. This method differs signif-

cantly from the method proposed in the present work and, also,

rom the previous method SFPC presented in [2] . Specifically, both

he methods SFPC and the T2-SFPC define the membership func-

ions considering the centroids and the standard deviation of the

xtracted cluster prototypes, which means that they preserve the

elationships between the values of the different f eatures observed

n each cluster when fuzzy predicates are defined. In other words,

n these methods, the positions, shape and width of the member-

hip functions depend on the properties observed in the cluster

rototypes. In this regard, analyzing values of each feature inde-

endently of the others as it is proposed by Drobics et al. implies

isregarding the original notion of a cluster, i.e. a set of data with

imilar properties. 

. Methods 

In this Section, concepts related both with SOMs and interval

ype-2 FL in data clustering are revised. As both topics are well

nown, only the most important concepts are presented. Then, the

ethod proposed called Type-2 SOM-based Fuzzy Predicate Clus-

ering (T2-SFPC) is explained in detail. 

.1. Self-organizing maps 

In 1982, Kohonen proposed the SOM [30] which consists of a

egular grid of cells mapping an input space (data space) to a cell

pace (output space), preserving the topology of the input space

nd having remarkable abilities to remove noise, to detect outliers,

nd to complete missing values in data [2] . 

Each cell of a SOM is associated to a vector, called prototype

ector, which has a size equal to the dimension of the input space.

he set of all the prototype vectors is called codebook. Before the

raining stage, the codebook is typically initialized using linear,

andom or data-analysis-based initialization [31] . During the train-

ng phase, the SOM codebook is adjusted in order to map close

ata in the input space to close cells in the map. It is expected

hat in a well-trained SOM, the codebook represents the training

ataset, preserving its characteristics, i.e. having similar probabilis-

ic density function. This last feature is used in the method pro-

osed in this work as well it was used in the previous work [2] ,

n order to obtain cluster prototypes from SOMs applying a second

evel clustering on previously configured and trained SOMs, con-

idering 2-D maps. 
How good a SOM codebook represents the training dataset

tatistics depends both on the map size, topology, neighborhood

unction and training type, which are parameters that should be

elected for each dataset. This selection is generally done heuristi-

ally. However, according to existing works [2,32,33] , it is possible

o obtain an optimal SOM for a given dataset by training several

OMs with different parameters and computing SOM error mea-

ures after the training process. In this sense, in the method SFPC

resented in [2] , it is proposed to consider three different error

easures to obtain an optimal SOM for a dataset, which are: quan-

ization error, topographic error, and topographic product. Formal

efinition of these error measures can be found in [2] , but the next

onceptual assertions are given here: 

• The quantization error allows to know whether the prototype

vectors in a trained SOM are close to the training dataset, con-

sidering only distance measures on the data space. 
• The topographic error is a measure of how good a SOM pre-

serves the topology of the data space. i.e. whether very close

prototype vectors of the SOM codebook have been assigned to

adjacent cells in the map space. 
• The topographic product combines distances both in the data

space and in the map space, allowing to assess how good the

neighborhood relations in a SOM are preserved. 

If the prototype vectors perform an organized projection of the

raining data according to a similarity criterion and preserving the

ata topology, then these three errors tend to be minimized [2] . In

he present work, in order to guarantee a good representation of

he training dataset in the cluster prototypes extracted from SOMs,

hich are used to generate membership functions and fuzzy pred-

cates, the automatic procedure proposed in [2] for the configura-

ion and training of SOMs is used. Specific application of this pro-

edure in the method proposed in the present work is given in

ection 3.3 . 

.2. Interval type-2 fuzzy predicates in data clustering 

FL was conceived as a natural extension of Boolean logic, defin-

ng degrees of truth of logic propositions with values between 0

false) and 1 (true) [34] . Typically, FL is selected when dealing

ith linguistic statements and working with concepts described

y vague expressions are required [3] . FL has been applied to

ata clustering and classification applications both using experts’

nowledge to generate fuzzy models as well as proposing auto-

atic methods based on data analysis. The papers [2,3,14,15] are

xamples of such applications and, also, the surveys [7,11] . 

Traditional notion of FL, called type-1 FL, defines a degree of

ruth as a real number between 0 (completely false) and 1 (com-

letely true). Values between these two limits indicate that the

ogic preposition is not completely false or completely true, which

s known as gradualism principle of the FL [34] . According to re-

ent works [3,11,35] , defining degrees of truth by numbers could

ot be enough in problems with great imprecision, disagreement

etween different experts to define degrees of truth resulting in

mprecise knowledge, or when data is affected by noise; which

ay occur in data clustering problems. In contrast to type-1 FL,

nterval type-2 FL or interval-valued FL which is the same con-

ept allows to define degrees of truth by intervals of truth values

hich are able to model both variability in data and knowledge

nd showed better performance than type-1 FL on data clustering

nd classification [3,7,11] . 

In particular, in [3] interval type-2 FL was considered to auto-

atically generate interval type-2 fuzzy predicates from data, al-

owing both data clustering and extracting knowledge about clus-

ering. As it was previously mentioned, on the basis of that ap-

roach, interval type-2 FL and fuzzy predicates are used in the
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method proposed in the present work, but unlike the previous

work in the present approach fuzzy predicates are defined using

cluster prototypes obtained from SOMs. 

In order to introduce the notation used in the rest of this pa-

per, the most relevant definitions related to interval type-2 FL and

fuzzy predicates are given below. Further analysis of the concepts

treated here can be consulted in [2,3,13] . After introducing the con-

cepts, an example of application of experts’ knowledge and fuzzy

predicates is analyzed to clarify, considering the tissue detection in

brain magnetic resonance images. 

The next definitions are adopted [3] : 

Definition 3.2.1. An interval of truth values is an interval A =
[ a L , a R ] , with 0 ≤ a L ≤ a R ≤ 1, which defines the degree of truth of

a logic expression when interval type-2 FL is used. 

Definition 3.2.2. A fuzzy predicate p ( x ), where x indicates a set of

objects or variables, is a declarative sentence which assigns one or

more properties to x . The value taken by the fuzzy predicate p ( x ),

noted by ν( p ( x )), is called degree of truth. 

Definition 3.2.3. An interval type-2 fuzzy predicate p ( x ) is a fuzzy

predicate whose degree of truth ν( p ( x )) is an interval of truth

value A p(x ) = [ a p(x ) ,L , a p(x ) ,R ] , where a p ( x ), L and a p ( x ), R are the end-

points of the interval. 

Definition 3.2.4. An interval type-2 membership function μ̄ de-

fined on an universe X , is a function μ̄ : X → χ , where χ
is the set of all the possible intervals of truth values, i.e.

χ = { [ a L , a R ] / a L ≤ a R ∧ a L , a R ∈ [ 0 , 1 ] } . A membership function asso-

ciates values of a variable with degrees of truth. 

From the point of view of fuzzy predicates, an interval type-2

membership function μ̄ defines with what degree of truth differ-

ent values taken by a variable satisfy an attribute described for μ̄.

As a result, a membership function can be interpreted as math-

ematically equivalent to a fuzzy predicate associated to the same

variable and attribute that μ̄. 

Definition 3.2.5. The functions ϕ 

−
μ̄

: X → [ 0 , 1 ] and ϕ 

+ 
μ̄

: X → [ 0 , 1 ]

are respectively the lower membership function and the upper

membership function of μ̄, defined as follow: 

ϕ 

−
μ̄ (x ) = min ( ̄μ(x ) ) , ∀ x ∈ X, (1)

ϕ 

+ 
μ̄ (x ) = max ( ̄μ(x ) ) , ∀ x ∈ X. (2)

Definition 3.2.6. The Footprint of Uncertainty (FOU) of μ̄ is the

set of all points between the lower membership function and the

upper membership function, i.e.: 

F O U μ̄ = 

⋃ 

x ∈ X 

{[
ϕ 

−
μ̄ (x ) , ϕ 

+ 
μ̄ (x ) 

]}
. (3)

Considering the last definition, the FOU is associated with the

vagueness or the variability around of the attribute described by an

interval type-2 membership function. In [3] where the method T2-

DFPC is presented, it is proposed to analyze the shape and size of

the FOUs of the interval type-2 membership functions generated

from the method in order to obtain information about the clus-

ters and the attributes discovered. Additionality, in other works,

different measures of fuzziness had been defined operating with

the FOU [36] . 

Definition 3.2.7. As in general fuzzy predicates can relate one or

more variables with properties, fuzzy predicates can be both sim-

ple or compound. A simple predicate directly associates a vari-

able with an attribute and its degree of truth is usually obtained

through a membership function. On the other hand, a compound

fuzzy predicate combines logically two or more simple predicates
sing conjunctions ( ∧ ), disjunctions ( ∨ ) and complements ( ¬ ),

hich in a wide sense are known as fuzzy aggregation operators. 

Since in interval type-2 FL the degrees of truth are interval of

ruth values, compound predicates are evaluated using fuzzy con-

unctions C : [0, 1] n → [0, 1], disjunctions D : [0, 1] n → [0, 1], and

omplements c : [0, 1] → [0, 1] applied on the ends of the intervals

f truth values [3,13] . 

In the method T2-SFPC proposed in the present work, com-

ound fuzzy predicates obtained exclusively consider conjunctions

f simple predicates. Therefore, the conjunction between interval

ype-2 fuzzy predicates is formally defined in the next paragraphs.

Let p ( x ) and q ( y ) be two interval type-2 fuzzy predicates re-

pectively with degrees of truth ν(p(x )) = A p(x ) = [ a p(x ) ,L , a p(x ) ,R ]

nd ν(q (y )) = A q (y ) = [ a q (y ) ,L , a q (y ) ,R ] . It is important to clarify that

s p ( x ) and q ( y ) are respectively defined on the variables x and y

hich are not necessary the same, a new predicate obtained com-

ining p ( x ) and q ( y ) will be defined on the union of x and y , which

ere will be noted as z . The conjunction between p ( x ) and q ( y ) is

efined as follow: 

efinition 3.2.8. The conjunction between p ( x ) and q ( y ) defines a

ew fuzzy predicate r ( z ) ≡ p ( x ) ∧ q ( y ) whose degree of truth is com-

uted as: 

( r(z ) ) = ν( p(x ) ∧ q (y ) ) = 

[
C 
(
a p(x ) ,L , a q (y ) ,L 

)
, C 

(
a p(x ) ,R , a q (y ) ,R 

)]
, 

(4)

where C : [0, 1] 2 → [0, 1] is a fuzzy conjunction [13] . 

In the literature, a wide set of fuzzy aggregation operators have

een proposed. Selecting different fuzzy operators should be made

ccording to the properties of each operator and how predicates

re interpreted and evaluated by the experts in each application.

onsidering previous results on data clustering [2,3] , in the present

ork three different fuzzy operators are considered: compensatory

ogic operations: Geometric Mean Based Compensatory Fuzzy Logic

GMCFL) and Arithmetic Mean Based Compensatory Fuzzy Logic

AMCFL), and standard triangular norms (MIN-MAX). Formal def-

nitions and analysis of these fuzzy operators can be found in

2,13,37,38] . 

