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A NEW GENERALIZATION OF HERMITE’S

RECIPROCITY LAW

LEANDRO CAGLIERO AND DANIEL PENAZZI

Abstract. Given a partition λ of n, the Schur functor Sλ associates to
any complex vector space V , a subspace Sλ(V ) of V ⊗n. Hermite’s reci-
procity law, in terms of the Schur functor, states that S(p)

(

S(q)(C
2)
)

≃

S(q)

(

S(p)(C
2)
)

. We extend this identity to many other identities of the

type Sλ

(

Sδ(C
2)
)

≃ Sµ

(

Sǫ(C
2)
)

.

1. Introduction

Hermite’s reciprocity law states that

Symp
(
Symq(C2)

)
≃ Symq

(
Symp(C2)

)

as GL(2,C)-modules, for any pair of non-negative integers p and q, (see
e.g. [FH], Exercise 6.18). Here Symn(V ) is the homogeneous component of
degree n in the symmetric algebra of V . This identity can also be stated in
terms of the Schur functor. Recall that given any partition λ of n, the Schur
functor Sλ associates to any complex vector space V , a subspace (also known
as the Weyl module) Sλ(V ) of V ⊗n (see e.g. §6.1 in [FH]. We give some
details in subsection §2.2). For instance, if λ = (n) then Sλ(V ) ≃ Symn(V ),
and if λ = (1n) then Sλ(V ) ≃ Λn(V ).

Thus, in terms of Schur functors, Hermite’s reciprocity law states that

S(p)

(
S(q)(C

2)
)
≃ S(q)

(
S(p)(C

2)
)
.

This reciprocity law has been extended to more general plethysms involving
rectangle partitions by L. Manivel in [M]. More precisely a proof of Hermite’s
reciprocity law can be obtained from the Cayley-Silvester formula ([Sp]); this
formula was extended by M. Brion in [B] and Manivel used it to prove the
following extension of Hermite’s reciprocity law, valid for all positive integers
n, k, d:

S(nk)

(
S(d+k−1)(C

2)
)

≃ S(dn)

(
S(k+n−1)(C

2)
)

≃ S(kd)

(
S(n+d−1)(C

2)
)

≀ ≀ ≀

S(nd)

(
S(d+k−1)(C

2)
)

≃ S(dk)

(
S(k+n−1)(C

2)
)

≃ S(kn)

(
S(n+d−1)(C

2)
)

where the isomorphisms are now only as SL(2,C)-modules.
It is now natural to ask for other solutions to the following plethysm

equation

(1.1) Sλ

(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
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considering the partitions λ, δ, µ and ǫ as unknowns and the isomorphism
either as SL(2,C) or GL(2,C)-modules.

In this paper, we obtain new solutions to the plethysm equation (1.1) in-
volving partitions of arbitrary number of ‘steps’. Manivel’s result (involving
rectangular partitions) turns out to be our one-step case. In addition, we
address the question of when an SL(2,C)-isomorphism is (or can twisted to
obtain) an GL(2,C)-isomorphism.

Main results. Let us denote Sλ

(
S(d)(C

2)
)
by Yd+1 where Y is the Young

diagram of λ (recall that dimS(d)(C
2) = d+ 1). For instance

z

= Sλ

(
S(z−1)(C

2)
)
, λ = (3, 22, 1).

We add labels to a Young diagram to indicate the width and hight of the
boxes. For instance, if λ = (92, 54, 34), its Young diagram is

3 2 4
2
4
4

.

One of the main results of the paper is the following theorem (see Theorem
3.10).

Theorem. Let x1, . . . , xn and y1, . . . , yn be two sequences in Z≥0, set |x| =∑
xi, |y| =

∑
yi, and let u, v, z ∈ Z≥0. Then the following SL(2,C)-

isomorphism holds:
x1 . . . xn u y1 . . . yn

x1
...
xn

v

y1
.
..
yn |x|+ |y|+ v + z

≃

x1 . . . xn v y1 . . . yn

x1
...
xn

u

y1
.
..
yn |x|+ |y|+ u+ z

Although the diagrams in the above isomorphism have an odd number of
steps, it is immediate to derive from it (taking u = 0) the following analogous
isomorphism for even number of steps:

x1 . . . xn u y1... yn−1

x1
...
xn

v

y1
...

yn−1 |x|+ |y|+ v + z

≃

x1 . . . xn v y1... yn−1

x1
...
xn

u

y1
...

yn−1 |x|+ |y|+ u+ z

Let’s say that two pairs (λ, d) and (µ, e) are equivalent if Sλ
(
S(d)(C

2)
)
≃

Sµ

(
S(e)(C

2)
)
. From the above isomorphism it is possible to obtain another

isomorphism by using the fact that an SL(2,C)-module is isomorphic to its
dual module. This, in general, yields an equivalence class of four different
pairs (λ, d). If we additionally assume in the previous theorem that xi = v
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and yi = z for all i = 1, . . . , n, then we can make use of its result twice, and
obtain an equivalence class of six different pairs (λ, d). In the odd case with
n = 0, this equivalence class of six pairs corresponds to Manivel’s Theorem.

