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Abstract. In this note we propose a definition of relative annihilator in distributive nearlattices
with greatest element different from that given in [6] and we present some new characterizations
of the distributivity. Later, we study the class of normal and p-linear nearlattices, the lattice of
filters and semi-homomorphisms that preserve annihilators.
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1. INTRODUCTION AND PRELIMINARIES

Abbott in [1] established a correspondence between the class of Tarski algebras, or
implication algebras, and join-semilattices in which every principal filter is a Boolean
lattice with respect to the induced order. There is an algebraic structure that gener-
alizes the class of Tarski algebras: nearlattices. A nearlattice is a join-semilattice in
which every principal filter is a lattice. The class of nearlattices forms a variety that
has been studied in [9] and [11] by Cornish and Hickman, and in [4], [6] and [7] by
Chajda, Kolařı́k, Halaš and Kühr. In [2] the authors showed that the axiom systems
given in [11] and [4] are dependent and that the variety of nearlattices is 2-based.
An important class of nearlattices is the class of distributive nearlattices. Recently in
[3], a full duality between distributive nearlattices with greatest element and certain
topological spaces with a distinguished basis was developed.

It is well known that the notion of distributivity in a lattice can be characterized
in different ways, for example, a lattice A is distributive if and only if the lattice
Fi.A/ of all filters of A is distributive. Another way is through some special subsets,
called annihilators. In a lattice A; the annihilator of a relative to b is defined as
the set ha;bi D fx 2 A W x ^ a � bg. In [12], Mandelker studied the properties of
relative annihilators and characterized the distributivity of a lattice in terms of its
relative annihilators. To be more precise, a lattice A is distributive if and only if
ha;bi is an ideal of A for all a;b 2A. These results were generalized by Varlet to the
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class of distributive semilattices ([14]) and subsequently to the variety of distributive
nearlattices by Chajda and Kolařı́k ([6]).

The main aim of this paper is to propose a definition of relative annihilator in
distributive nearlattices with greatest element different from that given in [6]. In Sec-
tion 2 we introduce the relative annihilators and we develop new characterizations.
In Section 3 we present the class of normal and p-linear nearlattices. In Section 4
we study the lattice of filters of a distributive nearlattice. Finally, in Section 5 we
characterize the semi-homomorphisms that preserve annihilators.

Given a poset hX;�i, a set Y � X is called increasing if it is closed under �,
i.e., if for every x 2 Y and every y 2 X , if x � y then y 2 Y . Dually, Y � X is
said to be decreasing if for every x 2 Y and every y 2 X , if y � x then y 2 Y .
The complement of a subset Y � X will be denoted by X �Y . For each Y � X ,
the increasing (decreasing) set generated by Y is ŒY /D fx 2 X W 9y 2 Y .y � x/g

(.Y �D fx 2X W 9y 2 Y .x � y/g). If Y D fyg, then we will write Œy/ and .y� instead
of Œfyg/ and .fyg�, respectively.

A join-semilattice with greatest element is an algebra hA;_;1i of type .2;0/ such
that the operation _ is idempotent, commutative, associative and x _ 1 D 1 for all
x 2 A. The binary relation � defined by x � y if and only if x_y D y is a partial
order. In what follows, we shall write simply semilattice.

A filter of a semilattice A is a subset F �A such that 1 2 F , F is increasing and if
x;y 2 F then x^y 2 F , whenever x^y exists. The set of all filters of A is denoted
by Fi.A/. Let X be a non-empty subset of A. The least filter containing X is called
the filter generated by X and will be denoted by F.X/. Note that if X D fag then
F.fag/D Œa/, called the principal filter of a.

A subset I of A is called an ideal if I is decreasing and if x;y 2 I then x_y 2 I .
The least ideal containing X is called the ideal generated by X and will be denoted
by I.X/. We shall say that a non-empty proper ideal P is prime if for all x;y 2 A,
if x^y 2 P , whenever x^y exists, then x 2 P or y 2 P . We will denote by Id.A/
and X.A/ the set of all ideals and prime ideals of A, respectively. Finally, we will
say that a non-empty ideal I of A is maximal if it is proper and for every J 2 Id.A/,
if I � J then J D I or J D A. We denote by Idm.A/ the set of all maximal ideals
of A. It is easy to prove that every maximal ideal is prime.

Definition 1. A nearlattice is a semilatticeA such that for each a 2A the principal
filter Œa/D fx 2 A W a � xg is a bounded lattice.

The class of nearlattices forms a variety since every nearlattice A can be described
as an algebra with one ternary operation: if x;y;a 2 A, the element m.x;y;a/ D
.x_a/^a .y_a/ is correctly defined because x_a;y_a 2 Œa/ and Œa/ is a lattice,
where ^a denotes the meet in Œa/.

Proposition 1 ([2]). Let A be a nearlattice. The following identities are satisfied:
(1) m.x;y;x/D x,
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(2) m.m.x;y;´/;m.y;m.u;x;´/;´/;w/Dm.w;w;m.y;m.x;u;´/;´//,
(3) m.x;x;1/D 1.

Conversely, let hA;m;1i be an algebra of type .3;0/ satisfying the identities (1)–
(3). If we define x_y Dm.x;x;y/, then A is a semilattice and for each a 2 A, Œa/
is a bounded lattice, where the meet of x;y 2 Œa/ is x^a y Dm.x;y;a/. Hence A is
a nearlattice.

