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Abstract
In this work, a multi-layer feedforward artificial neural network (ANN) was used for modeling and

predicting the oil extraction yields of three canola samples with three pretreatments (unpretreat-

ment, hydrothermal, and microwave pretreatment), considering extraction time and temperature as

variables. Based on the results of the training, validation, and testing of the network, a neural net-

work with eleven neurons in one hidden layer was selected as the best architecture for predicting

the oil extraction yield response. Results obtained by the ANN model were compared with models

from the literature (modified Fick’s diffusion models), generally obtaining a more accurate fit with

the ANN model.

Practical applications
Existing models of canola oil extraction kinetics have some limitations since they are not able to

describe various conditions, such as variability among samples and pretreatments. Artificial neural

networks (ANN) are powerful and high-precision computational statistical modeling techniques

that can address different problems. The aim of this work was to model the kinetics of canola oil

extraction under different conditions (varying temperature, samples of canola, pretreatments

applied) with an ANN, which presents several advantages over other reported models, allowing to

describe a process that depends on many variables even when the data are incomplete or contain

errors, thus facilitating its industrial application.

1 | INTRODUCTION

Canola (rapeseed low in erucic acid) is an oilseed with high oil content

cultivated worldwide. In Argentina, winter and spring rapeseed are the

most common canola varieties. Canola oil is widely consumed world-

wide; it is extracted by pressing, solvent extraction, or a combination of

the two. The solvent extraction process has been extensively studied

(Fern�andez, Perez, Crapiste, & Nolasco, 2012; Ramos, S�anchez, DE

Figueiredo, Nolasco, & Fern�andez, 2017; S�anchez, Mateo, Fern�andez,

& Nolasco, 2017; Z�arate, Perez, Crapiste, Nolasco, & Fern�andez, 2015).

In recent years there has been a growing search for new methods that

increase the extraction yield while maintaining oil quality (hydrothermal

pretreatments, microwave irradiation, etc.).

Mathematical models derived from Fick’s laws of diffusion have

been developed to describe the extraction kinetics for seeds with dif-

ferent pretreatments or untreated. Fern�andez et al. (2012) used a sim-

plified diffusion model for the extraction of canola oil from seeds of

the winter variety. The same model was used by Z�arate et al. (2015) to

study the extraction of oil from untreated and hydrothermally

pretreated canola seeds of the spring variety. In both cases, the inde-

pendent variable was extraction time, maintaining constant tempera-

tures. S�anchez et al. (2017) studied the extraction kinetics of canola oil

for untreated and microwave-pretreated seeds of the winter variety,

developing a modified Fick’s diffusion model as a function of extraction

time and temperature. In all the cases, they reported variation in the

model parameters, indicating that the oil extraction process is influ-

enced by temperature, time, seed sample, and the existence of pre-

treatments. However, no model has yet been developed that describes

the canola oil extraction taking into account the process variables and

the characteristics of the canola and the pretreatments.

Artificial neural networks (ANNs) are sophisticated modeling tech-

niques inspired by the way biological neurons develop learning and

memory functions. ANNs present several advantages over conven-

tional modeling techniques since they do not depend on assumptions

on the nature of the phenomenological mechanisms, and they are able

to learn linear and nonlinear relationships between variables from a set

of examples (Fathi, Mohebbi, & Razavi, 2011). The basic units of ANNs

are neurons (analogous to biological neurons) and weights (connections
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that are comparable to the synapses in a biological system). An ANN is

able to learn from examples and generalize from simultaneous parallel

calculations of its elements, thus allowing to address different issues,

even if the data are incomplete or contain errors (Rafiq, Bugmann, &

Easterbrook, 2001). The use of this tool to model mass transfer kinetics

is recommended by several authors (Baruch, Genina-Soto, Nenkova, &

Barrera-Cort�es, 2004; Lertworasirikul & Saetan, 2010; Shokri, Hatami,

& Khamforoush, 2011). For example, studies have been conducted

using ANNs to predict the extraction kinetics of anise essential oil, with

the results showing that the proposed model was more accurate than a

mathematical model of diffusion (Shokri et al., 2011). The aim of this

work was to develop an ANN structure that allows to model and pre-

dict accurately the solvent extraction kinetics of canola oil at different

temperatures for three seed samples and three pretreatment

conditions.