The even and odd cases with n = 1 state that

v z
v

u
u+v+z

≃

≀

v u
v

z
v+2z

≃

≀

u z
v

v 2v+z

≀
z v

z

u
u+v+z

≃
u v

z

z
v+2z

≃
z u

z

v 2v+z

and
v u z

v

v

z 2v+2z

≃

≀

v v z
v

u

z u+v+2z

≃

≀

v z z
v

u

v u+2v+z

≀

z u v
z

z

v 2v+2z

≃

z v v
z

z

u u+v+2z

≃

z z v
z

v

u u+2v+z

These, and other corollaries, are obtained in §4.
Recall that given a partition λ and a number d ≥ 0 the hook length of λ

and the d-content of λ are, respectively, the following polynomials

hλ(q) =
∏

[h(u)]q, cdλ(q) =
∏

[d+ 1 + c(u)]q,

where [a]q is the q-analog of a, h and c are, respectively, the hook and
the content functions and both products run over the entries of the Young
diagram of λ. It is known (see e.g. [St, Ch. 7]) that the SL(2,C)-character
of Sλ

(
Sδ(C

2)
)
is, up to a power of q, equal to

P d
λ (q) =

cdλ(q)

hλ(q)

where d = δ1 − δ2.
The following theorem translates the plethysm equation (1.1) in terms of

P . Although the results stated in this theorem might be known, we did not
find an explicit reference to it, thus we prove it in §3 (see Theorem 3.1). If
λ is a partition, then |λ| denotes the sum of its parts.

Theorem. Let δ = (δ1, δ2), ǫ = (ǫ1, ǫ2) and d = δ1 − δ2, e = ǫ1 − ǫ2. Let λ,
µ be partitions with ℓ(λ) ≤ d+ 1 and ℓ(µ) ≤ e+ 1. Then

(1) Sλ

(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
as SL(2,C)-modules if and only if

P d
λ = P e

µ

and in this case |λ|d− |µ|e is even.

(2) Sλ

(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
as GL(2,C)-modules if and only if, in addi-

tion to P d
λ = P e

µ , it also holds

|δ||λ| = |ǫ||µ|.
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2. Technical background

2.1. Partitions. A partition λ of n is an ordered sequence of nonnegative
integers λ1 ≥ λ2 ≥ ... with |λ| = n, where |λ| =

∑
λi. The λi’s are called the

parts of the partition and the length ℓ(λ) of λ is the number of non zero parts.
If k ≥ ℓ(λ) then λ will be denoted as λ = (λ1, . . . , λk) or by indicating multi-
plicities with exponential notation, for instance (4, 4, 3, 1, 1, 1) = (42, 3, 13).
If λ and µ are two partitions, we denote by λ+ µ the partition whose parts
are (λ+ µ)i = λi + µi.

To each partition λ = (λ1, . . . , λk) of n we associate its Young diagram
Y (λ) and its standard tableau T (λ): Y (λ) is the graphical arrangement
consisting of k left-justified rows of boxes, with λi boxes in the i-th row,
and T (λ) is the assigment of the integers 1, 2, . . . , n to the n boxes of Y (λ)
obtained by writing the numbers 1, 2, . . . , n starting on the first row and
increasing to the right and then continuing on the second row, etc. For
example, if λ = (3, 2, 2, 1) then

Y (λ) = T (λ) =
1 2 3
4 5
6 7
8

The transpose of a partition is the partition λt whose Young diagram is
the transpose of the Young diagram of λ. For example the transpose of the
partition (3, 2, 2, 1) is the partition (4, 3, 1) as can be seen by the drawing
above.

2.2. Schur functor. If λ is a partition of n, two subgroups of the symmetric
group Sn are associated to T (λ):

Pλ = {σ ∈ Sn : σ preserves each row of T (λ)},

Qλ = {σ ∈ Sn : σ preserves each column of T (λ)}.

Following [FH] we denote by aλ, bλ, cλ the following elements of the group
algebra C[Sn]:

aλ =
∑

σ∈Pλ

σ, bλ =
∑

σ∈Qλ

sgn(σ)σ, cλ = aλbλ.

The element cλ is called the Young symmetrizer associated to λ. The permu-
tation group Sn acts naturally on V ⊗n by σ.(v1⊗...⊗vn) = vσ(1)⊗...⊗vσ(n).
This action is naturally extended to an action of its group algebra C[Sn].
The image of V ⊗n under the action of cλ is denoted Sλ(V ) and the map
V 7→ Sλ(V ) is called the Schur functor.

For instance:

• S(n)(V ) ≃ Symn(V ),
• S(1n)(V ) ≃ Λn(V )
• Sλ(V ) = 0 if λ has more than dim(V ) parts.