Definition 2. Let A be a nearlattice. We call A distributive if the principal filter
Œa/D fx 2 A W a � xg is a bounded distributive lattice for each a 2 A.

Theorem 1 ([7]). Let A be a nearlattice. Then A is distributive if and only if
satisfies either of the following identities:

(1) m.x;m.y;y;´/;w/Dm.m.x;y;w/;m.x;y;w/;m.x;´;w//,
(2) m.x;x;m.y;´;w//Dm.m.x;x;y/;m.x;x;´/;w/.

Theorem 2 ([10]). Let A be a distributive nearlattice. Let I 2 Id.A/ and let
F 2 Fi.A/ such that I \F D ¿. Then there exists P 2 X.A/ such that I � P and
P \F D¿.

For distributive nearlattices we have the following lemma which characterizes the
generated filters and can be deduced from the results given in [9].

Lemma 1. Let A be a distributive nearlattice. Let X � A be a non-empty subset.
Then

F.X/D fa 2 A W 9x1; :::;xn 2 ŒX/ 9x1^ :::^xn .x1^ :::^xn D a/g:

A filter H is said to be finitely generated if H D F.X/ for some finite non-empty
subset X of A. We will denote by Fif .A/ the set of all finitely generated filters of A.

Recall that if A is a distributive nearlattice, then hFi.A/;Y;Z;f1g;Ai is a bounded
distributive lattice, where the least element is f1g, the greatest element is A, and for
all G;H 2 Fi.A/ we have that GYH D F.G[H/ and GZH DG\H .

Theorem 3 ([4, 9]). Let A be a nearlattice. The following conditions are equival-
ent:

(1) A is distributive.
(2) hFi.A/;Y;Z;f1g;Ai is a bounded distributive lattice.
(3)

˝
Fif .A/;Y;Z;f1g;A

˛
is a bounded distributive lattice.

A function h W A! B between distributive nearlattices is a
semi-homomorphism if h.1/ D 1 and h.a_ b/ D h.a/_ h.b/ for all a;b 2 A. A
homomorphism is a semi-homomorphism h such that for all a;b 2 A, if a^b exists,
then h.a^b/D h.a/^h.b/. In [3] it was shown that there exists a duality between
semi-homomorphisms of distributive nearlattices and certain binary relations.
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2. RELATIVE ANNIHILATORS

In this section we will develop new characterizations of the distributivity of a near-
lattice through relative annihilators and relative maximal ideals.

Definition 3. Let A be a semilattice. For a;b 2 A, the annihilator of a relative to
b is the set

a ıb D fx 2 A W b � x_ag:

Let A be a semilattice. Let a;b 2 A;I 2 Id.A/ and F 2 Fi.A/. We introduce the
following subsets of A:

I ıb D fx 2 A W 9i 2 I .b � x_ i/g;

a ıF D fx 2 A W 9f 2 F .f � x_a/g:

Let X;Y � A. We denote by X ıY the set

X ıY D
S
fa ıb W .a;b/ 2X �Y g:

Remark 1. Note that a ıb D .a�ıb D a ı Œb/D .a�ı Œb/ for all a;b 2 A.

The following theorem characterizes distributive nearlattices.

Theorem 4. Let A be a nearlattice. The following conditions are equivalent:
(1) A is distributive.
(2) a ıb 2 Fi.A/ for all a;b 2 A.
(3) I ıb 2 Fi.A/ for all I 2 Id.A/ and b 2 A.
(4) a ıF 2 Fi.A/ for all F 2 Fi.A/ and a 2 A.
(5) I ıF 2 Fi.A/ for all I 2 Id.A/ and F 2 Fi.A/.

Proof. .1/) .2/ It is obvious that 1 2 a ı b. Let x;y 2 A such that x � y and
x 2 a ı b. Then, x _ a � y _ a and b � x _ a. So, b � y _ a and y 2 a ı b. Let
x;y 2 a ıb such that x^y exists. Then, b � x_a and b � y_a, i.e., x_a, y_a 2
Œb/. Since Œb/ is a bounded distributive lattice, b � .x_a/^b .y_a/D .x^y/_a.
Then, x^y 2 a ıb and a ıb 2 Fi.A/.
.2/) .3/ Let b 2 A and I 2 Id.A/. We note that i ı b � I ı b for all i 2 I . It

is easy to prove that 1 2 I ıb and that I ıb is increasing. Let x;y 2 I ıb such that
x ^ y exists. Then there exist i1; i2 2 I such that b � x _ i1 and b � y _ i2. Let
i D i1_ i2 2 I . So, b � x_ i and b � y_ i . Since x;y 2 i ıb and i ıb 2 Fi.A/, we
have that x^y 2 i ıb � I ıb. Therefore, I ıb 2 Fi.A/.
.3/) .4/ Let a 2A and F 2 Fi.A/. It follows easily that 1 2 aıF and that aıF

is increasing. Let x;y 2 a ıF such that x ^y exists. Then there exist f1;f2 2 F

such that f1 � x_a and f2 � y_a. So, x_a;y_a 2 F . Since x_a;y_a 2 Œa/,
.x_a/^a .y_a/ exists and .x_a/^a .y_a/ 2 F . As .x_a/^a .y_a/ � x_a