Typically, in data clustering application each cluster is described

y a compound fuzzy predicate p k ( x ) linguistically interpreted as

The datum x belongs to cluster k”. Cluster assignment is performed

y determining which cluster has the predicate with the highest

egree of truth [2,3] . Therefore, if interval type-2 FL is used, it

s required a method for comparing intervals of truth values. In

3] a novel methodology for interval comparing in data cluster-

ng using interval type-2 fuzzy predicates was proposed which is

ased on the concept of measure of interval of truth values. This

ethodology is used in the present work in order to assign clus-

ers to data, once fuzzy predicates obtained from the T2-SFPC have

een evaluated. Both the concept of measure of interval of truth

alue and the clustering assignment method originally proposed in

3] are now recalled, considering their importance for the cluster-

ng method proposed in the present paper: 

efinition 3.2.9. Let χ be the set of all the closed intervals con-

ained in [0, 1], i.e. the set of all the possible intervals of truth

alues. The measure of interval of truth values f : χ → R 

+ is: 

f ( A ) = f ( [ a L , a R ] ) = 

a L + a R 
2 

a R , (5)

where A = [ a L , a R ] is an interval of truth values. 

The measure f describes the degree of truth of an interval of

ruth values with a number, mapping from the interval space to

 

+ . The measure combines the mean value of the interval with its

aximum and allows to induce an order on intervals. The higher
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he value of f ( A ), the higher the degree of truth represented by the

nterval. The next properties are satisfied by f : 

• If A = [ 0 , 0 ] (the minimum interval of truth values) then f (A ) =
0 (the minimum of f ). 

• If A = [ 1 , 1 ] (the maximum interval of truth values) then f (A ) =
1 (the maximum of f ). 

• Given two intervals of truth values A = [ a L , a R ] and B = [ b L , b R ]

where a L = a R = a , b L = b R = b, and a < b , then f ( [ a, a ] ) = a 2 <

f ( [ b, b ] ) = b 2 , following the order in R for a and b . 
• f induces a transitive order on intervals of truth values ( < f ). 

efinition 3.2.10. Let { p k (x ) } k =1 ,...,K be a set of K compound fuzzy

redicates used for data clustering, each describing one of the clus-

ers {1, ..., K }, with x ∈ [ −1 , 1 ] d a generic datum (considering nor-

alized data), where p k ( x ) is linguistically interpreted as “The da-

um x belongs to cluster k”. A datum x ′ ∈ [ −1 , 1 ] d is assigned to one

f the K clusters by means of the set of predicates { p k (x ) } k =1 ,...,K 

s follow: 

Step 1: Compute ν( p k (x )) , k = 1 , ..., K, for x = x ′ , obtain-

ing the intervals of truth values { ν( p k (x ′ )) } k =1 ,...,K =
{ [ a p k (x ′ ) ,L , a p k (x ′ ) ,R ] } k =1 ,...,K . 

Step 2: Apply the measure of intervals of truth values f on the

intervals { ν( p k (x ′ )) } k =1 ,...,K = { [ a p k (x ′ ) ,L , a p k (x ′ ) ,R ] } k =1 ,...,K de- 

fined in the previous step, obtaining the values: {
f 
(
ν( p k (x 

′ )) 
)}

k =1 ,...,K 
= 

{
f 
([

a p k (x ′ ) ,L , a p k (x ′ ) ,R 

])}
k =1 ,...,K 

. 

(6) 

Step 3: Assign to the datum x ′ the cluster correspond-

ing to the highest measure of intervals of truth values

{ f ( ν( p k ( x 
′ )) ) } k =1 ,...,K , i.e. to assign the cluster k ′ ∈ {1, ..., K }

to x ′ where: 

f 
(
ν( p k ′ (x 

′ )) 
)

= max 
{

f 
(
ν( p k (x 

′ )) 
)}

k =1 ,...,K 
. (7) 

Considering the Definitions 3.2.9 and 3.2.10 , the next analysis

an be done: 

• If a datum x is close to the properties of a cluster k , then

the mean value of the interval resulting of evaluate p k ( x ) is

high. As a result, as the properties of the cluster are better met

by the datum, the value taken by f for the interval of truth

values defined by ν( p k ( x )) increases. Therefore, the procedure

given in the Definition 3.2.10 assigns to the datum x ′ the cluster

k ′ ∈ {1, ..., K } whose properties are best met by the datum. 
• Considering two intervals of truth values with the same mean

value, resulting of the predicate evaluation for a datum x ′ in

two different clusters, f results the highest value of the measure

for the interval with the highest maximum value, which means

the properties of the corresponding cluster are the best met by

the datum. Therefore, in the case of two intervals with same

mean value for a same datum in two different clusters, the pro-

cedure of the Definition 3.2.10 assigns to the datum the cluster

whose properties are the best met. 

In the next paragraphs, an example of the use of experts’

nowledge and fuzzy predicates for data labeling is analyzed. 

Pixel labeling in brain magnetic resonance images is a prob-

em widely studied from very different approaches, including fuzzy

redicates generated using experts’ knowledge [15] . The problem

onsists in the segmentation of the magnetic resonance images by

rouping its pixels in three clusters, each corresponding to one

f the brain tissues: gray matter, white matter, and cerebrospinal

uid. Typically, when pixel labeling is performed from magnetic

esonance images, medical experts analyze gray intensities of one

r more sequences of magnetic resonance images, such as PD, T1,
nd T2. Each sequence describes different physical responses of the

issues when magnetic fields are applied on the human body. 

In the case of brain magnetic resonance images, typically, ex-

erts analyze gray intensities of images corresponding to the se-

uences PD, T1, and T2 in order to decide which tissue corresponds

o each pixel which requires to thoroughly understand how differ-

nt pixels are represented in the different sequences. This prob-

em is addressed in [15] where authors propose a framework for

rain magnetic image segmentation based on type-1 fuzzy pred-

cates and experts’ knowledge and several medical experts were

onsulted for defining both membership functions and fuzzy pred-

cates. 

Experts’ knowledge is expressed as linguistic descriptions,

efining both attributes on the gray intensity, such as “bright”,

dark”, “gray”, and how these are related to determine the tissue

orresponding to each pixel of the image. Once relevant attributes

re identified, in consultation with the experts a membership func-

ion is defined for each attribute, describing with what degree of

ruth each value of the gray intensity satisfies the attribute. A com-

ound fuzzy predicate describing each tissue is defined. Given a

ixel to be assigned to a tissue, all the compound predicates are

valuated considering the gray intensities of the pixel in the se-

uences PD, T1, and T2 and using the membership functions. The

ixel is assigned to the tissue for which the degree of truth of the

orresponding predicate is the highest, as detailed in the Definition

.2.10 . In Fig. 1 a diagram of the use of experts’ knowledge to form

uzzy predicates and membership functions is presented for this

oncrete application. 

.3. Proposed method: Type-2 SOM-based fuzzy predicate clustering 

T2-SFPC) 

The method T2-SFPC consists of four stages: A) Random dataset

artition, B) Configuration and training of SOMs, C) Extraction of

luster prototypes, and D) Generation of an interval type-2 fuzzy

redicate system. 

Given a dataset to be clustered, a random data partition is ap-

lied at the first stage, obtaining M disjoint subsets ( M ∈ N ). Each

f these subsets contains some of the samples (data) in the origi-

al dataset, i.e. the subsets act as different realizations of the same

rocess which defines the dataset. At stage B, M SOMs are auto-

atically configured and trained, one for each of the subsets pre-

iously generated at stage A. At stage C, a second level clustering

s performed on the M SOM codebooks obtaining the cluster pro-

otypes, combining crisp FCM clustering with the BIC in order to

efine the proper number of cluster in each case and following

he method proposed in [19] , successfully applied in [3] . Finally,

t stage D, the cluster prototypes are analyzed generating interval

ype-2 fuzzy membership functions and fuzzy predicates, explain-

ng the discovered clusters and allowing a clustering on the origi-

al dataset. In Fig. 2 , a pipeline of the method T2-SFPC is shown. 

As it was mentioned in Section 1 , the method T2-SFPC is in-

pired in the methods SFPC and T2-DFPC, proposed respectively

n [2] and [3] . The T2-SFPC is a new method for data clustering

hich automatically generates interval type-2 fuzzy predicates for

ata clustering, having the next features: 

• Subsets of the initial dataset are used to automatically train

SOMs and cluster prototypes are extracted from the SOMs in

an analogous way to that suggested in the SFPC, but in the T2-

SFPC the number of clusters is defined by means of the BIC. 
• The interval type-2 fuzzy predicates are generated from cluster

prototypes, but unlike the method T2-DFPC the interval type-2

membership functions are parametrizable, i.e. the T2-SFPC al-

lows the application of optimization methods if a specific goal
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Fig. 1. Diagram of the use of experts’ knowledge to form fuzzy predicates and membership functions for pixel labelling in brain magnetic resonance images detecting gray 

matter, white matter and cerebrospinal fluid. Attributes used by the experts are indicated in bold. Linguistic connectives are shown in red font. Using the descriptions, a 

compound fuzzy predicate is defined describing each tissue. Membership functions are also defined in accordance with experts describing the degree of truth in which each 

value of gray intensity satisfies each attribute. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Pipeline of the method T2-SFPC. Stage A: Random dataset partition, obtaining M disjoint subsets. Stage B: Configuration and training of SOMs. Stage C: Extraction of 

cluster prototypes. Stage D: Generation of an interval type-2 fuzzy predicate system. 
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is defined, which could be, for instance, a clustering quality

measure. 
• Each cluster is explained by one fuzzy predicate p k ( x ) inter-

preted as “The datum x belongs to the cluster k” and its degree

of truth is computed by the logic combination of simple predi-

cates defined by the interval type-2 membership functions gen-

erated from the method. 
• The cluster assignment is performed following the method de-

scribed at the end of Section 3.2 , which was originally proposed

in [3] . 
• The obtained clustering is linguistically interpretable, i.e. an ex-

pert is able to give linguistic meaning to the membership func-

tions and the predicates automatically discovered, preserving

all the knowledge extraction characteristics of the method T2-

DFPC proposed in [3] . 

Each of the stages of the method T2-SFPC is described in detail

below. Hereinafter, X ⊂ [ −1 , 1 ] d represents a normalized dataset to

be clustered, where d is the dimension of the data space (the num-

ber of features) and N is the number of data in X . A datum in X is

a d -uple x = ( x , x , ..., x ) , with x ∈ X , x ∈ [ −1 , 1 ] , i = 1 , ..., d. 
1 2 d i 
.3.1. Stage A: Random dataset partition 

Let X ⊂ [ −1 , 1 ] d be the initial-dataset which defines the data to

e clustered. In the present stage, a random partition is applied on

he set X , defining M disjoint subsets of X , noted by { P m 

} m =1 ,...,M 

,

here X = P 1 ∪ P 2 ∪ ... ∪ P M 

and M ∈ N . This partition process was

lso implemented at the first stage of the method T2-DFPC pre-

ented in [3] . 

It is assumed that all data are generated for the same process.

ata represent a sample of a problem from the real world. If data

re statistically representative, then each partition will be also rep-

esentative (provided it contains a proper quantity of data), and

t will contain similar information, but not exactly the same. In

ther words, the data contained in each of the subsets P m 

, m =
 , ..., M, are samples randomly selected without reposition (resam-

ling) from the data contained in the original dataset X and, there-

ore, their characteristics will differ from a subset to another. This

rocess acts considering diversity in the dataset X . The results ob-

ained from clustering on each of the subsets will operate as differ-

nt “opinions” of how clustering should be, represented as cluster

rototypes. 

This random data partition presents two advantages for the

ethod proposed: 
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• The quantity of data in each of the resulting subsets is M times

less than in the whole dataset. As a consequence, the compu-

tational cost involved in the analysis of the data in each sub-

set, i.e. in the subsequent stages of the method, is dramatically

reduced, and, in addition, the subsets processing could be per-

formed in a parallel system, i.e. all subsets can be processed at

the same time. 
• This process could be not required if the data are physically

separated in distinct locations. This makes the method suitable

to be applied in distributed datasets in which in general it is

required the processing of large volume of data, as suggested

in the previous works [2,3] , which constitutes an interesting

feature. 