2.3. Schur polynomials. If λ is a partition of n and k ≥ ℓ(λ), the Schur
polynomial in k variables associated to λ is

sλ(x1, . . . , xk) =
det(xλi+k−i

j )

det(xk−ij )
,
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This is a symmetric polynomial in k variables of degree n for any k ≥ ℓ(λ).
The Schur polynomial has an interesting property that will be useful later:

given a partition λ and k ≥ ℓ(λ) we will denote by λ′ the partition whose
Young diagram is the complement of Y (λ) in the (k × λ1)-rectangle. (This
definition depends on k, though this fact is not indicated in the notation).
That is,

λ′ = (λ1 − λk, . . . , λ1 − λ2)

For example, for k = 6 we have that

if Y (λ) = then Y (λ′) =

It is not difficult to prove (see Exercise 7.41 of [St]) that

(2.1) (x1 . . . xk)
λ1sλ(x

−1
1 , . . . , x−1k ) = sλ′(x1, . . . , xk).

2.4. Polynomial representations of GL(V ) and SL(V ). Let V be a
finite dimensional complex vector space of dimension k. A polynomial rep-
resentation of GL(V ) is a finite dimensional representation of GL(V ) such
that the matrix entries (associated to a given basis) are given by polyno-
mial functions on V . It is well known that every polynomial representa-
tion of GL(V ) can be decomposed into irreducible subrepresentations. In
particular, Sλ(V ) is an irreducible GL(V )-subrepresentation of V ⊗n for all
partitions λ of n. The highest weight theorem states that λ 7→ Sλ(V ) estab-
lishes a one-to-one correspondence between the set of equivalence classes of
irreducible polynomial representations of GL(V ) and the set of partitions λ
with ℓ(λ) ≤ k, see for instance §6 in [FH].

Moreover λ 7→ Sλ(V ) also establishes a one-to-one correspondence be-
tween the set of equivalence classes of irreducible polynomial representations
of SL(V ) and the set of partitions λ with ℓ(λ) ≤ k − 1. This follows from
the following fact: if

λ̃ = λ− (λk
k) = (λ1 − λk, . . . , λk−1 − λk)

then Sλ(V ) ≃ S(λk
k
)(V ) ⊗ S

λ̃
(V ) as GL(V )-modules. But since S(rk)(V ) is

the 1-dimensional GL(V )-module corresponding to detr, then we obtain that

Sλ(V ) ≃ S
λ̃
(V ) as SL(V )-modules. Note that λ̃ now has at most k−1 parts.

2.5. Characters of GL(V )-modules. If π is a polynomial representation
of GL(V ), the character of π is the function χπ : GL(V ) → C defined by
χπ(g) = tr(π(g)). If π1 and π2 are two polynomial representations of GL(V )
then π1 ≃ π2 if and only if they have the same character. Similarly, π1 ≃ π2
as SL(V )-modules if and only if χπ1 |SL(V ) = χπ2 |SL(V ). If g ∈ GL(V ) has
eigenvalues θ1, . . . , θk (counted with multiplicities), then it is known that

(2.2) χ
Sλ(V )

(g) = sλ(θ1, . . . , θk)

for any partition λ with ℓ(λ) ≤ k. (See for instance [FH]).
Let δ = (δ1, δ2) be a partition with at most two parts and let d =

δ1 − δ2. We know that dim Sδ

(
C
2
)
= d + 1 and, as a representation of
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SL(2,C), Sδ(C
2) corresponds to the irreducible representation of the Lie

algebra sl(2,C) of highest weight d.
If g ∈ GL(2,C) has eigenvalues x1 and x2 then it follows from (2.2) that

χ
Sδ(C2)

(g) = sδ(x1, x2) = xδ11 xδ22 + xδ1−11 xδ2+1
2 + · · ·+ xδ21 xδ12 .

Hence the eigenvalues of g in Sδ

(
C
2
)
are {xδ11 xδ22 , . . . , xδ21 xδ12 } (all with mul-

tiplicity 1) and thus, if λ is a partition with ℓ(λ) ≤ d+1, then the character
of Sλ

(
Sδ(C

2)
)
is the plethysm

(2.3) χ
Sλ(Sδ(C2))

(g) = sλ(x
δ1
1 xδ22 , xδ1−11 xδ2+1

2 , . . . , xδ21 xδ12 ).

In particular, if g ∈ SL(2,C) with eigenvalues x1 and x−11 then

χ
Sλ(Sδ(C2))

(g) = χ
Sλ(S(d)(C2))

(g) = sλ(x
d
1, x

d−2
1 , . . . , x−d1 ).

This identity and (2.1) imply that if λ′ is as in §2.3 (with k = d+ 1) then
χ

Sλ(S(d)(C2))
and χ

S
λ′(S(d)(C2))

coincide in SL(2,C) and therefore we obtain:

Theorem 2.1.

