Role of macrophage secretions on rat polycystic ovary: Its effect on apoptosis.

Florencia Figueroa¹, Alicia Motta², Mariano Acosta³, Fabian Mohamed³, Liliana Oliveros¹ and Myriam Forneris¹*

¹Laboratorio de Biología de la Reproducción y ³Area Morfología, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, and IMIBIO-San Luis, CONICET, Argentina.

²Laboratorio de Fisio-patología Ovárica (CEFYBO), Universidad de Buenos Aires, Argentina.

Short running title: macrophages on polycystic ovarian apoptosis

Mailing address of corresponding author

*Dra. Myriam Forneris
Laboratorio de Biología de la Reproducción
Facultad de Química, Bioquímica y Farmacia
Universidad Nacional de San Luis, Avenida Ejército de los Andes 954, 5700 San Luis, Argentina.
Tel. + 54 266 4520300 int 1617
Email address: mlforneris@gmail.com

Key words: polycystic ovary, macrophages, apoptosis, prostaglandin E₂, androgens
Abstract
Polycystic ovarian syndrome is the most common endocrine disorders among women of reproductive age. Little is known about its etiology, although the evidence suggests an intrinsic ovarian abnormality in which endocrine, metabolic, neural and immune factors would be involved.

In this work, the effects of macrophage (MO) secretion on ovarian apoptosis in a polycystic ovary syndrome rat model (PCO rat) induced by estradiol valerate are studied. Spleen macrophages secretions were used to stimulate ovaries, and ovarian interstitial and granulosa cells, from both PCO and control rats. Ovarian hormones and prostaglandin E\textsubscript{2} (PGE\textsubscript{2}) were measured by radioimmunoassay; ovarian mRNA levels of Bax, Bcl2 and NFkB by RT-PCR; and ovarian inducible nitric oxide synthase (iNOS) by western blot. The number of apoptotic cells was evaluated by TUNEL. In PCO ovary, the MO secretions from PCO rats increased the Bax and NFkB mRNA expressions, and increased TUNEL staining in both granulosa and theca cells. In addition, the PCO MO secretions produced a decrease of nitric oxide release, iNOS protein level and PGE\textsubscript{2} content in the PCO ovary, and it also induced an increase of androstenedione production by PCO interstitial cells, in comparison with control MO secretions. Considering these results and knowing that testosterone stimulates tumour necrosis factor-\alpha production by PCO MO, modifying ovarian response by increasing androstenedione, it is reasonable to suggest that the increase of androgens stimulated in ovarian cells by PCO MO secretions could in turn stimulate the cytokine production from MO, thus maintaining an apoptotic vicious cycle in the PCO ovary.

Introduction
The bidirectional communication between the neuroendocrine and immune system is firmly recognized. A number of hormonal and neuropeptide mediators have been shown to influence
immune development and function in both healthy and diseased individuals (Bilbo & Klein, 2012). The interactions between ovary and immune cells and the products such as steroids, peptide hormones, prostaglandins, growth factors and cytokines play a pivotal role in the regulation of ovarian function (Basedovsky & del Rey 1996, Taub 2008).

The macrophages, the most abundant immune cells within the ovary, have been localized in thecal, luteal and interstitial tissue compartments and in the atretic follicle, in both animal and human. Their distribution fluctuates throughout the ovarian cycle with the highest numbers being present at proestrus and diestrus, strongly indicating hormonal regulation (Wu et al. 2004, 2007, Turner et al. 2011). Macrophages express functional sex hormone receptors and secrete nitric oxide (NO), along with tumor necrosis factor alpha (TNFα), prostaglandin E\(_2\) (PGE\(_2\)), interleukins (IL)-1, IL6, IL10, IL12 and many other cytokines and growth factors that regulate ovarian function (Gallinelli et al. 2003, Sirotkin et al. 2011). There is evidence that NO decreases ovarian steroidogenesis by inhibiting the steroid acute regulatory protein, 3β-hydroxysteroid dehydrogenase (3β-HSD) and cytochrome p450 side chain cleavage gene expression (Rekawiecki et al. 2005). Furthermore, TNFα is a multifunctional cytokine that influences the reproductive axis, inducing changes that closely resemble those found in patients with hyperandrogenism (Thathapudi et al. 2014). TNFα plays a key role in follicular development and atresia, decreases ovarian cell viability and proliferation, and stimulates apoptosis in cultured ovarian follicles (Greenfeld et al. 2007). When TNFα binds to its receptor (TNFRI), caspase-8 and caspase-3 are cleaved and activated, and the induction of IkB phosphorylation and degradation activate the nuclear factor κB (NFκB). Subsequently, NFκB translocates into the nucleus where it can activate the transcription of certain genes, particularly those involved in immune and inflammatory responses (Xiao 2002). In addition, PGE\(_2\) modulates a variety of physiological processes including the production of inflammatory cytokines (Kuroda &