The partition size M is a method parameter that should be se-

ected according to the number of data in X . As a requirement, M

hould be selected considering the quantity of data in each subset

nough to represent the original population in X . Considerations

eferred to the proper selection of the value of M will be given

ater. 

In the next stage, previous to the extraction of the cluster pro-

otypes, the data in the subsets { P m 

} m =1 ,...,M 

are used to train and

et M different SOMs, one for each P m 

, taking advantages of the

nown abilities of the SOMs for noise and outliers removing and

issing value dealing, previously studied and exploited in [2] . 

.3.2. Stage B: Configuration and training of SOMs 

In this stage, the data contained in the subsets { P m 

} m =1 ,...,M 

enerated at stage A are used in order to obtain M distinct SOMs,

ach one trained with the data of one of the datasets P m 

, m =
 , ..., M. Once the M SOMs are defined, the codebook of a given

rained SOM m , m ∈ {1, 2, ..., M } will consist of prototype vectors

hich are representative vectors of the data in the training dataset

 m 

. As the subsets P m 

, m = 1 , ..., M were defined to consider di-

ersity of the data in X , it is expected that each codebook reveals

ifferent characteristics about the data in X . 

In order to obtain in each SOM a good representation of the

raining data in the codebook, i.e., obtain codebook’s vectors with

robability density functions consistent with the training data in

 m 

; various SOMs are trained for each P m 

, using different combi-

ations of quantity of cells and topologies. In this way, an optimal

OM is selected for each P m 

considering the minimization of the

um of the error measures introduced in Section 3.1 , i.e. the sum of

he quantization error, the topographic error, and the topographic

roduct, as it was considered in [2] to select the optimal SOM for

 given training dataset. 

The concrete application of such procedure in the method pro-

osed is given below: 

Step 1: For each subset P m 

resulting of the stage A, SOMs

ith different combinations of quantity of cells and topologies are

rained to select the optimal one. 

From η = 5 N 

0 . 5 , an estimated number of cells obtained with

his heuristic formula [39] , SOMs with η, 2 η, 3 η and 4 η cells are

onsidered for each subset P m 

, in each case both with hexagonal

nd rectangular grid topologies considering 2D maps. As a result,

 distinct SOMs are trained, 4 for each type of grid topology, all

ith the same training dataset P m 

. 

In all cases, Gaussian neighborhood functions and batch train-

ng are used. 

Even when the SOM is very robust with respect to its initializa-

ion, fast convergence is sought. In order to achieve this require-

ent, all SOMs are initialized by the procedure known as linear

nitialization, which proposes an ordered initial state of the code-

ook. In this method, proposed by Kohonen [40,41] , the initial

odebook is constituted by a regular, two-dimensional sequence

f vectors, a mesh, taken along the d -dimensional hypercube with
imits taken by minimum and maximum values of the training data

n P m 

. The axis of the mesh are the eigenvectors corresponding to

he two largest eigenvalues of the training data (considering a 2D

OM). In the SOM implementation used in this work, the eigenvec-

ors are computed by the Gram–Schmidt procedure [42] . 

Step 2: For each P m 

, it is selected the SOM for which the sum of

he quantization error, the topographic error, and the topographic

roduct is the lowest. 

This procedure is repeated for the M subsets { P m 

} m =1 ,...,M 

ob-

aining M distinct SOMs, one for each dataset P m 

, m = 1 , ..., M. The

ptimal parameters resulting for one of the M SOMs can differ

rom the optimal parameters resulting for other of the M SOMs,

onsidering they were trained with different datasets. As a result,

ach subset P m 

is associated to a SOM codebook whose data, which

ill be noted by �m 

, are representative of the data in P m 

used as

raining data of the SOM. 

The prototypes vectors in each �m 

, m = 1 , ..., M, are used in the

ext stage in order to extract the cluster prototypes. 

.3.3. Stage C: Extraction of cluster prototypes 

In this stage, in the same way done at stage #2 of the method

2-DFPC proposed in [3] , cluster prototypes are extracted for the

ata in each subset P m 

. However, unlike the T2-DFPC, in the

resent work the cluster prototypes are extracted from the data

n the codebooks { �m 

} m =1 ,...,M 

corresponding to the M SOMs con-

gured and trained in the previous stage. As a result, cluster proto-

ypes obtained here, which will be used to generate interval type-2

embership functions, are different to the cluster prototypes ob-

ained using the method T2-DFPC in which the prototypes are ex-

racted directly from the subsets { P m 

} m =1 ,...,M 

. This is one of the

ain difference of the method T2-SFPC proposed in the present

aper compared to the previous proposal T2-DFPC. As cluster pro-

otypes are different between both methods, clustering results will

e also different. 

The clustering of the data in each �m 

, m = 1 , ..., M, is per-

ormed using FCM with crisp clustering as clustering algorithm

16] and the BIC [18] for the automatic determination of the proper

umber of clusters, following the method developed in [19] , which

as also successfully applied in [3] . This automatic clustering ap-

roach was not considered in the original SFPC proposed in [2] . 

As a result, the SOM codebooks { �m 

} m =1 ,...,M 

are clustered us-

ng the clustering approach based on FCM-BIC. Considering one

f the SOMs, whose codebook is the set �m 

, the resulting clus-

ering could be noted as { �m, j } j=1 ,..., κm 
, where �m 

= �m, 1 ∪ ... ∪
m, j ∪ ... ∪ �m, κm and κm 

∈ N is the number of clusters defined on

m 

, noting that the number of clusters obtained for the different

odebooks could differ because the result of the automatic clus-

ering scheme depends on the data in each codebook which come

rom distinct SOMs. The set of cluster centroids obtained from the

odebook clustering is represented by { ϒm, j } m =1 ,...,M 

j=1 ,..., κm 

. The num-

er of clusters for the whole original dataset X is the maximum

f { κm 

} m =1 ,...,M 

, symbolized by K , K ∈ N . 

After clustering on SOM codebooks is performed, a second clus-

ering is run on all the clusters centroids { ϒm, j } m =1 ,...,M 

j=1 ,..., κm 

, using a

ingle FCM with crisp clustering fixing the number of clusters to

 . As a result, all the centroids are clustered in K clusters according

o their similarity. The sets of re-clustered centroids are noted by

 
l,k } l=1 ,..., L k 
k =1 ,...,K 

, where L k is the number of clusters defined on the

odebooks { �m 

} m =1 ,...,M 

using the FCM-BIC clustering whose cen-

roids were now reassigned to the cluster k . 

In an upper step, based on the results of the clustering of the

entroids, the data in each cluster of each codebook are reassigned

n order to obtain the cluster prototypes. Let �m, j be the proto-

ype vectors of the SOM m grouped in the cluster j resulting of the
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Fig. 3. Detailed diagram of the stages A, B, and C of the method T2-SFPC proposed. After a random data partition is performed, M distinct SOMs are automatically configured 

and trained. Then, cluster prototypes are extracted by means of an automatic FCM-BIC clustering scheme applied on the SOMs codebooks. 
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application of the FCM-BIC clustering approach and let Y m, j their

centroid, where m ∈ {1, ..., M } and j ∈ {1, ..., κm 

}. If in the second

clustering step the centroid Y m, j was assigned to the cluster k and

now it is the centroid 
l, k , then the prototype vectors �m, j are

now the set of cluster prototypes �l, k . This procedure is followed

for all the sets of grouped codebooks { �m, j } j=1 ,..., κm 
defining the

sets of cluster prototypes { �l,k } l=1 ,..., L k 
k =1 ,...,K 

. 

As a result, the cluster prototypes are extracted from the SOMs

configured and trained at stage B. Each set of cluster prototypes

�l, k for a given cluster k , describes the characteristics of this clus-

ter according to the prototypes vectors which was assigned to �l, k .

Consequently, different descriptions of a same cluster can be ob-

tained from the sets �l, k varying l in 1, ..., L k for a fixed k . These

descriptions act as “different opinions” of the cluster k capturing

variability and diversity of the data inside the cluster. In Fig. 3 a

detailed diagram of the stages A, B, and C of the method T2-SFPC

is shown. 

In the next stage, the cluster prototypes are used to generate

interval type-2 membership functions and fuzzy predicates allow-

ing to perform the clustering of the data in X and to interpret its

result. 

3.3.4. Stage D: Generation of an interval type-2 fuzzy predicate 

system 

In this stage, the cluster prototypes { �l,k } l=1 ,..., L k 
k =1 ,...,K 

obtained at

stage C are analyzed in order to define interval type-2 membership

functions and fuzzy predicates, generating an interval type-2 fuzzy

predicate system which is able to perform data clustering. Once

the predicates are defined, it is possible to apply a clustering of the

data in X , or new data related to the same process which gener-

ated X , following the procedure described in Section 3.2 . The clus-

tering obtained is linguistically interpretable, preserving the same

extraction knowledge capabilities of the T2-DFPC proposed and an-

alyzed in [3] . 
In previous works [2,3] , once cluster prototypes are extracted,

ype-1 Gaussian-shape membership functions are generated by an-

lyzing the clusters centroids and the standard deviation of the

rototypes. In particular, in the method T2-DFPC [3] , in a first

tep, type-1 Gaussian membership functions are defined from the

luster prototypes and, then, these functions are aggregated using

uzzy operators in order to obtain interval type-2 fuzzy member-

hip functions. 

Despite of the high accuracy of the clustering results obtained

or the method T2-DFPC, only numeric values of the membership

unctions (samples at fixed distances) are known and stored in vec-

ors during the method implementation, consequently, their func-

ional expressions are not known. Therefore, it is not possible to

erform an optimization of the membership function parameters,

onsidering, for instance, a clustering quality measure. 

Unlike the procedure proposed in the method T2-DFPC [3] , in

he present work, interval type-2 membership functions formed

y Gaussian-shape sub functions are adopted to be generated from

he cluster prototypes in the present stage. Considering a feature i

nd a cluster k , the interval type-2 membership function is noted

y μ̄i,k : [ −1 , 1 ] → χ , where χ represents the set of all the possi-

le intervals of truth values as it was defined in Section 3.2 . In 

ig. 4 , a graphical representation of the μ̄i,k adopted is shown and

ts functional expression is given below: 

¯ i,k ( x ) = 

[ 
ϕ 

−
μ̄i,k 

( x ) , ϕ 

+ 
μ̄i,k 

( x ) 

] 
, (8)

 

−
μ̄i,k 

( x ) = 

{
e −( x −ω 1 ) 

2 
/ 2( ς 1 

2 ) if x ≤ ρ

e −( x −ω 2 ) 
2 
/ 2( ς 2 

2 ) if x > ρ
, (9)

 

+ 
μ̄i,k 

( x ) = 

⎧ ⎨ 

⎩ 

e −( x −ω 3 ) 
2 
/ 2( ς 3 

2 ) if x < ω 3 

e −( x −ω 4 ) 
2 
/ 2( ς 4 

2 ) if x > ω 4 

1 else 

, (10)

ith x ∈ [ −1 , 1 ] , ω 1 to ω 4 are the center of Gaussian sub functions

hich define μ̄i,k and ς 1 to ς 4 are the parameters controlling the
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Fig. 4. Interval type-2 membership function formed by Gaussian-shape sub func- 

tions proposed in the method T2-SFPC for a feature i and a cluster k . The parame- 

ters ω 1 to ω 4 and ς 1 to ς 4 are respectively the centers and the width parameters 

of the Gaussian sub functions. 
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idth of the Gaussian functions. As it is shown in the graph of the

ig. 4 , ρ is the value of x for which the value of the lower member-

hip function ϕ 

−
μ̄i,k 

is maximum. The parameters ω 1 to ω 4 and ς 1 

o ς 4 are obtained considering known values for the expected μ̄i,k 

nd the solution for the parameters of a Gaussian function when

alues taken by the function are known. In the next paragraphs,

his solution is present and, then, the specific procedure proposed

or determining the parameters of μ̄i,k is presented in detail. 