Sλ

(
S(d)(C

2)
)
≃ Sλ′

(
S(d)(C

2)
)

as SL(2,C)-modules.

This corresponds to the fact that Sλ′
(
S(d)(C

2)
)
and Sλ

(
S(d)(C

2)
)
are dual

to each other as SL(2,C)-modules and every polynomial representation of
SL(2,C) is isomorphic to its dual.

2.6. The Hook-content formula. Given a natural number a, let

[a] = [a]q =
1− qa

1− q
= 1 + q + · · ·+ qa−1

be the q-analog of a. If u = (i, j) is a box of the Young diagram of λ let
c(u) = j − i and let h(u) be the number of boxes directly below or directly
to the right of u, including u once. For example, we indicate in the following
diagrams the values of c and h respectively:

0 1 2

-1 0

-2 -1

-3

6 4 1

4 2

3 1

1

Given a partition λ and a number d we define the hook length of λ and the
d-content of λ as the following polynomials:

hλ(q) =
∏

u∈Y (λ)

[h(u)]q cdλ(q) =
∏

u∈Y (λ)

[d+ 1 + c(u)]q.

Let δ = (δ1, δ2) be a partition with at most two parts and let d = δ1 − δ2.
Let λ be a partition with ℓ(λ) ≤ d + 1. Since sλ is homogeneous of degree
|λ| it follows that

sλ(x
δ1
1 xδ22 , xδ1−11 xδ2+1

2 , ..., xδ21 xδ12 ) = (xδ11 xδ22 )|λ|sλ(1, q, q
2, ..., qd),
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where q = x−11 x2. If b(λ) =
∑

(i− 1)λi and

P d
λ (q) =

cdλ(q)

hλ(q)

then Theorem 7.21.2 in [St] states that

(2.4) sλ(1, q, ..., q
d) = qb(λ)P d

λ (q).

This identity is known as the Hook-content formula, see the notes in Ch. 7
of [St] for more information about it.

It follows from (2.3) that if x1 and x2 are the eigenvalues of g ∈ GL(2,C),
then

(2.5) χ
Sλ(Sδ(C2))

(g) = (xδ11 xδ22 )|λ|qb(λ)P d
λ (q).

3. Main results

3.1. Equation (1.1) and the Hook-content formula. The following the-
orem expresses the isomorphism condition of (1.1) in terms of the function
P .

Theorem 3.1. Let δ = (δ1, δ2), ǫ = (ǫ1, ǫ2) and d = δ1 − δ2, e = ǫ1 − ǫ2.
Let λ, µ be partitions with ℓ(λ) ≤ d+ 1 and ℓ(µ) ≤ e+ 1. Then

(1) Sλ

(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
as SL(2,C)-modules if and only if

(3.1) P d
λ = P e

µ

and in this case |λ|d− |µ|e is even.

(2) Sλ

(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
as GL(2,C)-modules if and only if in addition

to (3.1) it also holds

(3.2) |δ||λ| = |ǫ||µ|.

Proof. On the one hand, it follows from (2.5) that Sλ
(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)

as representations of GL(2,C) if and only if

(3.3) (xδ11 xδ22 )|λ|qb(λ)P d
λ (q) = (xǫ11 xǫ22 )|µ|qb(µ)P e

µ(q)

and since the identity x1x2 = 1 holds in SL(2,C), it follows that q = x−11 x2 =
x22 and hence Sλ

(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
as SL(2,C)-modules if and only if

(3.4) x
−d|λ|+2b(λ)
2 P d

λ (x
2
2) = x

−e|µ|+2b(µ)
2 P e

µ(x
2
2)

as a function of x2.
On the other hand, since sλ is symmetric, it follows from (2.3) and (2.5)

that

x
δ1|λ|−b(λ)
1 x

δ2|λ|+b(λ)
2 P d

λ (q) = x
δ1|λ|−b(λ)
2 x

δ2|λ|+b(λ)
1 P d

λ (q
−1)

and thus

P d
λ (q)

P d
λ (q
−1)

= x
(δ1−δ2)|λ|−2b(λ)
2 x

(δ2−δ1)|λ|+2b(λ)
1

= qd|λ|−2b(λ).

A similar identity holds for µ and ǫ instead of λ and δ.
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We now assume condition (3.1). This and the above identities imply that

(3.5) d|λ| − 2b(λ) = e|µ| − 2b(µ)

and therefore (3.4) holds and thus Sλ
(
Sδ(C

2)
)
≃ Sµ

(
Sǫ(C

2)
)
as representa-

tions of SL(2,C). It also follows from (3.5) that |λ|d− |µ|e is even.
If we additionally assume that condition (3.2) holds, then adding and

substracting (3.5) and (3.2) we obtain

δ1|λ| − b(λ) = ǫ1|τ | − b(τ)

δ2|λ|+ b(λ) = ǫ2|τ |+ b(τ),

and taking into account that q = x−11 x2, (3.3) follows and thus Sλ
(
Sδ(C

2)
)
≃

Sµ

(
Sǫ(C

2)
)
as representations of GL(2,C).