2 | MATERIAL AND METHODS

2.1 | Experimental data

Data of canola oil extractions for three samples (C0, C1, C2) and various

pretreatments (unpretreatment: grinding; hydrothermal: hydrothermal

pretreatment and grinding; microwave: microwave pretreatment and

grinding) corresponding to the works by Fern�andez et al. (2012), Z�arate

et al. (2015), and S�anchez et al. (2017) were used (Table 1). In these

studies, the authors used a batch apparatus with a magnetic stirrer

(200 rpm) for solid–liquid oil extraction with hexane. The experiments

were conducted at different times (from 300 to 64,800 s) and at differ-

ent temperatures (298–333 K) in order to determine the kinetics of oil

extraction for all cases. The hydrothermal pretreatment applied to sam-

ple C2 by Z�arate et al. (2015) was carried out in an autoclave at 393 K

for 5 min, while S�anchez et al. (2017) pretreated sample C0 in a domes-

tic microwave oven at 607 W for 5 min.

2.2 | Artificial neural network

A fully connected multilayer perceptron (MLP) feed forward neural net-

work was used. The MLP structure is one of the most common types

of ANNs (Fathi et al., 2011; Rafiq et al., 2001; Ramzi, Kashaninejad,

Salehi, Mahoonak, & Razavi, 2015; Shokri et al., 2011), and it consists

of one or more inputs representing independent variables, one output

layer with neurons representing the dependent variables, and one or

more hidden layers (Hagan, Demuth, Beale, & DE Jes�us, 1996) that

contain neurons to capture the nonlinearity of the system. The com-

plexity of the network depends on the number of layers and the num-

ber of neurons in each layer. The selection of appropriate network

architecture with optimum number of neurons in the hidden layers is

an important factor because it’s effects upon the network convergence

as well as on the accuracy of estimations. The hidden layers connect

inputs x to outputs y through a series of weights w interconnected

mathematically by Equation 1 (Shokri et al., 2011):
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(1)

where wij is the weight of the ith component of the input vector which

is connected to the jth neuron; n is the number of inputs to the neuron;

bi is the bias associated with the jth neuron, adding an extra variable,

which can make it more powerful than a network without thresholds

(Hagan et al., 1996); and f is the activation function that gives the

nonlinear behavior of the neuron. The activation function may be linear

or nonlinear, depending on the network topology. In this work, the

categories canola sample (x1) and pretreatment (x2), and the variables

temperature (x3) and extraction time (x4) were used as input data, while

the oil yield relative to the yield at infinite time (64,800 s) for each

experiment was considered as the output data (z), thus constituting the

input and output vectors as shown in equation 2.
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For the categories canola sample (x1) and pretreatment (x2), num-

bers from 0 to 2 were assigned to each condition, as shown in Table 2.

In order to ensure a successful model, two important factors must

be considered: the number of layers, and the number of neurons in

each hidden layer. Since many practical problems in neural modeling

could be solved with a hidden layer (Rafiq et al., 2001), an ANN with

two layers (a hidden layer and an output layer) was used with a back-

propagation algorithm (BP) as supervised training algorithm because it

provides quick adjustments and is easily applicable (Shokri et al., 2011).

The weights were adjusted using the Levenberg-Marquardt algorithm,

which converges faster than gradient-descent methods (Hagan et al.,

1996). In this technique, the data set is divided into three subsets:

training, validation, and testing. The training and validation subsets

were used to adjust the model parameters, while the testing subset

was used to evaluate its predictive power.

Of the total dataset of 132 values, 88, 22, and 22 were used to

construct the training, validation, and testing subsets, respectively.

The modified Jenkin’s method (Rafiq et al., 2001) was applied to

each category to select the training data, those selections combined

were used to train the network, and the remaining data was ran-

domly divided to form the validation and testing sets. The training

was conducted for up to 1000 epochs or until the error of the

validation data reached a minimum, thus avoiding over training

the network (Hagan et al., 1996). The optimal number of neurons in

TABLE 1 Characterization of the canola samples (Abas et al., 2013)

C0 C1 C2

Moisture (%db) 5.760.2 8.160.1 7.460.2

Oil (%db) 46.360.3 45.260.9 40.660.6

Protein (%db) 20.360.1 18.760.6 25.960.9

C0: Canola used by S�anchez et al. (2017). C1: Canola used by Fern�andez
et al. (2012). C2: Canola used by Z�arate et al. (2015). %db: Dry basis.
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the hidden layer was determined by a process of trial and error