The parameters ω and ς for a Gaussian-shape function μ(x ) =
 

−( x −ω ) 2 / 2( ς 2 ) , i.e. the center and the width, can be computed

nowing two values taken by the function for two different val-

es of x . Let P 1 = ( x 1 , y 1 ) and P 2 = ( x 2 , y 2 ) , with y 1 = μ( x 1 ) and

 2 = μ( x 2 ) , two pair of points of the solution expected for μ( x ).

he next equation system can be defined: 

μ( x 1 ) = y 1 = e −( x 1 −ω ) 2 / 2( ς 2 ) 

μ( x 2 ) = y 2 = e −( x 2 −ω ) 2 / 2( ς 2 ) 
. (11) 

From the previous equation system, it is possible to arrive to

he next solutions for ω and ς : 

 a,b = 

2 x 1 − 2 ηx 2 ±
√ 

4 η( x 1 − x 2 ) 
2 

2 − 2 η
, (12) 

 a,b = 

√ 

−
(
x 1 − ω a,b 

)2 

2 ln ( y 1 ) 
= 

√ 

−
(
x 2 − ω a,b 

)2 

2 ln ( y 2 ) 
, (13) 

here η = 

ln ( y 1 ) 
ln ( y 2 ) 

. The previous equations allow to obtain two so-

utions for the values of ω and ς , i.e. ω = ω a ∧ ς = ς a or ω =
 b ∧ ς = ς b , meaning there are two possible Gaussian-shape func-

ions which take the values y 1 and y 2 for x = x 1 and x = x 2 re-

pectively. A final solution for ω and ς can be found considering

 third point P 3 = ( x 3 , y 3 ) and evaluating μ( x 3 ) for the parameters

 ω a , ς a ) and ( ω b , ς b ). Therefore, the final solution corresponds to

he pair of parameters for which μ( x 3 ) is closest to y 3 . As a result,

his procedure allows to define the parameters of a Gaussian-shape

unction on the basis of three known points which should be ap-

roximated for the expected solution. It should be noted that the

nal solution will take exactly the values y 1 in x = x 1 and y 2 in

 = x 2 and a value close to y 3 in x = x 3 . 

Based on the considerations given in the previous paragraphs,

he interval type-2 membership functions and the fuzzy predicates
re generated from the cluster prototypes extracted at stage C fol-

owing the next four steps: 

Step 1: Create type-1 membership functions by analyzing the

ata contained in the cluster prototypes { �l,k } l=1 ,..., L k 
k =1 ,...,K 

. Taking into

ccount the methods SFPC and T2-DFPC presented in [2] and [3] ,

ype-1 Gaussian membership functions are used in the present

ork. For each feature i and each cluster k , the cluster centroids

f the prototypes, noted by { 
l,k } l=1 ,..., L k 
k =1 ,...,K 

, are assigned to the cen-

ers of Gaussian type-1 membership functions { μi,l,k } i =1 , ... ,d 
l=1 ,..., L k 
k =1 , ... ,K 

, with

i,l,k : [ −1 , 1 ] → [ 0 , 1 ] , and the width parameters are defined by

tandard deviation of the prototype vectors in each { �l,k } l=1 ,..., L k 
k =1 ,...,K 

,

hich are noted by { σi,l,k } i =1 , ... ,d 
l=1 ,..., L k 
k =1 , ... ,K 

. As a result, each Gaussian type-

 membership function is defined by μi,l,k (x ) = e −( x −ω i,l,k ) 
2 
/ 2( σi,l,k 

2 ) ,

here ω i, l, k is the component i of the centroids 
l, k , x ∈ [ −1 , 1 ] . 

This process is repeated for each feature and cluster. As there

re L k data subsets for each cluster, L k type-1 Gaussian member-

hip functions are defined for each cluster and feature. 

The standard deviation defines the width of each type-1 mem-

ership function, describing how the degree of truth decreases

hen the values of the feature for a specific datum moves away

rom the cluster centroid. The maximums of the membership func-

ions are located in the positions of the cluster centroids. 

It is important to note that each Gaussian membership function

escribes how the values taken for a feature are related to a clus-

er, i.e. with what degree of truth a datum is closed to, or meets,

he properties observed in the cluster, according to the informa-

ion obtained from the cluster prototypes. Each Gaussian mem-

ership function contributes a description, having L k membership

unctions, i.e. descriptions, of each cluster and feature. 

Step 2: Combine the L k descriptions for each cluster k = 1 , ..., K

nd each feature i = 1 , ..., d aggregating the L k Gaussian type-1

embership functions previously obtained in order to generate an

nterval type-2 membership function noted by ˆ μ̄i,k : [ −1 , 1 ] → χ
efining a bounded area, which describes the variability of the pro-

otypes extracted for each cluster and feature. This membership

unction 

ˆ μ̄i,k is an approximate solution to the expected member-

hip function μ̄i,k and it is obtained using MIN-MAX fuzzy opera-

ors as follow: 

 

−
ˆ μ̄i,k 

(x ) = min 

(
μi, 1 ,k (x ) , ..., μi, L k ,k 

(x ) 
)
, (14) 

 

+ 
ˆ μ̄i,k 

(x ) = max 
(
μi, 1 ,k (x ) , ..., μi, L k ,k 

(x ) 
)
, (15)

 x ∈ [ −1 , 1 ] , i ∈ {1, ..., n }, and k ∈ {1, ..., K }; where ϕ 

−
ˆ μ̄i,k 

: [ −1 , 1 ] →
 0 , 1 ] and ϕ 

+ 
ˆ μ̄i,k 

: [ −1 , 1 ] → [ 0 , 1 ] are respectively the lower and the

pper membership function of ˆ μ̄i,k . 

Step 3: Generate for each 

ˆ μ̄i,k , k = 1 , ..., K, i = 1 , ..., d, an interval

ype-2 membership function μ̄i,k formed by Gaussian-shape sub

unctions, as it was previously defined and shown in Fig. 4 , com-

uting the parameters ω 1 to ω 4 and ς 1 to ς 4 as follow: 

• For the left part of the lower membership function of μ̄i,k ,

noted by ϕ 

−
μ̄i,k 

, define the pairs of points P 1 = ( x 1 , y 1 ) , P 2 =
( x 2 , y 2 ) , and P 3 = ( x 3 , y 3 ) as the points where the left part of

the approximate lower membership function ϕ 

−
ˆ μ̄i,k 

take the val-

ues closest to 0.05, 1, and 0.5 times ϕ 

−
μ̄i,k 

(ρ) , being ρ the value

for which ϕ 

−
ˆ μ̄i,k 

is maximum, as it is shown in Fig. 4 . These spe-

cific values are considered to define the points P 1 to P 3 in order

to cover the known range for the expected solution of the left
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part of ϕ 

−
μ̄i,k 

, therefore, 0.05 times ϕ 

−
μ̄i,k 

(ρ) is close to the mini-

mum of the expected solution, which asymptotically tends to 0,

the value 1 covers the maximum of known values for the func-

tion and 0.5 times ϕ 

−
μ̄i,k 

(ρ) is used because as it is located in

the middle of the range it is a proper point to operate as third

point in order to decide between the two possible combinations

of values for ω and ς obtained from the Eqs. (12) and ( 13 ).

Using these three points P 1 to P 3 , compute the values of the

parameters ω 1 and ς 1 corresponding to the left part of ϕ 

−
μ̄i,k 

,

following the procedure previously explained to obtain the pa-

rameters of a Gaussian-shape function. 
• For the right part of the lower membership function of μ̄i,k ,

noted by ϕ 

−
μ̄i,k 

, define the pairs of points P 1 = ( x 1 , y 1 ) , P 2 =
( x 2 , y 2 ) , and P 3 = ( x 3 , y 3 ) as the points where the right part of

the approximate lower membership function ϕ 

−
ˆ μ̄i,k 

take the val-

ues closest to 0.05, 1, and 0.5 times ϕ 

−
μ̄i,k 

(ρ) , based on the same

observations followed before for the left part of ϕ 

−
μ̄i,k 

. Consider-

ing these three pairs of points P 1 to P 3 , compute the values of

the parameters ω 2 and ς 2 corresponding to the right part of

ϕ 

−
μ̄i,k 

, following the procedure previously explained. 

• For the left part of the upper membership function of μ̄i,k ,

noted by ϕ 

+ 
μ̄i,k 

, define the pairs of points P 1 = ( x 1 , y 1 ) , P 2 =
( x 2 , y 2 ) , and P 3 = ( x 3 , y 3 ) as the points where the left part of

the approximate upper membership function ϕ 

+ 
ˆ μ̄i,k 

take the val-

ues closest to 0.05, 0.95, and 0.5. As in the case of the lower

membership function, in the present case these specific val-

ues for determining the points P 1 to P 3 are selected in order

to cover the range of the expected solution for the left part of

ϕ 

+ 
μ̄i,k 

. Specifically, the value 0.05 is close to the minimum of the

expected ϕ 

+ 
μ̄i,k 

, which asymptotically tends to 0, 0.95 is close

to its maximum and 0.5 (corresponding to middle of the range

of ϕ 

+ 
μ̄i,k 

) is used to define the third point for deciding between

the two solutions for the parameter values obtained from the

Eqs. (12) and ( 13 ). The value 0.95 is adopted instead the value

1 forcing to the final solution not to overcome the approximate

upper membership function ϕ 

+ 
ˆ μ̄i,k 

in the values close to its max-

imum. In this sense, if the value 1 is adopted instead 0.95, it

is possible that in cases of high spread of the function ϕ 

+ 
ˆ μ̄i,k 

the solution obtained takes higher values than ϕ 

+ 
ˆ μ̄i,k 

around of

its maximum and, as this function represents degrees of truth,

it is not desirable. After selecting the points P 1 to P 3 , compute

the values of the parameters ω 3 and ς 3 corresponding to the

left part of ϕ 

+ 
μ̄i,k 

using the procedure previously explained. 

• For the right part of the upper membership function of μ̄i,k ,

noted by ϕ 

+ 
μ̄i,k 

, define the pairs of points P 1 = ( x 1 , y 1 ) , P 2 =
( x 2 , y 2 ) , and P 3 = ( x 3 , y 3 ) as the points where the right part of

the approximate upper membership function ϕ 

+ 
ˆ μ̄i,k 

take the val-

ues closest to 0.05, 0.95, and 0.5, following the same consider-

ations given before for the left part of ϕ 

+ 
μ̄i,k 

. Using the points P 1 

to P 3 , compute the values of the parameters ω 4 and ς 4 corre-

sponding to the right part of ϕ 

+ 
μ̄i,k 

using the procedure previ-

ously given. 

As a result of this procedure, the parameters ω 1 to ω 4 and ς 1 

to ς 4 of the different Gaussian sub functions which form μ̄i,k are

defined, obtaining an interval type-2 membership function μ̄i,k for

each cluster k = 1 , ..., K and each feature i = 1 , ..., d. In Fig. 5 , a di-

agram of the Step 1 to 3 of the present stage is shown. 