For the converse statements, we first observe that q = 0 is neither a root

nor a pole of the rational function P d
λ (q) =

c
d
λ(q)

hλ(q)
. Therefore, if Sλ

(
Sδ(C

2)
)
≃

Sµ

(
Sǫ(C

2)
)
as representations of SL(2,C) then it follows from (3.4) that

P d
λ = P e

µ. If the isomorphism also holds as representations of GL(2,C), then
we obtain (3.2) by specializing (3.3) at x1 = x2. �

3.2. GL(2,C)-isomorphisms from SL(2,C)-isomorphisms. Let δ = (δ1, δ2),
d = δ1 − δ2, and let λ be partition with ℓ(λ) ≤ d + 1. Since d + 1 =
dim(S(d)(C

2)) it follows from the discusion in §2.4, that if

λ̃ = (λ1 − λd+1, . . . , λd − λd+1)

then Sλ(
(
S(d)(C

2)
)
) ≃ S

λ̃
(
(
S(d)(C

2)
)
) as SL(2,C)-modules. Thus, in order to

study the plethysm equation (1.1) as SL(V )-modules it is enough to consider
the problem of finding d, e, λ and µ with ℓ(λ) ≤ d, ℓ(µ) ≤ e, such that

(3.6) Sλ

(
S(d)(C

2)
)
≃ Sµ

(
S(e)(C

2)
)

as representations of SL(2,C).
On the other hand, if (3.6) holds, part (2) of Theorem 3.1 says that the

isomorphism also holds as GL(2,C)-modules if and only if |λ|d = |µ|e.
If this is not the case, a natural question to ask is whether there exist

l,m, x, y ∈ Z≥0 such that

Sλ+(ld+1)

(
S(d+x,x)(C

2)
)
≃ Sµ+(me+1)

(
S(e+y,y)(C

2)
)

as representations of GL(2,C).
According to part (2) of Theorem 3.1 the answer is positive if and only if

(|λ|+ l(d+ 1))(d + 2x) = (|µ|+m(e+ 1))(e + 2y)

wich is equivalent to

(3.7)
(
|µ|+m(e+1)

)
y−

(
|λ|+l(d+1)

)
x =

|λ|d− |µ|e

2
+l

(
d+1

2

)

−m

(
e+1

2

)

.

From part (1) of Theorem 3.1 we know that the right hand side of (3.7) is
an integer number. In addition, there exist l,m, x, y ∈ Z≥0 satisfying (3.7)
if and only if the there exist l,m ∈ Z≥0 such that
(3.8)

gcd
{(

|µ|+m(e+ 1)
)
,
(
|λ|+ l(d+ 1)

)}
∣
∣
∣
∣

|λ|d− |µ|e

2
+ l

(
d+1

2

)

−m

(
e+1

2

)

.
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Such l and m do not always exist but in many cases they do. Concretely

Theorem 3.2. If n is an integer number, let ν2(n) be the exponent of the
highest power of the prime 2 that divides n.

Then there exist l and m such that (3.8) holds unless ν2(|µ|) 6= ν2(|λ|)
and 0 < min{ν2(|µ|), ν2(|λ|)} < min{ν2(e+ 1), ν2(d+ 1)}.

Since this is a side issue with respect to the main thrust of this paper,
and the proof, while not difficult, is slightly complicated, we will prove the
above theorem in another article.

3.3. Equation (1.1) as SL(2,C)-modules.

Notation 3.3. In order to write the proofs easier, if we have a rectangular
array of q numbers:

j
︷ ︸︸ ︷

i







[x+ i+ j − 2] [x+ i+ j − 3] ... [x+ i− 1]

[x+ i+ j − 3] [x+ i+ j − 3] ... [x+ i− 2]
... ...

...

[x+ j − 1] [x+ j − 2] ... [x]

in which all the columns and rows decrease by 1, we will denote the product
of all the elements [∗] in that rectangle by ρi,j(x). Clearly ρi,j(x) = ρj,i(x)
and if k > j then ρi,k(x) = ρi,k−j(x+ j)ρi,j(x).

Lemma 3.4. If λt is the transpose of λ (see §2.1), then:

hλ = hλt

Proof. Let x1, . . . , xt, y1, ..., yt be such that the Young diagram of λ is:

Y (λ) = y1

y2

yt

x1 x2 xt

Then hλ is the product of all the ρyi,xj
(1+ yi+1+ · · ·+ yt+xj+1+ · · ·+xt).