(Fathi et al., 2011; Hernandez-Perez, García-Alvarado, Trystram, &

Heyd, 2004; Lertworasirikul & Saetan, 2010; Ramzi et al., 2015),

minimizing the value of MSE (mean squared error) for the validation

data. The activation functions “tansig” and “purelin” of MATLAB

were selected for the hidden layer and the output layer, respec-

tively. These functions have also been used by other authors (Shokri

et al., 2011). They are described in Equations 3 and 4.

tansig xð Þ5 2
11e22x

21 (3)

purelin xð Þ5x (4)

In order to ensure a good prediction capability (goodness of fit and

accuracy), it is recommended to correlate the two performance param-

eters, high quadratic coefficient of determination (R2) to prove a good

fitness and minimum root mean square error (RMSE) to prove the accu-

racy. The RMSE and the quadratic coefficient of determination (R2)

were used to assess the accuracy and goodness of fitness of the mod-

els respectively (Fathi et al., 2011). They were calculated using Equa-

tions 5 and 6:
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where zexpi represents the value of the experimental response for the

ith data, zpredi represents the predicted value for the ith data, zmexp is

the value of the average response, and N is the total number of data

points. For data processing and the design and training of the ANN,

the MATLAB software was used.

2.2.1 | Data pre-processing

It is possible to achieve greater efficiency in the training of the neural

network by pre-processing the input and output data before entering

them into the network. Since the way the data is presented to the net-

work affects the learning process, normalizing the input and output

TABLE 2 Inputs of the ANN

Canola samplea 0 0 1 2 2

Pretreatmentb 0 2 0 0 1

Temperature range (K) 298–333 313–333 313–333 298–333 298–333

Time range (s) 300–64,800 300–64,800 300–64,800 300–64,800 300–64,800

a0:C0; 1: C1; 2: C2.
b0: Unpretreated; 1: Hydrothermal; 2: Microwave.

FIGURE 1 Schematic diagram of the optimal multilayer feedforward ANN model. xi: ith input; whij: weight corresponding to the ith input
of the jth neuron in the hidden layer; bhj: bias of the jth neuron in the hidden layer; wojk: weight corresponding to jth input of the kth
neuron in the output layer; bok: bias of the kth neuron in the output layer; tansig: tangent sigmoid function; purelin: linear activation
function; yj: output of j neuron in the output layer; z: output of ANN
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data before submitting them to the network is recommended (Rafiq

et al., 2001). In the present work, the data were normalized for each

input and output to zero mean and unit standard deviation using the

mapstd function of the MATLAB software.

3 | RESULTS AND DISCUSSION

3.1 | Optimal ANN

The ANN with 11 neurons in the hidden layer gave the best results.

Figure 1 shows a schematic diagram of the architecture of the adopted

network.

Figure 2 shows the evolution of the MSE of the network during

training, starting at a high value, and decreasing along the process.

Three curves corresponding to the training, validation, and test sets are

presented in the graph. When the validation error reached a minimum,

the training process was stopped, and the weights and biases were

obtained.

The weights (w) and biases (b) for each neuron are reported in

Table 3. The hidden layer contains 44 weights and 11 biases, while the

output layer contains 11 weights and 1 bias.

A comparison between the experimental data and the values pre-

dicted by the network is presented in Figure 3. The results show a cor-

relation straight line with a unit linear coefficient and independent

terms equal to zero for all cases, except for sample C2, which presents

a linear coefficient value of 0.99 for the unpretreated sample, and a lin-

ear coefficient value of 0.96 and an independent term equal to 0.05

for the hydrothermally pretreated sample. In turn, the correlation

between the experimental and the predicted values for the testing sub-

set are shown in Figure 4. A correlation coefficient of 0.971 can be

observed, with a RMSE of 0.0356.

For all cases R2 was higher than 0.950, indicating a good fitness of

the model, and for all cases RMSE was lower than 0.0500 (Figures 3

and 4), which is the maximum coefficient of variation of the experimen-

tal data (5%, Fern�andez et al., 2012; S�anchez et al., 2017; Z�arate et al.,

2015) indicating high accuracy of the models.

In general, a good fit of the experimental data was obtained with

this model for all the experiments, indicating that the ANN model

developed in this work could adequately predict the extraction kinetics

of canola oil with hexane for the range of variables studied.