and .x_a/^a .y_a/� y_a, we have x;y 2 aı ..x_a/^a .y_a//. By Remark 1,
aı..x_a/^a .y_a//D .a�ı..x_a/^a .y_a// and by hypothesis .a�ı..x_a/^a
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.y_a// 2 Fi.A/. Then x^y 2 aı ..x_a/^a .y_a//, but as .x_a/^a .y_a/ 2 F

we have that x^y 2 a ıF . So, a ıF 2 Fi.A/.
.4/) .5/ Let I 2 Id.A/ and F 2 Fi.A/. It is easy to see that 1 2 I ıF and

that I ıF is increasing. Let x;y 2 I ıF such that x ^ y exists. Then there exist
.i1;f1/; .i2;f2/2 I �F such that x 2 i1ıf1 and y 2 i2ıf2, i.e., f1� x_i1 and f2�

y_ i2. Let i D i1_ i2 2 I . On the other hand, x_f1;y_f2 2 F and .x_f1/^x^y

.y _f2/ exists in Œx^y/. It follows that .x_f1/^x^y .y _f2/ 2 F . We consider
i ıF . We note that .x_f1/^x^y .y_f2/� x_ i and .x_f1/^x^y .y_f2/� y_ i .
So, x;y 2 i ıF . By hypothesis i ıF 2 Fi.A/ and x^y 2 i ıF , i.e., there exists f 2F
such that f � .x^y/_ i . Then x^y 2 i ıf and x^y 2 I ıF . Thus, I ıF 2 Fi.A/.
.5/) .1/ Let a 2 A and x;y;´ 2 Œa/. We know that the inequality x_ .y^´/ �

.x_y/^ .x_´/ always holds. We prove the other inequality. As .x_y/^ .x_´/�
y_x and .x_y/^ .x_´/� ´_x then y;´ 2 x ı ..x_y/^ .x_´//. By Remark 1,
x ı ..x_y/^ .x_´//D .x�ı Œ.x_y/^ .x_´// and by hypothesis .x�ı Œ.x_y/^
.x _ ´// 2 Fi.A/. So, y ^ ´ 2 .x� ı Œ.x _ y/^ .x _ ´//, i.e., there exist i 2 .x� and
f 2 Œ.x_y/^ .x_´// such that y ^´ 2 i ıf . So, f � .y ^´/_ i . It follows that
.x_y/^ .x_´/� x_ .y^´/ and Œa/ is a bounded distributive lattice. �

In lattice theory, a lattice is distributive if and only if every proper ideal is an
intersection of prime ideals. Here we present a generalization of this characterization.

Theorem 5. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.
(2) Every proper ideal of A is an intersection of prime ideals.

Proof. .1/) .2/ See Corollary 2.9 of [3].
.2/) .1/ Let a;b 2A. We prove that aıb 2 Fi.A/. It is easy to see that 1 2 aıb

and that aıb is increasing. Let x;y 2 aıb such that x^y exists. LetQD ..x^y/_
a� and suppose that b …Q. So, Q is a proper ideal and by hypothesis we have that
QD

T
fP 2X.A/ WQ� P g. Then there exists P 2X.A/ such that .x^y/_a 2 P

and b … P . So, x ^y 2 P and a 2 P . As P is prime, x 2 P or y 2 P . Suppose
that x 2 P . Then x_a 2 P and since x 2 a ıb, i.e., b � x_a, we have that b 2 P
which is a contradiction. The same reasoning applies when y 2 P . Then b 2Q and
b � .x^y/_a. Therefore, x^y 2 aıb and aıb 2 Fi.A/. It follows from Theorem
4 that A is distributive. �

We study a new characterization of distributive nearlattices in terms of the notion
of relative maximal ideal with respect to a set.

Definition 4. Let A be a semilattice. Let S be an increasing subset of A. An ideal
I of A is called a relative maximal ideal with respect to S , when I is maximal among
all the ideals which are disjoint to S .
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Lemma 2. Let A be a semilattice. Let I 2 Id.A/ and F 2 Fi.A/. Then I is
a relative maximal ideal with respect to F if and only if .H ıF /\ I ¤ ¿ for all
H 2 Id.A/ such that H ª I .

Proof. Suppose that I is a relative maximal ideal with respect to F . LetH 2 Id.A/
such that H ª I . We consider the ideal I _H . Since I is a relative maximal ideal
with respect to F and I � I _H then .I _H/\F ¤¿, i.e., there exist f 2 F;i 2 I
and h2H such that f � i_h. So, i 2 hıf and i 2H ıF . Therefore, .H ıF /\I ¤
¿.

Assume that .H ıF /\ I ¤ ¿ for all H 2 Id.A/ such that H ª I . Suppose that
I is not a relative maximal ideal with respect to F . Then there exists J 2 Id.A/ such
that I � J and J \F D¿. Since J ª I , by hypothesis we get .J ıF /\I ¤¿. Then
there exist i 2 I and .j;f / 2 J �F such that i 2 j ıf , i.e., f � i _j . As i 2 I � J
and i _j 2 J , we have that f 2 J . So, J \F ¤¿ which is a contradiction. �

Theorem 6. Let A be a nearlattice. The following conditions are equivalent:
(1) A is distributive.
(2) Every relative maximal ideal I with respect to a ıb is prime for all a;b 2 A.