Since that product is obviously symmetric on the x’s and y’s, then we obtain
the result. �

Notation 3.5. Let h1, ..., ht, v1, ..., vt+1 be positive integers. The notation
〈h1, . . . , ht||v1, . . . , vt, vt+1〉 will mean the SL(2,C)-module Sλ

(
S(w)(C

2)
)

where w = v1 + · · · vr+1 − 1 and

λ =
(
(h1 + · · · + ht−1 + ht)

v1 , (h1 + · · ·+ ht−1)
v2 , . . . , (h1 + h2)

vt−1 , hvt1
)
,

In order to simplify this notation, given a sequence x1, x2, ..., xt, we will

denote by
→
x the sequence x1, x2, ..., xt and by

←
x the sequence xt, xt−1, ..., x1.

That is:
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〈
→
h ||

→
v 〉 =

v1

v2

vr

h1 h2 hr

v1 + · · ·+ vr + vr+1

If In this notation, the SL(2,C)-modules isomorphism given in Theorem
2.1 becomes

Theorem 3.6.

〈
→
h ||

→
v 〉 ≃ 〈

←
h ||

←
v 〉

In pictures:

v1

v2

vr

h1 h2 hr

v1 + · · ·+ vr + vr+1

≃

vr+1

vr

v2

hr hr−1 h1

v1 + · · ·+ vr + vr+1

Theorem 3.7. Let s ≥ 0 and t = s or t = s+1. Let x1, . . . , xs and y1, . . . , yt

be two sequences of positive integers, u, v, z three positive integers. Let |
→
x |

denote
∑

i xi.
a) The following SL(2,C)-isomorphisms hold:

〈
→
x, u,

→
y ||z,

→
x, v,

→
y 〉 ≃ 〈

→
x, v,

→
y ||z,

→
x, u,

→
y 〉

≀ ≀

〈
←
y , u,

←
x ||

←
y , v,

←
x, z〉 ≃ 〈

←
y , v,

←
x ||

←
y , u,

←
x, z〉

b) Let S = |
→
x |2 + 2

∑

i,j:i+j=t xiyj. If z(z − 1) = S + |
→
x |(u + v) in the

case t = s, or z(z− 1) = S + |
→
x |(u+ v) + uv in the case t = s+1 then the

first row is a GL(2,C)-isomorphism.
c) Except in the trivial case u = v, the second row and both columns are

never GL(2,C) isomorphisms.

Proof. a) The horizontal isomorphisms reveal a symmetry between u and v.
Since the vertical isomorphisms follow from Theorem 3.6, we only need to
prove one of the horizontal ones. We will prove the second one, i.e., we will

show that 〈
←
y , u,

←
x ||

←
y , v,

←
x, z〉 is symmetric on u and v.

Let us call λu,v the subyacent partition in 〈
←
y , u,

←
x ||

←
y , v,

←
x, z〉 Since

λv,u = λt
u,v, then by Lemma 3.4 we have hλu,v = hλv,u .

Now let us see c.
We need to compute cwλu,v

, where w = |
←
x |+ v+ |

←
y |+ z − 1. Note that

w depends on v but not u.
In this case the product ρi,j(k) arises from an array of the form:
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j
︷ ︸︸ ︷

i







[k + i− 1] [k + i] ... [k + i+ j − 2]
... ...

...

[k + 1] [k + 2] ... [k + j]

[k] [k + 1] ... [k + j − 1]

Let’s consider first the case t = s. The partition is then:

Y (λu,v) :

ys . . . y1 u xs . . . x1

ys
...

y1

v

xs
...

x1

We see from Y (λu,v) that c
w
λu,v

is the product of

(1) ρ
|
←
y |+v,|

←
y |+u

(w+2−|
←
y |−v). Note that w+2−|

←
y |−v = |

←
x |+z+1,

this item is ρ
|
←
y |+v,|

←
y |+u

(|
←
x |+ z + 1), thus symmetric in u, v.

(2) ρ’s from the part of the table below the horizontal v line, which are
independent of u, v.

(3) ρ’s from the part of the table to the right of vertical u column. These

are of the form ρyi,xj
(∗) and ∗ is of the form w+2+ |

←
y |+u+ some

x’s − some y’s, i.e. w + u+ other stuff. Note that since w depends
on v and not u, then w + u is symmetric on u, v.

Note that in the case s = t = 0, the proof reduces to just the case (1).
Now consider the case t = s+ 1. Now the partition is:

Y (λu,v) :

yt . . . y1 u xs . . . x1
yt

...

y1

v

xs
...

x1

As in the previous case, the ρ’s from the part of the table below the
horizontal v line are independent of u, v and the ρ’s from the part of the
table to the right of vertical u column depend on u+v and thus are symmetric
on u, v. So the only problem is the central part of the table, which, unlike
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the previous case is not a rectangle. Let’s call Γ the product of the ρ’s
corresponding to cλu,v of that part of the table. Here we simply observe
that if we were to append an extra rectangle of height v and length u to the
southeast corner of that part, then we would have a rectangle whose ρ, as in
the previous case, would be symmetric in u, v. But the rectangle appended
contributes with a ρv,u of something that does not depend on u, v, hence
it is symmetric on u, v. Therefore Γ is the quotient between two things
symmetric on u, v, hence, symmetric itself.