Table 4 presents a comparison between the ANN model and the

modified Fick’s diffusion models (DMs) for each experiment. In general,

a more accurate fit provided by the ANN model with respect to

the corresponding DMs is observed. These results are similar to those

FIGURE 2 Early stopping criteria and the trends of the mean
squared error for the training, validation and testing subsets as a
function of epochs

TABLE 3 Parameters of the optimal ANN

Hidden layer parameters Output layer parameters

b 22.1780

w w

Neuron Canola sample Pretreatment Temperature Time b Neuron w

1 21.6334 0.1902 20.7136 0.4086 4.4449 1 1.0714

2 0.7717 23.2816 0.2659 2.5444 22.2438 2 22.5873

3 22.6158 23.2858 20.2524 21.0787 20.8224 3 22.1501

4 0.6275 1.0305 20.2429 1.9419 2.6097 4 22.6155

5 2.9243 22.3986 20.2912 7.4568 5.5626 5 2.0292

6 1.0417 3.2865 1.9430 21.9068 0.1845 6 0.2422

7 2.3303 6.8163 0.0243 23.3845 0.8097 7 25.5820

8 3.9305 2.6794 20.2965 0.1054 0.1791 8 2.4594

9 7.1583 24.3185 0.1781 28.2811 2.2701 9 24.4016

10 21.6833 4.5054 20.1672 6.0815 8.9030 10 2.5599

11 21.2818 21.5794 20.0946 2.3795 21.0210 11 22.6021
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reported by other authors who modeled the mass transfer during the

dehydration of kaffir lime peel (Lertworasirikul & Saetan, 2010) and

the near critical carbon dioxide extraction of anise (Shokri et al., 2011)

by means of ANN and mathematical models, obtaining a better

accuracy with ANN than with the mathematical models. It is important

to note that the ANN allows to adjust the data for all the studied con-

ditions, capturing the relationship between the variables and the

behavior of the phenomena with a single model, even processing

incomplete data, which would facilitate its potential industrial

application.

3.2 | Data simulated using the ANN and DM models

In order to determine the correspondence between the ANN and DM

models, responses (z1) for both models were simulated for randomly

selected variables within their range of validity (Table 2). The results

are shown in Table 5.

It can be observed that the maximum difference between the val-

ues predicted by both models is 0.07, and that the coefficients of varia-

tion between them do not exceed 5.6%. Although the ANN does not

require any assumptions on the nature of the phenomenological

mechanisms, it showed good correspondence with the modified Fick’s

diffusion model (DM).

FIGURE 3 Experimental data and values predicted by ANN. m: linear coefficient. b: independent term. (a) Unpretreated sample C0. m51,
b50, R250.993; RMSE50.0181. (b) microwave-pretreated sample C0. m51, b50, R250.993; RMSE50.0157. (c) Unpretreated sample
C1. m51, b50, R250.984; RMSE50.0218. (d) Unpretreated sample C2. m50.99, b50, R250.973; RMSE50.0248. (e) Hydrothermally
pretreated sample C2. m50.96, b50.05, R250.923; RMSE50.0301. (f) Total data. m51, b50, R250.988; RMSE50.0222

FIGURE 4 Experimental data and values predicted by ANN for
test data. m: linear coefficient. b: Independent term. m51.051,
b50.045, R250.971; RMSE50.0356
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4 | CONCLUSIONS

In this work, the kinetics of canola oil extraction with hexane at differ-

ent temperatures (298–333 K) for three samples of canola seeds and

different pretreatments (unpretreatment, microwave, hydrothermal) was

modeled using an artificial neural network. The data was divided into

three subsets: 2/3 for training and to adjust the model parameters, 1/6

for validation, to avoid overtraining the network, and 1/6 for testing

the model. The best result was obtained with a neural network with a

hidden layer and 11 neurons in the hidden layer, using the Levenberg-

Marquardt algorithm to adjust the parameters, with the activation func-

tions “tansig” for the hidden layer and “purelin” for the output layer.