Proof. .1/) .2/ Let a;b 2A and I 2 Id.A/ such that I is a relative maximal ideal
with respect to a ı b. We prove that I is prime. Let x;y 2 A such that x^y exists
and x^y 2 I . Suppose that x … I and y … I . Let Ix D I _ .x� and Iy D I _ .y�.
Then Ix \a ıb ¤¿ and Iy \a ıb ¤¿, i.e., there exist f1;f2 2 a ıb and i1; i2 2 I
such that f1 � x _ i1 and f2 � y _ i2. Let i D i1_ i2 2 I . So, x _ i;y _ i 2 a ı b
and .x _ i/^i .y _ i/ exists in Œi/. From Theorem 4, it follows that a ı b 2 Fi.A/
and .x _ i/^i .y _ i/ D .x ^ y/_ i 2 a ı b. On the other hand, as I is an ideal,
.x^y/_ i 2 I . Thus, I \a ıb ¤¿ which is a contradiction. Then I is prime.
.2/) .1/ By Theorem 4, it is sufficient to prove that a ı b 2 Fi.A/. It is easy to

see that 1 2 a ıb and that a ıb is increasing. Let x;y 2 a ıb such that x^y exists.
Suppose that x ^ y … a ı b. Then .x ^ y�\ a ı b D ¿. We consider the following
family

F D fI 2 Id.A/ W .x^y�� I and I \a ıb D¿g:
So, F ¤ ¿. By Zorn’s Lemma there exists a maximal element M 2 F . It is not
difficult to show that M is a relative maximal ideal with respect to a ıb. So, x^y 2
M and by hypothesis M is prime. Then x 2M or y 2M . Thus, M \ a ı b ¤ ¿
which is a contradiction. Therefore, x^y 2 a ıb and a ıb 2 Fi.A/. �

3. NORMAL AND P-LINEAR NEARLATTICES

Let A be a semilattice and a 2A. From Definition 3 we have the following relative
annihilator

a|
D a ı1D fx 2 A W x_aD 1g;

called the annihilator of a. We have the following result.
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Lemma 3. Let A be a distributive nearlattice. Let a;b 2 A and I 2 Id.A/. Then
(1) I \a ı b D ¿ if and only if there exists Q 2 X.A/ such that I �Q, a 2Q

and b …Q.
(2) I \a| D¿ if and only if there existsQ 2X.A/ such that I �Q and a 2Q.
(3) I \a|D¿ if and only if there existsU 2 Idm.A/ such that I �U and a 2U .
(4) U 2 Idm.A/ if and only if for all a 2 A, a … U if and only if U \a| ¤¿.

Proof. .1/ Let J 2 Id.A/ such that J \aıb D¿. LetH D I.J [fag/. We prove
that H \ Œb/ D ¿. If x 2 H \ Œb/ then there exists j 2 J such that x � j _ a and
b � x. So, b � j _a and j 2 a ıb which is a contradiction. Then H \ Œb/D¿ and
by Theorem 2 there exists Q 2X.A/ such that J �Q, a 2Q and b …Q.

The other direction is immediate.
.2/ It follows from .1/.
.3/ If I \ a| D ¿ then there exists Q 2 X.A/ such that I �Q and a 2Q. We

consider the family

ZD fR 2 Id.A/�fAg W I �R and a 2Rg:

So, Z¤¿ because Q 2Z. Then, by Zorn’s Lemma, there exists a maximal element
U 2 Z. It is clear that U is proper. We prove that U is a maximal ideal. Let b 2 A
such that b … U . If U \b| D¿ then H D I.U [fbg/ is a proper ideal. Otherwise,
if 1 2 H then there exists p 2 U such that p_ b D 1, i.e., p 2 U \ b| which is a
contradiction. SoU �H andH 2Z, which is a contradiction becauseU is maximal.
Then U \b| ¤¿ and there exists c 2 U such that c_b D 1. Therefore, H DA and
U is maximal.

Suppose that I \a| ¤ ¿. Then there exists i 2 I such that i _a D 1. So, there
exists U 2 Idm.A/ such that I � Q and a 2 Q. Then i _ a D 1 2 U , which is a
contradiction because U is maximal.
.4/ Let U 2 Idm.A/. Suppose that a … U . As U is maximal, I.U [fag/ D A.

Then 1 2 I.U [fag/, i.e., there exists p 2 U such that p_ a D 1. So, p 2 a| and
U \a| ¤¿.

If U \a|¤¿ and a 2U then there exists p 2U such that p_aD 1. Thus, 1 2U
which is a contradiction.

Conversely, let I 2 Id.A/ such thatU � I . Then there exists a 2 I such that a …U .
So, U \a| ¤¿, i.e., there exists p 2 U such that p_aD 1. Since U � I , we have
that p 2 I and a_p D 1 2 I . Therefore, I D A and U is maximal. �

We recall that a bounded distributive lattice is normal if each prime ideal con-
tains a unique minimal prime ideal. This concept was introduced by Cornish in [8]
and extended to the class of distributive semilattices in [13]. Now, we introduce a
generalization of this notion.

Definition 5. Let A be a distributive nearlattice. We say that A is normal if each
prime ideal is contained in a unique maximal ideal.
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We say that A is p-linear if the family of prime ideals which contain a prime ideal
is a chain.

Remark 2. We note that every normal nearlattice is p-linear.