Step 4: One fuzzy predicate is defined for each cluster k ∈
{1, ..., K } ( K compound predicates) by logically operating with
he degrees of truth of the interval type-2 membership functions

 ̄μi,k } i =1 ,...,d 
k =1 ,...,K 

generated in the previous step. Compound fuzzy

redicates are defined considering a conjunction between predi-

ates. For each cluster k ∈ {1, ..., K }, the next compound predicate is

enerated in order to explain the cluster k : 

p k (x ) ≡ μ̄1 ,k ( x 1 ) ∧ μ̄2 ,k ( x 2 ) ∧ , . . . , ∧ μ̄d,k ( x d ) ; k = 1 , 2 , . . . , K. 

(16)

The predicate p k ( x ) is linguistically read as “The datum x be-

ongs to the cluster k” and μ̄i,k ( x i ) can be linguistically interpreted

s “The value of the feature i in the datum x is close to the prototypes

f the cluster k”. As closer the value of feature i of the datum x to

he value of the maximum of μ̄i,k as higher the degree of truth of

¯ i,k ( x i ) . As μ̄i,k ( x i ) is higher, p k ( x ) should also be higher, reflecting

he fact that if the datum x is close to the centroid of the cluster

 , then its belonging to the cluster k should increase. 

The degrees of truth of all the predicates { p k (x ) } k =1 ,...,K can be

omputed following the procedure given in the Definition 3.2.8 , se-

ecting a fuzzy operator. Cluster assignment is performed applying

he procedure explained in the Definition 3.2.10 , using the concept

f measure of interval of truth values [3] . 

In Fig. 6 , an example of the results obtained from the steps of

he present stage is shown, supposing a dataset with two features

n which two clusters were discovered, i.e. K = 2 , and three sets

f cluster prototypes were extracted for each cluster at stage C, i.e.

 k = 3 both for k = 1 and for k = 2 . 

. Experiments 

In this Section, experiments done in order to assess the method

2-SFPC and the corresponding results are presented and described

n detail. At the end, an illustrative example of the interpretation

nd knowledge extraction from the membership functions and the

uzzy predicates generated with the T2-SFPC is given, considering

he segmentation of brain magnetic resonance images. 

.1. Assessment of the proposed method 

In order to make clear the methodology followed for testing

nd its results, both of these are presented in the next subsections.

.1.1. Methodology 

Clustering assessing is not trivial, mainly regarding the selec-

ion of the best indices for analyzing and comparing [43–45] . The

erformance of validity indices is highly variable, particularly in

omplex models. The only way to analyze the results of a clus-

ering algorithm is analyzing the context of each case. This choice

epends on the objective pursued for the application of the algo-

ithm, which could be data exploration, generalization of a previ-

us labeling, modeling, among others. 

When the objective is a model for a labeled dataset, the num-

er of clusters is known and, consequently, it can be considered

 method parameter. In such a case, external validation measures

44] can be used in order to assess the clustering results because

xpected labels are known. On the other hand, if data exploration

s pursued, it requires automatically finding compact clusters, hav-

ng distant centroids (or other criteria). In this case, parameter op-

imization is usually applied in order to estimate the number of

lusters, as it is the case of the BIC used in the T2-SFPC. Since no

nformation about the expected results is available, internal valida-

ion measures must be used for assessment purposes [44] . 

Based on these previous observations, in the present work, the

ilhouette index [44] (an internal measure) and the Accuracy index

an external measure) were selected in order to evaluate the per-

ormance of the method T2-SFPC and of other methods used for

esting. 
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Fig. 5. Diagram of the steps 1 to 3 of the stage 4 of the method T2-SFPC. It is shown a case where three sets of cluster prototypes were generated in the previous stage, 

obtaining three type-1 membership functions. The sets of points P 1 to P 3 selected to compute the parameters of each of the four parts of the interval type-2 membership 

function are indicated in the graph above of the step 2 explanation. Four sets of points P 1 to P 3 are selected corresponding respectively to the left part of the upper 

membership function, the left part of the lower membership function, the right part of the lower membership function, and the right part of the upper membership 

function. 

Fig. 6. Example of the results of the stage D of the method T2-SFPC, considering a dataset where two clusters were discovered at stage C and three sets of cluster prototypes 

were extracted. The method outcome consists of the generation of the interval type-2 membership functions { ̄μi,k } i =1 ,...,d 
k =1 ,...,K 

( d is the number of features and K the number of 

discovered clusters) and the fuzzy predicates { p k (x ) } k =1 ,...,K , which allow both the clustering of the data and the knowledge extraction about the clustering problem. 
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The Silhouette index is useful for evaluating how compact and

ow separated are the clusters obtained for a given dataset. Typi-

ally, it is used an average of the Silhouette indices over the clus-

ers, which has values between −1 and 1. The higher the Silhou-

tte, the more compact and separated the clusters are [44] . 

The Accuracy measure allows to know what the proportion of

orrected labelled data is, provided that the expected labels (gold

tandard) for the data are known. Gold standards are ideally pro-

uced by human experts or based on previous experimentation,

ften labeling data at the same moment they are obtained [46] .

n the present work, as cluster assignations vary from a clustering

o another, previous to the accuracy computing, each defined clus-
er is assigned to one (and only one) class, considering the major-

ty labels in each cluster. Then, the measure is simply estimated

s the ratio between the quantity of data assigned correctly to the

uantity of available data [2,3] . 

In order to be independent of the algorithm initialization, each

lustering algorithm was run 20 times and values reported are av-

rages of the Accuracy and Silhouette indices. Standard deviations

nd statistical tests of significance were also computed and re-

orted. 

The datasets selected are: 

• Banknote dataset (5 features - 2 selected, 2 clusters, 1372 data)

[47] . 
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• Wisconsin breast cancer dataset (32 features - 3 selected, 2

clusters, 569 data) [48] . 
• Pima Indians diabetes dataset (8 features - 3 selected, 2 clus-

ters, 768 data) [48] . 
• Iris dataset (3 clusters, 4 features, 150 data) [49] . 
• Wine dataset (3 clusters, 13 features, 198 data) [50] . 
• Moon dataset (2 features, 2 clusters, 20 0 0 data), a synthetic

dataset presented in [2] . 
• MRI1 dataset, 40 0 0 pixels randomly selected per cluster from

simulated magnetic resonance images (3 clusters, 3 features,

12,0 0 0 data) [51] . These data were taken without any noise or

distortion and were generated by means of computer simula-

tion. 
• MRI2 dataset, 200 pixels randomly selected per cluster from the

previous dataset (3 clusters, 3 features, 600 data) [51] . 
• Seeds dataset (7 features, 3 clusters, 210 data) [52] . 

In the case of the Wisconsin breast cancer and Pima Indians

diabetes datasets, in order to facilitate result comparisons, only the

features suggested in [2] were used. 

Regarding to the Banknote dataset, the two first features were

selected following the considerations given in [3] . 

The methods used in the tests, including the proposed method,

are detailed below and an acronym is defined for each of them: 

• T2-SFPC: Type-2 SOM-based Fuzzy Predicate Clustering (the

method proposed). SOMs’ sizes are automatically determined

according to the number of training data (as described in

Section 3.3 ). 
• T2-DFPC: Type-2 Data-based Fuzzy Predicate Clustering. It is

the method presented in [3] . In this case, SOMs are not used

and cluster prototypes are extracted directly from clustering de-

fined on M disjoint subsets of the original dataset. As it was

previously mentioned, FCM and BIC are used is this method as

used in the T2-SFPC, but unlike it, values of the interval type-

2 membership function are numerically obtained aggregating

type-1 Gaussian-shape membership functions. 
• SFPC: SOM-based Fuzzy Predicate Clustering. It is based on the

method presented in [2] , but an improvement was added to the

original proposal during the test: it was included the FCM-BIC

clustering approach in order to automatically defines the proper

number of cluster in each case. 
• SOM-FCM: a SOM was trained with the dataset and an auto-

matic FCM-BIC clustering scheme was applied to the resulting

codebook (configuring a basic two-level clustering scheme) [3] . 
• K-means [1] : the K-means algorithm combined with the BIC

was applied to the dataset, determining the proper number of

clusters in each case. Cluster centroids were obtained and data

were assigned to the cluster corresponding to the closest cen-

troid, considering Euclidian distance. 
• FCM [16] : FCM algorithm was combined with the BIC and was

applied to the dataset considering random initial centroids.

Once centroids were obtained, each datum was assigned to the

cluster which it belongs with the highest membership value. 

Expectation-Maximization [53] was also tried, but it never

outperformed other methods along the different datasets tested.

Therefore, these results are not included in the present work. 

Variants of all the methods were considered, removing the au-

tomatic BIC-based clustering schemes and using traditional clus-

ter techniques, requiring knowing the expected number of clus-

ters for each tested dataset. These clustering algorithms without

automatic clustering were respectively called: T2-SFPC -wac , SFPC -

wac , T2-DFPC -wac , SOM-FCM -wac , K-means -wac , and FCM -wac . By

considering the original algorithms and these variants without au-

tomatic clustering, the performance of the automatic clustering

scheme based on the BIC was analyzed. It should be noted that
he variant called SFPC -wac is in fact the original method called

FPC proposed in [2] . 

In order to test changes of the performance of the FL-based

ethods when the size of the random partition ( M ) changes, i.e.

o analyze the sensibility of the methods in relation with the num-

ers of subsets considered, all the methods were run with M vary-

ng from 2 to 10. In addition, for the type-1 FL methods SFPC and

FPC -wac , the value M = 1 was also tested. Different results and

erformance comparisons are given in the next sub-sections. 

In the case of the SFPC and SFPC -wac method, when M > 1 was

onsidered, fuzzy predicates were evaluated using the algorithm

ption suggested in [2] for these methods, referred as Option 3

Op. 3) in the referred work. 

In the next sections, results of the tests performed following the

revious considerations are presented and described. First, accura-

ies results are given. Then, Silhouette indices are detailed. 

.1.2. Results: Accuracy 

Clustering accuracies obtained for the tested datasets are shown

n Fig. 7 . Accuracy is represented by boxplots. A graph is shown for

ach dataset. In the case of the methods based on fuzzy predicates,

hree grouped whiskers are shown for each method, since results

sing different FL operators were evaluated and compared, consid-

ring the standard triangular norms (MIN-MAX operators) and the

ompensatory FL operators based on GMCFL and AMCFL. Results

eported correspond to the highest average value of Accuracy for

ach method, considering the results obtained for the tested val-

es of the parameter M, which is indicated in each case. Also, the

esult for SFPC and SFPC -wac for M = 1 is included. A horizontal

ine is shown, representing the best of the medians of the results

chieved by the method proposed (T2-SFPC) or its variant without

utomatic clustering scheme (T2-SFPC -wac ), the best of both. 

A detailed analysis of the clustering accuracies results is done in

he next paragraphs for the different datasets. When two different

ccuracy results acc 1 and acc 2 are compared, the percentage dif-

erence between the accuracies given as difference % = 

ac c 1 −ac c 2 
ac c 2 

×
00% is used. 