b) Let µu,v now denote the subyacent partition in 〈
→
x, u,

→
y ||z,

→
x, v,

→
y 〉 and

set wv = |
→
x |+ v+ |

→
y |+ z − 1. By part a) of this theorem and part b) of

Theorem 3.1, in order to prove 〈
→
x, u,

→
y ||z,

→
x, v,

→
y 〉 ≃ 〈

→
x, v,

→
y ||z,

→
x, u,

→
y 〉

as GL(2,C)-modules it suffices to see that |µu,v|wv = |µv,u|wu, i.e. it is
enough to see that |µu,v|wv is symmetric in u, v.

Let us start with the case s = t. The partition in this case is:

x1 . . . xs−1 xs u y1 . . . ys−1 ys

z

x1
...

xs−1

xs

v

y1
...

ys−1

Thus |µu,v| = z(|
→
x |+ u+ |

→
y |)+ |

→
x |2 + |

→
x |(u+ v) + 2

∑

i,j:i+j=s xiyj.

Since S = |
→
x |2 + 2

∑

i,j:i+j=s xiyj. (because this is the case t = s). Hence

|µu,v|wv =
(

(|
→
x |+ u+ |

→
y |)z + S + |

→
x |(u+ v)

)

.
(

|
→
x |+ v + |

→
y |+ z − 1

)

= (|
→
x |+ u+ |

→
y |)z(|

→
x |+ v + |

→
y |) + (|

→
x |+ |

→
y |)z(z − 1)+

+ uz(z − 1) + Sv + S(|
→
x |+ |

→
y |+ z − 1) + |

→
x |(u+ v)v+

+ |
→
x |(u+ v)(|

→
x |+ |

→
y |+ z − 1)

The first, second, fifth and last terms are symmetric on u, v. The third,

fourth and sixth, using z(z − 1) = S + |
→
x |(u+ v), are equal to:

uz(z − 1) + Sv + |
→
x |(u+ v)v = (u+ v)(S + |

→
x |(u+ v))

which is symmetric in u, v.
Let us analyze now the case t = s+ 1. The partition in this case is:
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x1 . . . xs u y1 . . . ys ys+1

z

x1
...

xs

v

y1
...

ys

Thus in this case |µu,v| = z(|
→
x | + u + |

→
y |) + |

→
x |2 + |

→
x |(u + v) +

2
∑

i,j:i+j=s+1 xiyj+uv Since in this case 2
∑

i,j:i+j=s+1 xiyj = 2
∑

i,j:i+j=t xiyj

we have |µu,v| = z(|
→
x |+ u+ |

→
y |) + S + |

→
x |(u+ v) + uv and:

|µu,v|wv =
(

(|
→
x |+ u+ |

→
y |)z + S + |

→
x |(u+ v) + uv

)

.
(

|
→
x |+ v + |

→
y |+ z − 1

)

= (|
→
x |+ u+ |

→
y |)z(|

→
x |+ v + |

→
y |) + (|

→
x |+ |

→
y |)z(z − 1)+

+ uz(z − 1) + Sv + S(|
→
x |+ |

→
y |+ z − 1) + |

→
x |(u+ v)v+

+ |
→
x |(u+ v)(|

→
x |+ |

→
y |+ z − 1) + uv(|

→
x |+ |

→
y |+ z − 1) + uv2

The first, second, fifth, seventh and eight terms are symmetric on u, v. The

third, fourth, sixth and last term, using z(z − 1) = S + |
→
x |(u + v) + uv,

are equal to (u+ v)(S + |
→
x |(u+ v) + uv), symmetric.

c) The previous second horizontal isomorphism never holds as a GL(2,C)
isomorphism. (except in the trivial case u = v).

This follows since λv,u = λt
u,v, hence |λu,v| = |λv,u| but wv 6= wu hence

|λu,v|wv 6= |λv,u|wu, so by Theorem 3.1 the GL(2,C) isomorphism does not
hold. �

Remark 3.8. Note that by the first part of Theorem 3.1, |λu,v|wv−|λv,u|wu

must be even. Since that diference is |λu,v|(v − u) then either v − u is even
or λ is even. This can also be verified directly.

Remark 3.9. Although in the statement and proof of Theorem 3.7 all the
variables must be positive, let us see what happens if we set some of them
equal to 0.

• If we set one of the variables yi or xi equal to zero, what happens is
that this gives rise to another configuration with all variables positive
but both s and t decrease by 1. For example, if we set x1 = 0, this
eliminates an x variable, decreasing s by 1 but “joins” ys−1 and ys
to form a new variable with value ys−1 + ys, thus decreasing s by 1
too. Hence the total number of variables decrease by two.