Remark 3. If A is a bounded distributive lattice then the Definition 5 is equivalent
to saying that every prime filter contains a unique minimal filter, which is a concept
dual to the definition given by Cornish in [8].

The following results characterize normal nearlattices through annihilators.

Lemma 4. Let A be a distributive nearlattice. The following conditions are equi-
valent:

(1) A is normal.
(2) For every P 2 X.A/ and for all a;b 2 A with a_ b D 1, P \ a| ¤ ¿ or

P \b| ¤¿.

Proof. .1/) .2/ Let P 2 X.A/ and a;b 2 A such that a_ b D 1. Suppose that
P \a|D¿ and P \b|D¿. So, by Lemma 3, there existU1;U2 2 Idm.A/ such that
P � U1, P � U2, a 2 U1 and b 2 U2. Since A is normal, U1 D U2. Then a;b 2 U1,
but a_b D 1 2 U1 which is a contradiction. Thus, P \a| ¤¿ or P \b| ¤¿.
.2/) .1/ Let P 2 X.A/ and U1;U2 2 Idm.A/ such that P � U1 and P � U2.

If U1 ¤ U2 then there exists a 2 U1 such that a … U2. As U2 is maximal, I.U2[

fag/ D A. Then 1 2 I.U2[fag/, i.e., there exists b 2 U2 such that a_ b D 1. On
the other hand, by Lemma 3, P \ a| D ¿ and P \ b| D ¿, which contradicts the
assumption. �

Lemma 5. Let A be a distributive nearlattice. The following conditions are equi-
valent:

(1) A is normal.
(2) For all a;b 2 A, .a_b/| D F.a|[b|/.
(3) For all a;b 2 A with a_b D 1, F.a|[b|/D A.

Proof. .1/) .2/ Let a;b 2 A. Note that the inclusion F.a| [ b|/ � .a_ b/|

always holds. Let us prove the other inclusion. Suppose that there exists x 2 .a_b/|

such that x … F.a|[b|/. So, by Theorem 2, there exists P 2X.A/ such that x 2 P
and P \F.a|[b|/D¿. Since a|;b| � F.a|[b|/, we have that P \a| D¿ and
P \b|D¿. Then, by Lemma 3, there exist U1;U2 2 Idm.A/ such that P �U1, P �
U2, a 2 U1 and b 2 U2. As A is normal, U1 D U2 and a;b 2 U1. Also, x 2 U1. Then
x_ .a_b/D 1 2 U1 which is a contradiction. Therefore, .a_b/| D F.a|[b|/.
.2/) .3/ It is immediate.
.3/) .1/ Let P 2 X.A/ and U1;U2 2 Idm.A/ such that P � U1 and P � U2.

Suppose that there exists a 2 U1 such that a … U2. Since U2 is maximal, there exists
b 2U2 such that a_bD 1. Then F.a|[b|/DA. Let x 2P . Hence, x 2F.a|[b|/

and there exist x1; :::;xn 2 a
|[b| such that x1^ :::^xn exists and x1^ :::^xnD x.
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So, x1 ^ :::^ xn 2 P and by the primality of P there exists xi 2 fx1; :::;xng such
that xi 2 P . If xi 2 a

| then xi 2 U1 and xi _a D 1 2 U1, which is a contradiction
because U1 is proper. If xi 2 b

|, we arrive at a contradiction. Thus, U1 � U2 and
consequently U1 D U2. Therefore, A is normal. �

Corollary 1. Let A be a distributive nearlattice. The following conditions are
equivalent:

(1) A is normal.
(2) The application � W A! Fi.A/ defined by �.a/D a| is a homomorphism of

distributive nearlattices.

Proof. It follows from Lemma 5. �

Theorem 7. Let A be a distributive nearlattice. The following conditions are
equivalent:

(1) A is p-linear.
(2) For every P 2X.A/ and for all a;b 2 A, P \a ıb ¤¿ or P \b ıa¤¿.
(3) For all a;b 2 A, F..a ıb/[ .b ıa//D A.

Proof. .1/) .2/ Let P 2 X.A/ and a;b 2 A. Assume that P \ a ı b D ¿ and
P \b ıaD¿. By Lemma 3 there exist Q1;Q2 2X.A/ such that P �Q1, a 2Q1,
b …Q1, P �Q2, b 2Q2, and a …Q2. As A is p-linear, Q1 �Q2 or Q2 �Q1. If
Q1 �Q2 then a 2Q2, which is impossible. If Q2 �Q1, then b 2Q1 which is a
contradiction. Thus, P \a ıb ¤¿ or P \b ıa¤¿.
.2/) .3/ Suppose that there exist a;b 2A such thatF..aıb/[.bıa//¤A. Then

there exists c 2A such that c … F..aıb/[.bıa//. Since F..aıb/[.bıa//2 Fi.A/,
by Theorem 2 there exists P 2X.A/ such that c 2 P and P \F..a ıb/[ .b ıa//D
¿. So, P \aıb D¿ and P \b ıaD¿ which is impossible. Thus, F..aıb/[ .b ı
a//D A.
.3/) .1/ Let P;Q1;Q2 2 X.A/ such that P �Q1 and P �Q2. If Q1 and Q2

are incomparable, then there exist a;b 2A such that a 2Q1�Q2 and b 2Q2�Q1.
Let x 2 P . Since A D F..a ı b/[ .b ı a//, there exist x1; :::;xn 2 .a ı b/[ .b ı a/

such that x1^ :::^xn exists and x1^ :::^xn D x. So, x1^ :::^xn 2 P and by the
primality of P there exists xi 2 fx1; :::;xng such that xi 2 P . If xi 2 a ı b, then
b � xi _a. As xi ;a 2Q1, we have xi _a 2Q1 and b 2Q1 which is a contradiction.
Similarly, if xi 2 b ıa we arrive at a contradiction. Thus,Q1 andQ2 are comparable
and A is p-linear. �

4. THE LATTICE OF FILTERS

In this section we study the structure of the lattice of filters of a distributive nearlat-
tice. Recall that a Heyting algebra is an algebra hA;_;^;);0;1i of type .2;2;2;0;0/
such that hA;_;^;0;1i is a bounded distributive lattice and the operation) satisfies
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the following condition: a^ b � c if and only if a � b) c for all a;b;c 2 A. The
pseudocomplement of an element a 2 A is the element a� D a) 0.

Let A be a distributive nearlattice. For each pair F;H 2 Fi.A/ let us define the
subset F BH of A as follows:

F BH D fa 2 A W Œa/\F �H g:

Theorem 8. Let A be a distributive nearlattice. Let F;H 2 Fi.A/. Then
(1) F BH 2 Fi.A/.
(2) F BH D fa 2 A W 8f 2 F 9h 2H .h � a_f /g.
(3) The structure hFi.A/;Y;Z;B;f1g;Ai is a Heyting algebra.

Proof. .1/ Let F;H 2 Fi.A/. We prove that F B H 2 Fi.A/. Since Œ1/\F D
f1g � H , then 1 2 F B H . Let a;b 2 A such that a � b and a 2 F B H . Thus,
Œb/ � Œa/ and Œa/\F � H . It follows that Œb/\F � H , i.e., b 2 F B H . Let
a;b 2 F B H and suppose that a^ b exists. By Theorem 3, the lattice Fi.A/ is
distributive and

Œa^b/\F D .Œa/Y Œb//\F
D .Œa/\F /Y .Œb/\F /
�H:

Therefore, a^b 2 F BH and F BH 2 Fi.A/.
.2/ Let F;H 2 Fi.A/. LetX D fa 2A W 8f 2 F 9h 2H .h� a_f /g and a 2X .

We prove that a 2 F BH , i.e., Œa/\F �H . If x 2 Œa/\F , then a � x and x 2 F .
Since a 2X and x 2 F , there exists h 2H such that h� a_x D x. As H is a filter,
x 2H . So, a 2F BH . Conversely, let a 2F BH and f 2F . Then a_f 2 Œa/\F
and by hypothesis, a_f 2H . It follows that a 2X . Therefore, F BH DX .
.3/ By Theorem 3, hFi.A/;Y;Z;f1g;Ai is a bounded distributive lattice. Let

F;G;H 2 Fi.A/. We prove that F \G � H if and only if F � G B H . Sup-
pose that F \G �H and let a 2 F . If x 2 Œa/\G, then a� x and x 2G. Therefore
x 2F \G and by hypothesis x 2H , i.e., F �GBH . Conversely, let x 2F \G. By
hypothesis F �G BH , then x 2G BH . As Œx/\G �H , we have that x 2H . �

Remark 4. As a particular case, we have a ıb D Œa/B Œb/. Indeed

x 2 a ıb iff b � x_a iff Œx_a/� Œb/

iff Œx/\ Œa/� Œb/ iff x 2 Œa/B Œb/:

Then we can write the annihilator of a relative to b in terms of the binary operation
B.

Note that if F 2 Fi.A/; then F � D F B f1g D fa 2 A W Œa/\F D f1gg. The
following result describes the filter F � in a different manner.

Proposition 2. Let A be a distributive nearlattice. Then for every F 2 Fi.A/,

F � D fa 2 A W 8f 2 F .a_f D 1/g:
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Proof. LetC Dfa 2A W 8f 2F .a_f D 1/g and a 2C . We prove that Œa/\F D
f1g. Let x 2 A such that a � x and x 2 F . Then x D a_ x D 1. Thus, a 2 F �.
Conversely, let a 2 F �. Then Œa/\F D f1g. Since a � a_f and f � a_f for
every f 2 F , and as F is a filter, a_f 2 Œa/\F . So, a_f D 1 for each f 2 F .
Therefore, a 2 C and F � D C . �

Remark 5. We note that Œa/� D fx 2 A W x_aD 1g, i.e., a| D Œa/�.

We prove that the pseudocomplement of a subset X is the pseudocomplement of
the filter generated by X . This result was proved for Tarski algebras in [5].

Theorem 9. Let A be a distributive nearlattice. Then for every subset X � A, we
have X� D F.X/�.