Additionally, in order to compare the results of the proposed

ethod (T2-SFPC) against the test methods based on fuzzy pred-

cates previously proposed in [2] and [3] (SFPC and T2-DFPC), 

able 1 is presented. In this table, mean value and standard devi-

tion of the accuracy obtained for the methods T2-SFPC, T2-DFPC,

nd SFPC are shown, including percentage differences between T2-

FPC and SFPC against the proposed method. Values of statistical

ignificance tests for the comparisons are reported. In all cases, it

as selected and informed the results of the algorithms consider-

ng the best result in mean value for the methods with and with-

ut FCM-BIC clustering approach. The values of M corresponding to

he best accuracies are indicated. In the right column of the table,

esults of SFPC with M = 1 is reported. The result of the best of all

hese methods in each dataset is indicated in bold font. 

As it can be noted, the Banknote dataset ( Fig. 7 a) could be suc-

essfully clustered by almost all the methods, considering accuracy

esults. However, the proposed approach was the best one, improv-

ng the other methods by 0.5% or more, with statistical signifi-

ance, except in the case of the SFPC ( M = 5) where the difference

bserved was not statistically significant. Additionally, there was

ot statistically significant difference between the performance of

he proposed method and its variant without automatic clustering

cheme (T2-SFPC -wac ). 

Classical clustering methods had good results in the Wisconsin

reast cancer dataset ( Fig. 7 b). The best of them was the K-means -

ac , which overcame by 0.4% the proposed method ( p < 0.001).

evertheless, even changing the logic operators applied, accuracy

esults of the T2-SFPC were always higher than 0.94%, showing

ery low variance (standard deviation = 0.002) along the different



D.S. Comas et al. / Knowledge-Based Systems 133 (2017) 234–254 247 

Table 1 

Accuracy results of the methods based on fuzzy predicates: T2-SFPC (proposed method), T2-DFPC and SFPC (with M = 1 and M > 1). The best result between variants of 

the methods with and without automatic determination of the number of clusters is reported. When variant without automatic clustering is the best, this is indicated 

in brackets as wac . The value of the partition size corresponding to the highest accuracy ( M ) is indicated. Comparisons against the proposed method are included. The 

best result for each dataset is indicated in bold font. 

T2-SFPC T2-DFPC SFPC SFPC ( M = 1) 

Dataset Obtained result Difference with 

T2-SFPC 

Obtained result Difference with 

T2-SFPC 

Obtained result Difference with 

T2-SFPC 

Banknote 0.871 ± 0.007 

( M = 5) 

0.866 ± 0.004 

( M = 5) 

0.627% 

( p < 0.001) 

0.870 ± 0.009 

( M = 5) 

0.197% 

( p = 0.714) 

0.857 ± 0.0 0 0 1.658% 

( p < 0.001) 

Wisconsin breast 

cancer 

0.955 ± 0.002 

( wac ) 

( M = 2) 

0.952 ± 0.001 

( wac ) 

( M = 2) 

0.304% 

( p < 0.001) 

0.944 ± 0.019 

( M = 2) 

1.248% 

( p = 0.006) 

0.958 ± 0.001 −0.257% 

( p < 0.001) 

Pima Indians 

diabetes 

0.714 ± 0.013 

( M = 4) 

0.708 ± 0.020 

( M = 4) 

0.708% 

( p = 0.489) 

0.712 ± 0.015 

( M = 3) 

0.247% 

( p = 0.724) 

0.702 ± 0.005 1.678% 

( p < 0.001) 

Iris 0.922 ± 0.022 

( M = 3) 

0.929 ± 0.009 

( wac ) 

( M = 2) 

−0.789% 

( p = 0.179) 

0.921 ± 0.028 

( M = 2) 

0.145% 

( p = 0.875) 

0.933 ± 0.029 −1.214% 

( p = 0.269) 

Wine 0.964 ± 0.007 

( wac ) 

( M = 2) 

0.953 ± 0.011 

( wac ) 

( M = 2) 

1.149% 

( p < 0.001) 

0.925 ± 0.046 

( wac ) 

( M = 3) 

4.189% 

( p < 0.001) 

0.910 ± 0.0 0 0 5.926% 

( p < 0.001) 

Moon 0.951 ± 0.012 

( M = 3) 

0.958 ± 0.011 

( M = 2) 

−0.697% 

( p = 0.020) 

0.959 ± 0.012 

( M = 3) 

−0.806% 

( p = 0.037) 

0.946 ± 0.011 0.531% 

( p = 0.062) 

MRI1 0.971 ± 0.001 

( wac ) 

( M = 3) 

0.960 ± 0.001 

( M = 3) 

1.183% 

( p < 0.001) 

0.963 ± 0.008 

( wac ) 

( M = 3) 

0.853% 

( p = 0.006) 

0.972 ± 0.0 0 0 −0.113% 

( p = 0.004) 

MRI2 0.979 ± 0.002 

( wac ) 

( M = 3) 

0.981 ± 0.002 

( wac ) 

( M = 2) 

−0.248% 

( p = 0.031) 

0.969 ± 0.007 

( wac ) 

( M = 3) 

1.070% 

( p = 0.006) 

0.954 ± 0.0 0 0 

( wac ) 

0.954% 

( p < 0.001) 

Seeds 0.949 ± 0.006 

( M = 2) 

0.949 ± 0.005 

( M = 2) 

−0.025% 

( p = 0.957) 

0.932 ± 0.014 

( M = 2) 

1.866% 

( p < 0.001) 

0.952 ± 0.0 0 0 −0.350% 

( p = 0.027) 
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xecutions. Considering the methods based on fuzzy predicates,

nly the SFPC lightly improved the result of the T2-SFPC by 0.257%

 p < 0.001 and M = 1). 

For the Pima Indians diabetes dataset ( Fig. 7 c), the best re-

ult corresponded to the proposed method with 0.714 of accuracy

standard deviation = 0.013). The second-best method with statis-

ically significant difference was the SFPC -wac with M = 1, which

btained an Accuracy 1.678% lower than the T2-SFPC ( p < 0.001).

ifferences both with T2-DFPC and SFPC ( M = 3) did not report sta-

istical significance. 

For the classic Iris dataset ( Fig. 7 d), the proposed method was

ne of the best methods, considering that differences reported

gainst the other methods based on fuzzy predicates were in all

ases not statistically significant. The method T2-SFPC showed Ac-

uracy of 0.922% with low variance (standard deviation = 0.022). 

Observing the results for the Wine dataset ( Fig. 7 e), results sug-

est that the proposed method without automatic clustering (T2-

FPC -wac ) was the best, overcoming the rest of the methods by

ore than 1.149% with statistical significance. As it is noted, for

his dataset the best results corresponded to the methods based

n fuzzy predicates. 

In the case of the Moon dataset ( Fig. 7 f), obtained results show

hat the methods based on fuzzy predicates could improve the

lassic methods by differences higher than 6% with statistical sig-

ificance. The best result for the T2-SFPC was 0.951 (standard devi-

tion = 0.012), overcome by the T2-DFPC by 0.697% ( p = 0.020) and

y the SFPC by 0.806% ( p = 0.037, M = 3), i.e. both differences were

tatistical significant. In addition, SFPC with M = 1 was overcome

y the proposed method by 0.531% ( p = 0.062). 

Analyzing the results for the MRI1 dataset ( Fig. 7 g), it is ob-

erved that the best methods were the classical FCM in its two

ariants, i.e. FCM and FCM -wac , improving the performance of the

ethod T2-SFPC by 0.793% with statistical significance, which ob-

ained an accuracy of 0.971 (standard deviation = 0.001). The pro-

osed method was the second best of the methods based on fuzzy

redicates, only lightly overcome by the SFPC ( M = 1) by 0.113%

 p = 0.004). 
Considering the MRI2 dataset ( Fig. 7 h), the proposed method

as the second-best method, presenting an accuracy of 0.979

standard deviation = 0.002), only overcome by the T2-DFPC -wac

y 0.248% with statistical significance. 

Finally, in the case of the Seeds dataset ( Fig. 7 i), it is ob-

erved that the method proposed was lightly overcome by the

FPC ( M = 1) by 0.350% with statistical significance. The difference

bserved against the method T2-DFPC was not statistically signif-

cant. The rest of the tested methods were overcome by the pro-

osed method in all cases with statistical significance. 

It should be noted, observing the graphs shown in Fig. 7 , that

or the methods based on fuzzy predicates the fuzzy operators

ith the highest accuracy were the same for a given dataset be-

ween the different methods, i.e. when MIN-MAX were the best

uzzy operators in a dataset, they were the best in the rest of the

ethods based on fuzzy predicates for that dataset. The same oc-

urs in the cases of the operators based on GMCFL and AMCFL. In

his sense, this observation indicates that the best fuzzy operator

trongly depends on each clustering problem. 

Considering Table 1 , the proposed method was overcome with

tatistical significance by the SFPC with M = 1 in the Wisconsin

reast cancer, MRI1, and Seed dataset, but these differences were

ower than 0.35%. In addition, the T2-DFPC overcame the proposed

ethod in the cases of the Moon and MRI2 dataset by 0.697%

nd 0.248% respectively, and the SFPC with M > 1 only overcame

he proposed method in the case of the Moon dataset by 0.806%.

o significant differences were observed between the proposed

ethod and the SFPC ( M > 1) for the datasets Banknote, Pima Indi-

ns diabetes, and Iris. In relation with the method T2-DFPC, for the

atasets Pima Indians diabetes and Iris the resulting differences

ere not significant. In the rest of the cases, comparisons indicated

 higher Accuracy of the method proposed than those of the meth-

ds T2-DFPC and SFPC. 

Summarizing, considering accuracy values, even when the pro-

osed method was outperformed in some cases, it was always one

f the best, considering the experiments done testing very differ-

nt datasets. When the proposed method was neither in the first
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Fig. 7. Clustering accuracies for the test datasets. Boxplots in groups of three indi- 

cate respectively the logic operators MIN-MAX, GMCFL, and AMCFL. The partition 

size ( M ) for the highest Accuracy is shown in the corresponding cases. The hor- 

izontal dotted line indicates the best accuracy value obtained for T2-SFPC or T2- 

SFPC- wac (the median of the accuracies over all the tests run on each dataset). (a) 

Banknote. (b) Wisconsin breast cancer. (c) Pima Indians diabetes. (d) Iris. (e) Wine. 

(f) Moon. (g) MRI1. (h) MRI2. (i) Seeds. 
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nor in the second place, the accuracy was only a little lower. In

all cases, the differences never exceed 0.806%. This evidence makes

the approach reliable. Even in the cases where the T2-SFPC was not

the best; results showed that the approaches based on fuzzy pred-

icates are always in the top of the list with small differences in

the performance. It is remarkable that except for the MRI1 dataset,

methods based on fuzzy predicates showed to be the best or the

second-best method. 
Concerning to the sensibility of the methods T2-SFPC, T2-DFPC,

FPC, T2-SFPC -wac , T2-DFPC -wac , and SFPC -wac in relation with

he numbers of subsets considered, i.e. the value adopted by M , in

ost of the cases the results showed no statistically significant dif-

erences compared to the best accuracies values, considering values

f M close to those of the optimal results. However, for values of M

igher than 6, the smaller datasets Wisconsin breast cancer, Pima

ndians diabetes, Iris, Wine, MRI2, and Seeds reported a decrease

f the Accuracy compared to the optimal case, with statistical sig-

ificance. Additionally, for most of the datasets the best value of

 was the same for the different methods and when it was not

qual, it differed by 1. Therefore, according to the accuracy values,

he methods are not highly sensitive to the value of M and it can

e adjusted taking in to account the size of the datasets and, when

t is known, the number of expected clusters. 