• If we set the variable z = 0, then we decrease the total number of
variables by 1, and we switch from the t = s case to the t = s+1 case
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and viceversa, but we go for example from the upper isomorphsim
of case s = t to the lower isomorphism for case t = s+ 1.

Therefore we could state just one theorem, in the following form:

Theorem 3.10. Let s ≥ 0. Let x1, . . . , xs and y1, . . . , ys be two sequences of
nonnegative integers, u, v, z three nonnegative integers . Then the following
SL(2,C)-isomorphisms hold:

〈
→
x, u,

→
y ||z,

→
x, v,

→
y 〉 ≃ 〈

→
x, v,

→
y ||z,

→
x, u,

→
y 〉

≀ ≀

〈
←
y , u,

←
x ||

←
y , v,

←
x, z〉 ≃ 〈

←
y , v,

←
x ||

←
y , u,

←
x, z〉

4. Some Corollaries

Here we obtain corollaries of Theorem 3.7.

Remark 4.1. Hermite’s is a corollary of our theorem, since it is the case
s = t = 0, with z = 1 which implies that the condition of part b) of Theorem

3.7 is satisfied, since z(z − 1) = 0 while S = |
→
x | = 0 too. Hence we obtain

the full statement of Hermite’s, while from Manivel’s result only the SL(2,C)
isomorphism can be deduced.

Theorem 4.2. Let v, z, u be positive integers. Let s ≥ 0. Then the two
following families of isomorphism hold:

(I)

〈zsvs+1||zs+1uvs〉 ≃ 〈zsuvs||zs+1vs+1〉 ≃ 〈zs+1vs||zsuvs+1〉

≀ ≀ ≀

〈vszs+1||vs+1uzs〉 ≃ 〈vsuzs||vs+1zs+1〉 ≃ 〈vs+1zs||vsuzs+1〉

and

(II)

〈zsuvs+1||zs+2vs+1〉 ≃ 〈zs+1vs+1||zs+1uvs+1〉 ≃ 〈zs+1uvs||zs+1vs+2〉

≀ ≀ ≀

〈vsuzs+1||vs+2zs+1〉 ≃ 〈vs+1zs+1||vs+1uzs+1〉 ≃ 〈vs+1uzs||vs+1zs+2〉

Proof. From Theore 3.7 we obtain:

〈zsuvs||zs+1vs+1〉 ≃ 〈zsvs+1||zs+1uvs〉

≀ ≀

〈vsuzs||vs+1zs+1〉 ≃ 〈vs+1zs||vsuzs+1〉

If we applly the lower isomorphism to 〈zsuvs||zs+1vs+1〉 we obtain:

〈zs+1vs||zsuvs+1〉 ≃ 〈zsuvs||zs+1vs+1〉 ≃ 〈zsvs+1||zs+1uvs〉

≀ ≀

〈vsuzs||vs+1zs+1〉 ≃ 〈vs+1zs||vsuzs+1〉

Applying theorem 3.6 to the top left, we get:
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〈zs+1vs||zsuvs+1〉 ≃ 〈zsuvs||zs+1vs+1〉 ≃ 〈zsvs+1||zs+1uvs〉

≀ ≀ ≀

〈vszs+1||vs+1uzs〉 ≃ 〈vsuzs||vs+1zs+1〉 ≃ 〈vs+1zs||vsuzs+1〉

Rearranging the top line we get the first result. The second result is similar:
from Theorem 3.7 we get:

〈zs+1vs+1||zs+1uvs+1〉 ≃ 〈zsuvs+1||zs+2vs+1〉

≀ ≀

〈vs+1zs+1||vs+1uzs+1〉 ≃ 〈vs+1uzs||vs+1zs+2〉

Again, applying the lower isomorphism to 〈zs+1vs+1||zs+1uvs+1〉, using the-
orem 3.6 and rearranging the top line we get the result. �

Remark 4.3. Note that the isomorphism I with s = 0 gives:

〈v||zu〉 ≃ 〈u||zv〉 ≃ 〈z||vu〉

≀ ≀ ≀

〈z||vu〉 ≃ 〈u||vz〉 ≃ 〈v||zu〉

i.e., it says that 〈z||vu〉 is symmetric in z, v, u. This is Manivel’s result. It
is not possible to say more because in order to apply 3.7 b) in this case,
we would need z(z − 1) = 0 which only happens when z = 1, and this is
Hermite’s.

Remark 4.4. The isomorphism II with s = 0 gives:

〈uv||zzv〉 ≃ 〈zv||zuv〉 ≃ 〈zu||zvv〉

≀ ≀ ≀

〈uz||vvz〉 ≃ 〈vz||vuz〉 ≃ 〈vu||vzz〉

and the topright isomorphism is a GL(2,C) isomorphism if z(z − 1) = uv.

Remark 4.5. If s ≥ 1 we cannot obtain GL(2,C) isomorphisms from the
isomorphisms I or II.
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