Proof. Since X � F.X/, we have that F.X/� � X�. Conversely, let x 2 X�.
We prove that for every a 2 F.X/, x_a D 1. Suppose that there exists a 2 F.X/
such that x _ a ¤ 1. Then there exist x1; :::;xn 2 ŒX/ such that x1^ :::^xn exists
and x1 ^ :::^ xn D a. So, there exist y1; :::;yn 2 X such that yi � xi for all i 2
f1; :::;ng. As x 2 X�, x _yi D 1 for all yi 2 fy1; :::;yng. Then x _ xi D 1 for all
xi 2 fx1; :::;xng. Since x _ a ¤ 1, by Theorem 2, there exists P 2 X.A/ such that
x_a 2 P and 1 … P . Then x1^ :::^xn 2 P and as P is a prime ideal, there exists
xi 2 fx1; :::;xng such that xi 2 P . On the other hand, x _ a 2 P and x 2 P . So,
x _ xi D 1 2 P which is a contradiction. Thus, x _ a D 1 for all a 2 F.X/ and
consequently x 2 F.X/�. �

5. SEMI-HOMOMORPHISMS PRESERVING ANNIHILATORS

Our next aim is to study a particular class of semi-homomorphisms: semi-homo-
morphisms preserving annihilators. We give some characterizations in terms of prime
and maximal ideals.

Definition 6. LetA;B be two distributive nearlattices and let h WA!B be a semi-
homomorphism. We say that h is a semi-homomorphism preserving annihilators, or
|-semi-homomorphism, if F.h.a|//D h.a/| for all a 2 A.

Remark 6. We note that F.h.a|// � h.a/| for all a 2 A. If x 2 F.h.a|// then
there exist x1; :::;xn 2 Œh.a

|// such that x1 ^ :::^ xn exists and x1 ^ :::^ xn D x.
As x1; :::;xn 2 Œh.a

|//, there exist y1; :::;yn 2 h.a
|/ such that yi � xi for all i 2

f1; :::;ng. So, there exist t1; :::; tn 2 a| such that h.ti /D yi for 1� i � n. Thus, t1_
aD �� � D tn_aD 1 and since h is a semi-homomorphism, we have that y1_h.a/D

�� � D yn_h.a/D 1. Then x_h.a/D Œ.y1_x1/^ :::^ .yn_xn/�_h.a/. As Œx/ is a
bounded distributive lattice, x_h.a/D .y1_x1_h.a//^ :::^ .yn_xn_h.a//D 1.
Therefore, x_h.a/D 1 and x 2 h.a/|.

Let h W A! B be a semi-homomorphism between distributive nearlattices. In
general, h�1.P / … X.A/ for each P 2 X.B/. Now, we prove that if P is maximal
and h is a |-semi-homomorphism, then h�1.P / is maximal and therefore prime.
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Lemma 6. Let A;B be two distributive nearlattices and let h W A! B be a |-
semi-homomorphism. Then h�1.P / 2 Idm.A/ for every P 2 Idm.B/.

Proof. Let P 2 Idm.B/. Since h is a semi-homomorphism, h�1.P / is an ideal.
As h.1/D 1 … P , we have that h�1.P / is proper. Let a 2 A such that a … h�1.P /.
Then h.a/ … P and as P is maximal, by Lemma 3, P \h.a/| ¤¿. So, there exists
x 2 A such that x 2 P \F.h.a|// ¤ ¿, i.e., there exist x1; :::;xn 2 Œh.a

|// such
that x1 ^ :::^ xn exists and x1 ^ :::^ xn D x. Thus, there exist y1; :::;yn 2 h.a

|/

such that yi � xi for all i 2 f1; :::;ng. It follows that there exist t1; :::; tn 2 a| such
that h.ti /D yi for 1 � i � n. Then t1_a D :::D tn_a D 1 and since h is a semi-
homomorphism, we have that y1_h.a/D :::D yn_h.a/D 1. As

x D x1^ :::^xn D .x1_y1/^ :::^ .xn_yn/ 2 P

and P is prime, there exists i 2 f1; :::;ng such that xi _ yi 2 P . So, yi D h.ti / 2

P , i.e., ti 2 h�1.P / and h�1.P /\ a| ¤ ¿. Conversely, it is easy to prove that if
h�1.P /\a|¤¿, then a … h�1.P /. Therefore, by Lemma 3, h�1.P /2 Idm.A/. �

Theorem 10. Let A;B be two distributive nearlattices and let h W A! B be a
semi-homomorphism. Then the following conditions are equivalent:

(1) h is a |-semi-homomorphism.
(2) For all P 2 X.B/ and for every Q 2 X.A/ such that h�1.P / � Q, there

exists D 2X.B/ such that P �D and Q � h�1.D/.
(3) Idm.A/\ Œh�1.P //� h�1ŒX.B/\ ŒP /� for all P 2X.B/.

Proof. .1/) .2/ Let P 2 X.B/ and Q 2 X.A/ such that h�1.P / �Q. Let us
consider the ideal H D I.P [h.Q//. We note that H is a proper ideal. Indeed, if
we assume otherwise, there exists p 2 P and q 2 Q such that p _ h.q/ D 1. So,
p 2 h.q/| D F.h.q|//. Then, there exist x1; :::;xn 2 Œh.q

|// such that x1^ :::^xn

exists and x1^ :::^xnD p. So, there exist y1; :::;yn 2 h.q
|/ such that yi � xi for all

i 2 f1; :::;ng. It follows that there exist t1; :::; tn 2 q| such that h.ti /D yi for 1� i �
n. Then t1_q D :::D tn_q D 1 and since h is a semi-homomorphism, we have that
y1_h.q/D :::D yn_h.q/D 1. As xD x1^ :::^xnD .x1_y1/^ :::^.xn_yn/2P