.1.3. Results: Silhouette index 

Regarding to the Silhouette index, the obtained results are sum-

arized in Table 2 . In this table, for each dataset, the best result

etween T2-SFPC and T2-SFPC- wac is indicated in the first column.

n the second column, the best result for the test methods are

eported. In all cases, the name of the best method and its pa-

ameters are informed. Differences between Silhouette indices are

eported when these resulted statistically significant. It is remark-

ble that in most of the cases, the proposed method T2-SFPC or its

ariant without automatic clustering (T2-SFPC- wac ) obtained the

ighest Silhouette index. Differences observed exceeded 6.7% when

hey were statistically significant, indicating that the clusters gen-

rated by the method proposed are more compact and separated

han those obtained by means of the test methods. In the cases

f Pima Indians diabetes, MRI1, and Seeds datasets, differences re-

ulted not statistically significant. 

Observing the value of M for the highest value of Silhouette in-

ex of the T2-SFPC along the different datasets, the best parameter

alue for Accuracy and Silhouette indices are the same or are close,

xcept for Banknote and Wisconsin breast cancer. Additionality, in

hese two datasets Silhouette index reported to be more sensitive

o the value of M than in the other datasets in which the varia-

ion of the Silhouette index when the value of M moved from the

ptimal value was similar to the observed for the Accuracy index.

n this sense, the proposed method resulted lightly sensitive to the

alue of M considering the Silhouette index. 

.2. Interpretable clustering from the method T2-SFPC: an illustrative 

xample using brain magnetic resonance images 

In this section, an illustrative example of the use of the method

2-SFPC proposed is studied, considering the segmentation of brain

agnetic resonance images. As it was mentioned in the example

iven at the end of Section 3.2 , the problem consists of providing a

abel for each pixel of the images detecting gray matter, white mat-

er, and cerebrospinal fluid. Considering this kind of problem, the

ethod T2-SFPC not only is able to assign tissues to pixels, but also

t allows to extract linguistic descriptions which agree with those

sed by experts when they describe how the different tissues are

etected. Therefore, when expert knowledge is not available for a

roblem, it is possible to discover knowledge about the clustering

hrough the method T2-SFPC and this knowledge can be expressed

sing linguistic descriptions. 

In Fig. 8 , in order to provide visual examples of the images

tudied in the present section and of the results obtained with

he method T2-SFPC, three of the slices contained in the database

f simulated brain magnetic resonance images [51] are shown, in-

luding images corresponding to the sequences PD, T1, and T2,

he gold-standard segmentation and the segmentation generated
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Table 2 

Comparisons for Silhouette indices between the proposed method and the best of the test methods. Differ- 

ences are informed when resulted statis‘tically significant. Partition sizes ( M ) are included in the correspond- 

ing cases. In all cases, the best result of the methods with and without automatic determination of the number 

of clusters is informed. 

Dataset 

Best Silhouette for the 

proposed method 

Best Silhouette for the 

test methods 

Difference (when 

p < 0.05) 

Banknote T2-SFPC -wac ( M = 2) 

( −0.102 ± 0.038) 

T2-DFPC -wac ( M = 2) 

( −0.118 ± 0.035) 

0.016 (13.5%) 

Wisconsin breast cancer T2-SFPC ( M = 4) 

( −0.004 ± 0.102) 

K-means -wac 

( −0.057 ± 0.048) 

0.053 (92.9%) 

Pima Indians diabetes T2-SFPC ( M = 4) 

(0.026 ± 0.063) 

SFPC ( M = 3) 

(0.021 ± 0.086) 

–

Iris T2-SFPC -wac ( M = 4) 

(0.167 ± 0.056) 

FCM 

(0.091 ± 0.071) 

0.076 (83.5%) 

Wine T2-SFPC -wac ( M = 2) 

(0.095 ± 0.030) 

FCM-wac 

(0.089 ± 0.027) 

0.006 (6.7%) 

Moon T2-SFPC ( M = 4) 

(0.110 ± 0.050) 

K-means 

( −0.013 ± 0.089) 

0.123 ( > 100%) 

MRI1 T2-SFPC ( M = 3) 

(0.231 ± 0.017) 

SOM -wac 

(0.246 ± 0.037) 

–

MRI2 T2-SFPC -wac ( M = 2) 

(0.236 ± 0.025) 

K-means 

(0.209 ± 0.037) 

0.027 (12.9%) 

Seeds T2-SFPC ( M = 2) 

(0.122 ± 0.023) 

K-means -wac 

(0.126 ± 0.022) 

–

Fig. 8. Images corresponding to three representative slices in the database of simulated brain magnetic resonance images [51] . For each slice, images are presented in the 

next order: images corresponding to the sequences PD, T1, and T2, expected segmentation (gold standard) and resulting segmentation using the method T2-SFPC proposed. 

In the segmented images, colors indicate different brain tissues: gray matter (red), white matter (yellow), and cerebrospinal fluid (blue). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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rom the method T2-SFPC. In order to obtain the image segmen-

ation, first of all the method T2-SFPC was applied on the dataset

RI2. Then, the interval type-2 fuzzy predicate system generated

as used for labeling each of the pixels corresponding to the se-

ected slices. The tissues were assigned to the clusters considering

hich tissue was the most frequent in each of the discovered clus-

ers when the MRI2 was applied on the fuzzy predicate system.

ach pixel of the slices was represented by a datum to be clus-
ered which was formed by the gray intensities of the pixel in the

mages corresponding respectively to the sequences PD, T1, and T2.

In Fig. 9 , the interval type-2 membership functions generated

utomatically by means of the method T2-SFPC are shown. In this

ase, the random partition size was set to M = 5. Gray intensity val-

es are normalized, corresponding the value −1 to black (the low-

st gray level intensity) and + 1 to white (the highest gray level

ntensity). 
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Fig. 9. Interval type-2 membership functions obtained for the MRI2 dataset using the method T2-SFPC and a random partition size M = 5. Different colors represent different 

brain tissues: gray matter (red), white matter (yellow), and cerebrospinal fluid (blue). (a) Membership functions for the feature “PD Intensity”. (b) Membership functions for 

the feature “T1 Intensity”. (c) Membership functions for the feature “T2 Intensity”. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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By analyzing the membership functions in Fig. 9 , it is possi-

ble to identify relationships among values of the features and the

tissues. Let consider, for instance, the cerebrospinal fluid whose

membership functions are shown in blue in Fig. 9 . For this la-

bel, the membership function for the feature “PD Intensity”

( Fig. 9 a) is centered in medium values of the normalized feature

values, approximately located between −0.2 and 0.4 in the nor-

malized gray scale. This group of values can be identified with

the attribute “Gray” considering they are in the middle region of

the gray scale. For the same tissue, the values of “T1 Intensity”

( Fig. 9 b) are situated around low values of gray intensity, specif-

ically between −1 and −0.6. Therefore, the cerebrospinal fluid is

related to “Dark” values of “T1 Intensity”. Finally, the membership

function corresponding to cerebrospinal fluid for the “T2 Intensity”

( Fig. 9 c) is located at the right of the scale, between 0.4 and 1,

which means the cerebrospinal fluid is associated to the attribute

“Bright” for the feature “T2 Intensity”. 

The analysis of the previous paragraph can be written as a fuzzy

predicate describing the relationships observed, i.e. the attributes

required for a pixel belonging to cerebrospinal fluid: p 1 ( x ): “The

pixel x belongs to cerebrospinal fluid” which is equivalent to the
ompound predicate “In the pixel x the PD intensity is Gray, the T1

ntensity is Dark and the T2 intensity is Bright”. The degrees of truth

f the simple predicates “In the pixel x the PD intensity is Gray”, “In

he pixel x the T1 intensity is Dark”, and “In the pixel x the T2 inten-

ity is Bright” are defined by the interval type-2 membership func-

ions obtained for the cerebrospinal fluid in the respective features,

.e. the membership functions shown in blue in Fig. 8 . It should be

oted that p 1 ( x ) allows to evaluate the degree of truth in which a

ixel x belong to cerebrospinal fluid and it is computed by means

f the simple predicates extracted from the membership functions

n Fig. 9 . 

Attributes and predicates for the tissues gray matter and white

atter can be defined extending the analysis given before. As a

esult, the next fuzzy predicates are defined: 

• For gray matter: p 2 ( x ): “The pixel x belongs to gray matter” which

is equivalent to “In the pixel x the PD intensity is Light-Gray, the

T1 intensity is Dark-Gray and the T2 intensity is Medium-Gray”. 
• For white matter: p 3 ( x ): “The pixel x belongs to white matter”

equivalent to “In the pixel x the PD intensity is Very-Bright, the
T1 intensity is Very-Bright and the T2 intensity is Dark”. 
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In addition, a visual analysis can be conducted by visual in-

pection of the images of Fig. 8 , focusing on pixels labelled and

omparing these pixels with the same space locations in the im-

ges PD, T1, and T2. As a result, it is possible to confirm the dis-

overed relationships between values of the features and the tis-

ues. For instance, the cerebrospinal fluid (shown in blue in the

egmented images) appears as bright in PD, dark in T1 and bright

n T2 provided that a person give some visual analysis on the im-

ges. The same procedure can be applied to the gray matter and

he white matter. Therefore, the membership functions generated

y the method T2-SFPC also assist to the visual interpretation of

he segmentation. 

In relation to number of SOMs trained in the method T2-SFPC,

.e. the value of the M parameter, it is important to note that

he method always generates only one interval type-2 membership

unction for each feature and each discovered cluster, merging all

he knowledge about each cluster discovered from the M SOMs.

onsequently, the membership function analysis is made in a sim-

ler way than in the case of the method SFPC whether more than

ne SOM is used in the SFPC ( M > 1) which, according to the re-

ults described in Section 4.1 , is often required in order to obtain

ood clustering results. 

As it was mentioned, the method T2-SFPC preserves all the

nowledge discovery capabilities of the previous method called T2-

FPC, which were extensively discussed in the stage #4 of this

ethod in [3] . In this regard, it is possible to extract valuable in-

ormation related to vagueness or variability around of the clusters

y analyzing both the area of the resulting FOUs and the width

f the membership functions. Considering the method T2-SFPC, a

arge FOU means a large variation in the prototypes contained in

he SOMs, which were trained using the subsets obtained during

he random partition in the stage A. In addition, from the point of

iew of a cluster associated to an interval membership function,

 large FOU is related to large vagueness (variability or disagree-

ent) about the degree of truth of the correspondence between

alues of a feature and the cluster or about the attribute described

y the interval membership function. 

Applying this analysis to the membership functions obtained

or the MRI2 dataset (shown in Fig. 8 ), the next observations can

e given: 

• For the cerebrospinal fluid (shown in blue in Fig. 9 ), the values

of “PD Intensity” and “T2 Intensity” are associated to member-

ship functions with relative large FOU, meaning large vagueness

for this tissue in these features. In the “T1 Intensity”, the mem-

bership function indicates smaller vagueness than for both pre-

vious features. 
• For the gray matter (shown in red in Fig. 9 ), the obtained FOUs

indicate large vagueness, being larger than those existing about

the rest of the tissues. The big width of the membership func-

tion for the “T2 Intensity” indicates a high variability around

the attribute “Medium-Gray” associated to it. 
• For the white matter (shown in yellow in Fig. 9 ), membership

functions have small FOUs for all the features, meaning there

exist a small vagueness around this cluster and small variability

between the cluster prototypes obtained from the M SOMs. 
• For the feature “PD Intensity”, membership functions are

strongly overlapped which means there exist high fuzziness of

the associated attributes. 

. Discussion 

As it was mentioned, a major contribution of this approach is

he interpretability of the clusters. Once the clusters have been

ound, the membership functions can be analyzed to obtain useful

inguistic interpretation of the groups. Specific terminology com-
ng from the field of the data can be used, giving the possibility of

etting some new knowledge, as it was analyzed in Section 4.2 . 