It is known that a fine balance between pro- and anti-apoptotic factors may determine whether a follicle will continue developing or undergo atresia. Regulation of apoptotic signaling in the ovary is achieved by the Fas system and Bcl2 family, including Bcl2 (antiapoptotic) and Bax (proapoptotic) proteins. The increased expression of the Bax death susceptibility gene coincides with the induction of apoptosis in granulosa cells during atresia in vivo and in vitro (Tilly 2001). Several studies suggest a cross-talk between the Fas/FasL system-induced apoptosis and the nitric oxide-mediated antiapoptotic pathway in ovarian follicle atresia (Chen et al. 2005, Krysko et al. 2008). Also, it have been shown that androgen and androgen receptor promote Bax-mediated apoptosis in prostate cancer cells (Lin et al. 2006). Furthermore, it is known that PGE₂ promotes proliferation and survival of cells through apoptosis inhibition (Sheng et al. 1998, Rask et al. 2006).

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women of reproductive age, characterized by anovulation, hyperandrogenemia and/or hyperandrogenism, and frequently, insulin resistance and hyperinsulinemia (Goodarzi et al. 2011). Ovaries from most women affected by PCOS are characterized by thecal/interstitial hyperplasia and increased expression of steroidogenic genes, leading to greater androgen biosynthesis and cytochrome P450c17 alpha gene expression (Nelson-Degrave et al. 2005).

Several studies suggest that the immune regulation may be involved in the etiology of PCOS (Amato et al. 2003, Niccoli et al. 2011). Furthermore, neuroimmunomodulatory factors such as dopamine, have been associated to this disorder etiology (Gómez et al. 2011). We have shown a functional relationship between the ovarian androgens and immune cells in a rat model of PCOS induced by estradiol valerate (EV). The differential steroidogenic ability of macrophage secretions from those rats is associated to the in vitro testosterone environment. Testosterone, probably acting...
on macrophage androgen receptor, induces a greater release of TNFα, modifying ovarian response by increasing androstenedione and slightly decreasing estradiol without affecting progesterone (Figueroa et al. 2012).

There is evidence that dysfunction of granulosa cells may contribute to abnormal folliculogenesis, although the underlying mechanism remains to be determined. It has been demonstrated that there are significant differences in the rate of cell death and proliferation in granulosa cells in PCOS patients compared to women with regular ovulatory cycles. This was associated with decreased expression of apoptotic effectors and increased expression of a cell survival factor (Das et al. 2008).

However, the role of immune cells on the apoptosis of polycystic ovary remains obscure. It is known that the EV-PCO model is characterized by acyclicity, anovulation, hyperandrogenemia and polycystic ovarian morphology, and is associated with increased sympathetic activity resembling PCO (Brawer et al. 1986, Lara et al. 1993, Forneris et al. 2003), without metabolic disturbances such as dyslipidemia, insulin resistance or obesity (Stener-Victorin et al. 2005).

Therefore, the aim of this study is to investigate in a rat model of PCOS induced by EV (PCO rats): 1) whether secretions of macrophages induce apoptosis in the ovary, and 2) if macrophage secretions modify the ovarian PGE$_2$ and nitric oxide levels, and consequently the androstenedione response, in order to establish their relationship with the ovarian apoptosis. For that, secretions of macrophages from spleen were used to stimulate isolated ovarian cells and ovaries from PCO rats.

Materials and Methods

Reagents

Estradiol valerate (EV), fetal bovine serum and RPMI 1640 medium were purchased from Sigma (St. Louis, MO, USA). TRIzol reagent was obtained from Invitrogen/Life Technology. 1,2,6,7-$[^3]$H-$
Prostaglandin E (107.0 Ci/mmol) was provided by New England Nuclear Products (Boston, MA, USA). Other reagents and chemicals were of analytical grade.

Animals and treatment

Adult Holtzman cycling rats showing at least two regular 4-day cycles were used. They were housed in a controlled environment (22–24 °C, 12 h light–12 h dark). Water and food were available *ad libitum*. Animals were handled according to the procedures approved in the UFAW Handbook for the Care and Management of Laboratory Animals - vol 1- Terrestrial vertebrates-edn 7, edited by T Poole (1999), and the experimental protocol was approved by the Committee for the Use and Care of Animals of the National University of San Luis.