The high correlation coefficients (R2) between the values predicted by

the network and the corresponding experimental data, as well as the

low values of the root mean square error (RMSE) demonstrate the fea-

sibility of using the ANN for modeling the canola oil extraction process,

presenting in general better accuracy than the DM models. The ANN

model presented the advantage of including qualitative variables such

as simple origin and pretreatment directly as independent variables,

while in DM models these attributes should be studied separately. This

unique ANN model represented the oil extraction kinetics within the

range of the variables studied, allowing to describe a process that

depends on multiple variables from a set of incomplete data. In this

context, this tool has great potential at industrial level considering that

TABLE 4 Comparison of RMSE and R2 values between the ANN and DM models for different operating variables

ANN Modified Fick’s diffusion model (DM)

Canola sample Pretreatment T(K) R2 RMSE Model R2 RMSE

C0 (S�anchez et al., 2017) Unpretreated 298–333 0.993 0.0181
z x3; x4ð Þ5120:462

P8
n51

1
n2 e

2 0:233e
22571:6 1

x3

� �
n2x4

0.990 0.0207

Microwave 298–333 0.994 0.0157
z x3; x4ð Þ5120:450

P8
n51

1
n2 e

2 0:677e
22611:3 1

x3

� �
n2x4

0.992 0.0174

C1 (Fern�andez et al., 2012) Unpretreated 298 0.997 0.0132 z x4ð Þ5120:464e20:000100x4 0.977 0.0487

Unpretreated 313 0.964 0.0337 z x4ð Þ5120:464e20:000131x4 0.952 0.0330

Unpretreated 323 0.990 0.0173 z x4ð Þ5120:464e20:000160x4 0.965 0.0176

Unpretreated 333 0.991 0.0151 z x4ð Þ5120:464e20:000246x4 0.950 0.0237

C2 (Z�arate et al., 2015) Unpretreated 313 0.978 0.0280 z x4ð Þ5120:455e20:000237x4 0.940 0.0275

Unpretreated 323 0.979 0.0186 z x4ð Þ5120:455e20:000416x4 0.930 0.0344

Unpretreated 333 0.969 0.0253 z x4ð Þ5120:455e20:000559x4 0.910 0.0222

Hydrothermal 313–333 0.923 0.0301 z x4ð Þ5120:304e20:000734x4 0.850 0.0324

z: relative oil extraction yield; x3: temperature (K); x4: extraction time (s).

TABLE 5 Comparison between the responses simulated using the ANN model and modified diffusive models (DM) for different operating
variables

Canola sample Pretreatment Temperature (K) Time (s) Response z ANN Response z DM Difference |ANN-DM|

C0 Unpretreated 307 4,331 0.59 0.59 0.01

326 8,363 0.74 0.78 0.04
341 12,394 0.89 0.87 0.02

Microwave 311 300 0.43 0.43 0.00
330 4,313 0.83 0.82 0.01
341 16,425 0.97 1.00 0.02

C1 Unpretreated 298 3,000 0.61 0.66 0.05

313 500 0.55 0.57 0.02
323 2,000 0.68 0.66 0.02
333 1,400 0.69 0.67 0.02
313 6,000 1.00 0.96 0.04
323 800 0.93 0.90 0.03
333 13,000 1.06 1.00 0.06

C2 Unpretreated 313 800 0.59 0.62 0.04

323 3,000 0.84 0.87 0.03
333 11,000 0.93 1.00 0.07

Hydrothermal 323 1,000 0.90 0.85 0.05
328 64,800 1.01 1.00 0.01
313 400 0.83 0.80 0.03
323 15,000 1.03 0.97 0.07
333 5,000 0.98 0.91 0.07
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process data can be collected continuously during the operation of an

industrial process.
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NOMENCLATURE

C0 Canola sample used by S�anchez et al. (2017).

C1 Canola sample used by Fern�andez et al. (2012).

C2 Canola sample used by Z�arate et al. (2015).

y Output of a neuron in the hidden layer.

n Number of inputs to a neuron.

f Activation function.

w Weight associated with an input.

b Bias associated with a neuron.

Z Output vector of the neural network.

z Oil extraction yield response relative to the yield

at infinite time.

X Input vector of the neural network.

x1 Canola sample.

x2 Pretreatment.

x3 Temperature variable (K).

x4 Extraction time variable (s).

tansig(x) Sigmoid tangent activation function.

purelin(x) Linear activation function.

RMSE Root mean square error.

MSE Mean square error.

m Linear coefficient of the correlation straight line.

b Independent term of the correlation straight line.

Subscripts

0,1,2,. . ..,n series terms.

t at time t.

Superscripts

exp Experimental data.

pred Predicted data.

mexp Mean experimental data
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