and P is prime, there exists i 2 f1; :::;ng such that xi _yi 2 P . So, yi D h.ti / 2 P ,
i.e., ti 2 h�1.P / � Q and since q 2 Q, ti _ q D 1 2 Q which is a contradiction.
Therefore, H is a proper ideal and there exists D 2 X.B/ such that P � D and
Q � h�1.D/.
.2/) .3/ Let P 2 X.B/ and Q 2 Idm.A/\ Œh�1.P //. Then Q 2 X.A/ and

h�1.P / � Q. By hypothesis, there exists D 2 X.B/ such that P � D and Q �
h�1.D/. Since h�1.D/ is an ideal and Q is maximal, Q D h�1.D/. So, D 2
h�1ŒX.B/\ ŒP /� and Idm.A/\ Œh�1.P //� h�1ŒX.B/\ ŒP /�.
.3/) .1/ Let a 2 A. We prove that h.a/| � F.h.a|//. Suppose that there exists

x 2 h.a/| such that x … F.h.a|//. By Theorem 2, there exists P 2 X.A/ such that
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x 2 P and P \F.h.a|//D¿. Then,

P \h.a/| ¤¿ and P \h.a|/D¿:

Thus, h�1.P /\a|D¿ and h�1.P /2 Id.A/. By Lemma 3, there exists U 2 Idm.A/
such that h�1.P /� U and a 2 U . So, we get that

U 2 Idm.A/\ Œh�1.P //� h�1ŒX.B/\ ŒP /�:

Then, there exists D 2 X.B/ such that P � D and U D h�1.D/. Since a 2 U ,
h.a/ 2D andD\h.a/|D¿. On the other hand, P \h.a/|¤¿ and P �D. Thus,
D\h.a/| ¤ ¿ which is a contradiction. Therefore, h.a/| � F.h.a|// and h is a
|-semi-homomorphism. �

It is possible to give another characterization of the |-semi-homomorphisms in
normal nearlattices.

Proposition 3. Let A;B be two distributive nearlattices and let h W A! B be a
semi-homomorphism. Suppose that B is normal. Then h is a |-semi-homomorphism
if and only if:

(1) For all P 2X.B/ and for all Q1;Q2 2 Idm.A/, if h�1.P /�Q1\Q2 then
Q1 DQ2.

(2) h�1.P / 2 Idm.A/ for every P 2 Idm.B/.

Proof. )/ Suppose that h is a |-semi-homomorphism. By Lemma 6, we only
need to prove (1). Let P 2 X.B/ and Q1;Q2 2 Idm.A/ such that h�1.P / �Q1\

Q2. Suppose that there exists a 2Q1 such that a …Q2. Since Q2 is maximal, there
exists b 2 Q2 such that a_ b D 1. Then h.a_ b/ D h.a/_ h.b/ D h.1/ D 1. As
B is normal, by Lemma 4, we have that P \ h.a/| ¤ ¿ or P \ h.b/| ¤ ¿, and
since h is |-semi-homomorphism, P \F.h.a|// ¤ ¿ or P \F.h.b|// ¤ ¿. If
P \F.h.a|//¤¿; then there exists x 2 P such that x 2 F.h.a|//, i.e., there exist
x1; :::;xn 2 Œh.a

|// such that x1^ :::^xn exists and x1^ :::^xn D x. So, there exist
y1; :::;yn 2 h.a

|/ such that yi � xi for all i 2 f1; :::;ng. It follows that there exist
t1; :::; tn 2 a

| such that h.ti / D yi for 1 � i � n. Then, t1 _ a D ::: D tn _ a D 1
and since h is a semi-homomorphism, we have that y1_h.a/D :::D yn_h.a/D 1.
As x D x1^ :::^xn D .x1_y1/^ :::^ .xn_yn/ 2 P and P is prime, there exists
i 2 f1; :::;ng such that xi _yi 2 P . So, yi D h.ti / 2 P and ti 2 h�1.P /�Q1\Q2.
Since a; ti 2Q1, we have that ti _aD 1 2Q1, which is a contradiction because Q1

is maximal. If P \F.h.b|//¤¿, we get also a contradiction. Therefore, Q1 �Q2

and consequently Q1 DQ2.
(/ Let a 2 A. We prove that h.a/| � F.h.a|//. Suppose that there exists x 2

h.a/| such that x … F.h.a|//. Then there exists P 2 X.B/ such that x 2 P and
P \F.h.a|//D¿, i.e., P \h.a/| ¤¿ and P \F.h.a|//D¿. Since B is normal,
there exists a unique Q 2 Idm.B/ such that P �Q. We note that h.a/ …Q. Indeed,
if h.a/ 2Q then h.a/|\Q¤¿ and there exists x 2Q such that h.a/_x D 1 2Q,
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which is a contradiction. Since a … h�1.Q/ and by (2) we have h�1.Q/ 2 Idm.A/,
then, by Lemma 3, h�1.Q/\a| ¤ ¿, i.e., Q\F.h.a|//¤ ¿. On the other hand,
since P \F.h.a|// D ¿ then h�1.P /\ a| D ¿ and, by Lemma 3, there exists
U 2 Idm.A/ such that h�1.P /�U and a 2U . Then h�1.P /� h�1.Q/\U and by
(1), we have h�1.Q/D U , which is a contradiction because a 2 U and a … h�1.Q/.
Therefore, h.a/| D F.h.a|// and h is a |-semi-homomorphism. �
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