Analyzing the numerical results obtained during the method as-

essment, performance achieved by the method T2-SFPC proposed

n the present work is in the top of the methods tested, being in

ost of the cases the method with the best performance consid-

ring both Accuracy and Silhouette indices. It is important to note

hat even when Accuracy is high internal measures like Silhouette

ould be low, being this situation a consequence of the clusters

hemselves. Some labeled datasets present groups that do not ful-

ll the requirements of compactness or distant centroids. However,

nalyzing the results for the Silhouette index the proposed method

s outstandingly better than the test methods. 

Specifically, considering Accuracy indices, previous methods T2-

FPC and SFPC outperformed the T2-SFPC in some cases, but these

ifferences keep lower than 0.806%. The method based on fuzzy

redicates overcame the traditional clustering techniques having

he best and the second-best accuracy, except in two of the tested

atasets. On the other hand, the obtained Silhouette indices indi-

ate that the method proposed had the best performance in all

ases not being overcome by the test methods for any dataset.

herefore, for the tested datasets the proposed method defined

ore compact and distant clusters than all the test methods. Con-

equently, considering the results of both validation indices, even

hen the method proposed was outperformed in accuracy in some

ases, its performance is highly acceptable, which evidences that it

onstitutes a reliable general clustering method. 

In relation with the stages composed the method T2-SFPC pro-

osed and the previous methods SFPC and T2-DFPC, major differ-

nces are related to: the kind of FL used (comparing with SFPC)

nd the way in which cluster prototypes are obtained from data

comparing with T2-DFPC). 

In this regard, analyzing the stages A and B of the proposed

ethod (explained in Sections 3.3.1 and 3.3.2 ), SOM-clustering

cheme discovers knowledge related to clustering allowing to ex-

ract the cluster prototypes. SOMs are automatically configured and

rained in the same way it was realized in the previous method

FPC, but unlike it, in the T2-SFPC the suitable number of clusters

or a dataset is found using a FCM-BIC scheme and interval type-

 membership functions are defined from the obtained prototypes.

s a result, unlike the method SFPC, the proposed one do not re-

uire knowing the number of clusters to generate. 

In addition, the aggregation process suggested in the present

ork merges the contribution of each subset of cluster prototypes

efining a single interval type-2 membership function for each fea-

ure and each cluster. In this sense, the interval type-2 member-

hip function generated acts capturing all the partial descriptions

f the clusters modelled by the type-1 membership functions in

 first step and merging them in a single model, which is more

asily interpretable than those generated by the SFPC with M > 1

here several overlapped type-1 membership functions describe

he characteristics of a given cluster. Considering that the method

FPC with M > 1 only overcame the proposed method in one case,

t is possible to conclude that the aggregation process proposed

ombines successfully the results coming from the different sub-

ets of cluster prototypes as different “opinions” of experts. 

Additionally, the computational effort involved in computing in-

erval type-2 fuzzy predicates (introduced in Section 3.2 ) is simi-

ar to that required by the type-1 fuzzy predicates generated by

he method SFPC when M = 1, and it is smaller than the effort re-

uired by the same method with M > 1. Due to this and consider-

ng the less complexity of the interpretation of the clustering ob-

ained with the method T2-SFPC compared to the SFPC with M > 1,

he interval type-2 fuzzy predicates are an easy and good perfor-

ance approach for data clustering. 
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On the other hand, the method proposed in this work exploits

the known advantages of the SOMs for dealing with noise, outliers,

and missing values. Comparing with the T2-DFPC, the main differ-

ences are: the use of SOMs in order to extract the cluster proto-

types and the definition of parametrizable interval type-2 mem-

bership functions formed by Gaussian-shape sub-functions, allow-

ing the optimization of their parameters whether a specific goal is

defined. The method proposed preserves all the knowledge extrac-

tion characteristics of the T2-DFPC, which were analyzed in Section

4.2 considering a real application case on brain magnetic resonance

images. 

Regarding to the clustering approach based on the BIC, the

methods with and without automatic determination of the num-

ber of clusters reported similar performance without statistically

significant difference in most of the cases. Even when in some

of the tested datasets the results using the automatic clustering

scheme showed higher variance than variants without it (those

methods named with suffix “- wac ”), in other cases the situation

was the opposite. Therefore, according with the observed results,

the BIC combined with classical clustering techniques such as FCM

and K-means constitutes an appropriate choice for determining the

proper number of clusters when no information about the cluster-

ing problem is available. 

In relation with the selection of the value of the parameter M ,

i.e. the size of the initial random data partition at the stage A, the

results of the tests indicate that both the proposed method T2-

SFPC and the previous methods T2-DFPC and SFPC are not strongly

sensitive to the value of M considering both validation indices ana-

lyzed. In this sense, the value of M should be selected according to

the number of data in the dataset and the number of clusters ex-

pected, when it is available, considering that the proposed method

requires training a SOM for each of the subsets defined during the

random partition at the stage A. In other words, the more com-

plex the problem addressed is, the lower the proper value of M is,

considering a complex clustering problem one in which there are a

few data (a few examples) for each of the expected clusters or one

in which the clusters that can be detected are very close. In this

regard, according to the tests performed by analyzing the stability

of the T2-SFPC respect to the value of M , to obtain acceptable clus-

tering performance it was required at least 10 data per expected

cluster in each of the subsets generated at the stage A. Based on

this empirical observation, it is possible to use this limit as a cri-

terion to define the maximum value of M for a given dataset. 

On the other hand, if the number of expected clusters is un-

known, as it is the case of data exploration based on clustering,

the value of M can be adjusted observing the performance of the

clustering resulting once the fuzzy system was generated for dis-

tinct values of M . In such an approach, the value of M can be in-

creased from 2 and for each an internal validation measure can be

used to assess the final clustering, obtaining the proper value for

M . The SOM error measures computed at the stage B of the T2-

SFPC in combination with internal validation measures applied on

the clustering defined on the SOMs’ codebooks at the stage C (the

cluster prototypes) can also be analyzed varying M for the deter-

mination of a proper value of M if no information about the clus-

tering is available. 

In addition to the previous observations related to the value of

M , the random partition at the stage A of the proposed method can

reduce the computational effort required during the method appli-

cation. In this regard, there are some prominent issues to consider:

• The random data partition reduces the number of training data

of the SOMs. Considering an initial dataset X , when the size

of the random partition M increases, computational effort of

the SOM training decreases. As a result, even when the higher

value of M the higher number of SOMs to be trained, the com-
putational effort required to train the M SOMs using the sub-

sets obtained from the random data partition is reduced when

the value of M is increased. This remarkable feature makes that

the computational effort required using the SFPC with M = 1 is

always bigger than those required by the proposed method, in

which in all cases M is higher than 1. 
• The method proposed can be applied using parallel comput-

ing, which can substantially reduce the computational effort re-

quired. In this case, once initial random partition is done, each

of the obtained subsets is processed separately, training a SOM

for each of these and making a clustering of each SOM code-

book. The rest of the method, i.e. the stages C and D should be

computed in a central processor. 
• The method can be applied in distributed clustering applica-

tion, where typically the processing of a big number of data

is required [3] . In such case, M nodes collect data and define M

subsets. Therefore, the initial random partition is not required.

Each node analyzes its data, training a SOM and applying the

automatic clustering scheme on the SOM codebook. After that,

parameters of the different results of the clustering codebooks

are shared between the nodes in order to define cluster proto-

types and type-1 Gaussian-shape membership functions. Inter-

val type-2 membership functions and fuzzy predicates are gen-

erated in a central node and their parameters are shared with

the rest of the nodes. As a result, each node is able to group

its data using interval type-2 fuzzy predicates, which collect all

the information about the clustering problem available in the

rest of the nodes. 

For all said, it is possible to conclude that the method proposed

llows: 

• To be applied in cases with distributed datasets (even in physi-

cal different places). 
• To improve the traditional clustering algorithm performance. 
• To simplify the way in which linguistic knowledge is extracted

from data, considering this cannot be done using classical clus-

tering algorithms. This is because of the use of fuzzy predicates,

simplified in the proposed method using interval type-2 FL. 
• To obtain better accuracies than those obtained by the methods

that do not use SOMs. 
• To obtain better cluster quality, i.e. more compact and more

separated clusters than those obtained by the tested methods,

which include both traditional clustering techniques and ap-

proaches based on fuzzy predicates previously proposed. 
• To make data clustering without any requirements of prior

knowledge about the problem, even the number of clusters,

which is useful when data exploration is required. 
• To discover knowledge expressed by linguistic descriptions,

which can be interpreted and modified by experts. Additionally,

information about vagueness and variability of the attributes

described by the membership functions is available. 
• To numerically optimize the membership functions generated

if a specific goal is defined, which can improve even more the

performance of the proposed method overcoming to both the

previous methods SFPC an T2-DFPC. 

. Conclusion 

In this paper, it is proposed a new SOM-based method for

he automatic generation of a clustering system based on inter-

al type-2 fuzzy predicates, called Type-2 SOM-based Fuzzy Predi-

ate Clustering (T2-SFPC), which is based on two previous methods

ased on fuzzy predicates: the SOM-based Fuzzy Predicate Clus-

ering (SFPC) and the Type-2 Data-based Fuzzy Predicate Cluster-

ng (T2-DFPC). The method proposed exploits all the advantages of

he SOMs for dealing with noise, outliers, and missing values. The
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[  
uzzy predicates are automatically-generated from cluster proto-

ypes extracted from SOMs previously configured and trained and

o prior knowledge about the clustering problem is required. Inter-

al type-2 FL is used to quantify the degree of truth of the fuzzy

redicates, allowing to model the variability and vagueness in the

luster prototypes. 

The method proposed preserves all the advantages of the pre-

ious methods SFPC and T2-DFPC concerned to: their capabilities

f knowledge extraction from the fuzzy predicates defined, the ap-

lication of the method in distributed clustering problem and their

otential implementation in parallel computing reducing the com-

utational efforts involved. However, the method proposed has im-

ortant advantages respect to the previous ones. Comparing to the

FPC, the T2-SFPC does not require knowing the number of ex-

ected clusters and, considering the SFPC with random data par-

ition, the interpretation of the membership functions and fuzzy

redicates obtained from the method T2-SFPC is always easier than

hen SFPC is used. Related to the method T2-DFPC, the proposed

ethod defines parametrizable interval type-2 membership func-

ions, allowing the optimization of the parameters of the member-

hip functions if a specific goal is defined. 

The method proposed was tested on different public datasets

nd compared with classical clustering approaches and the previ-

us methods T2-DFPC and SFPC. Results showed that the method

roposed was consistently one of the best, considering the ex-

eriments tested in very different datasets. According to the ob-

ained results for the Silhouette index, the proposed method out-

erformed all the test methods, being the best in compactness and

eparation of the clusters found. 

For all said, the method T2-SFPC proposed constitutes an unsu-

ervised and general clustering method based on fuzzy predicates,

hich outperformed the previous methods T2-DFPC and SFPC pre-

erving their main advantages related to interpretable clustering. 

As future work, it is proposed to implement a performance

nalysis of all the previous methods and the proposed one con-

idering datasets with big number of data. Also, a deep noise ro-

ustness analysis will be done. In addition, new analysis on the

nowledge extraction capabilities of the methods based on self-

iscovered fuzzy predicates will be done trying to discover new

elationships between the shape and size of the membership func-

ions and the characteristics of the data belonging to different clus-

ers. 
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