Two groups of rats were used. The first group consisted in PCO rats to which the PCOS model was induced at 60 days of age. This was accomplished by the administration of EV as a single intramuscular injection (2 mg/rat diluted in 0.2 ml corn oil) in order to resemble, in some aspects, the human syndrome (Brawer 1986). The second group, non-PCO rats (control rats), was injected with vehicle alone. All experiments were performed two months after EV injection, at which point cystic follicles were observed by light microscopy. Cystic follicles were devoid of oocytes and exhibited a large antral cavity, an enlarged thecal cell layer, and a thin granulose-cell compartment. Since PCO rats predominantly showed cornified vaginal smears, control rats were sacrificed by decapitation on estrus day. The spleen and the ovaries were removed to obtain macrophages (MO) for culture and ovarian incubations, respectively.

Macrophage culture

The culture of MO was performed as described previously (Figueroa *et al.* 2012). Briefly, the spleens from PCO and control rats were washed in saline solution and pressed through a sterile nylon screen (200-µm mesh) to obtain the total cell populations. After centrifugation, the cells were resuspended in serum-free RPMI 1640 medium and treated with NH₄Cl. Cell number and viability
were assessed microscopically using trypan blue exclusion. \(3 \times 10^6\) viable cells/ml of medium were incubated in culture medium supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS) and antibiotics (50 µg/ml streptomycin and 50 units/ml penicillin), defined as basal medium, in culture plates. After incubation for 2 h at 37 °C in 95% air-5% CO\(_2\), the non-adhered cells were removed. The adhered MO monolayer showed 90% purity according to the morphologic analysis performed by Giemsa staining (Supplementary Figure 1, see section on supplementary data given at the end of this article) and nonspecific esterase staining. The MO from PCO rats (PCO MO), as well as the MO from control rats (control MO), were plated at a density of \(1 \times 10^6\) cells/well in a final volume of 1 ml in culture plates, preincubated in basal medium for 24 h and subsequently cultured for 24 h. The respective culture media were collected and used to stimulate ovaries and isolated ovarian cells from PCO rats (PCO ovaries), as well as from control rats (control ovaries).

Ovary incubation

After sacrificing the rats, the ovaries from PCO and control rats were halved and preincubated in 1 ml of basal medium at 37 °C, in a 95% O\(_2\)-5% CO\(_2\) mixture. After 15 min, the incubation media were discarded and either 1 ml of basal medium or 1 ml of MO secretions (PCO MO or control MO culture medium, respectively) was added (Forneris *et al.* 2008). Incubation was continued for 3 h, and then the medium was removed and stored at -20 °C until measurement of PGE\(_2\) and nitrites release contents.

Obtaining and incubation of ovarian cells

The procedures for harvesting and culturing the granulose cells have been described previously (Erickson & Hsueh 1978, Aguado & Ojeda 1984). Briefly, granulosa cells from ovaries of PCO and control rats were harvested in RPMI 1640 medium, supplemented with 0.2% bovine serum albumin (BSA) fraction V, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) (10 mM) and ethylene glycol tetraacetic acid (EGTA) (6.8 mM), by needle-puncturing of the follicles. The
suspension was centrifuged at 100 x g for 10 min, and the cell pellet was washed in RPMI medium containing penicillin (50 U/ml) and streptomycin (50 µg/ml). After viability determination by trypan blue exclusion test, the cells were plated at 3x10^5 viable cells/tube containing 1 ml of RPMI 1640 medium supplemented with androstenedione (10^-7 M), L-glutamine (2 mM), penicillin (50U/ml), streptomycin (50 µg/ml) and ovine FSH (10 ng/ml). Androstenedione was included in all cultures and served as aromatase substrate (Erickson & Hsueh 1978). The cells were cultured in a humidified 95% v/v air and 5% v/v CO₂ incubator at 37 °C for 24 h. At the end of this period, the medium was discarded and replaced by fresh medium with antibiotics or macrophages secretions. The incubation was continued for 24 h and then the medium was stored at -20 °C until assayed for estradiol release.

After harvesting granulosa cells by needle-puncturing of the follicles, the corpora lutea were removed, and the residual ovarian tissue, which is considered to be enriched in interstitial cells, was dissociated in 2 ml of RPMI medium containing 0.4% w/v collagenase type XI (Sigma-Aldrich Co.) and 0.1% BSA fraction V (Sigma-Aldrich Co.), by stirring at 37°C for 30 min in a metabolic shaking water bath and assisted by repeatedly drawing tissue fragments into a siliconized pipette. Five minutes before finishing the procedure, 0.001% of deoxyribonuclease type I (DNase I) (Sigma Inc, USA) was added. Subsequently, the digest was filtered through a nylon mesh and the suspension was centrifuged at 100 x g for 10 min. The cell pellet was washed twice in RPMI medium containing penicillin (50 U/ml) and streptomycin (50 µg/ml), centrifuged as described above, and finally resuspended in the same medium. 5 x 10^5 cells were cultured in a humidified 95% v/v air and 5% v/v CO₂ incubator at 37 °C for 24 h. At the end of this period, the medium was removed, replaced by fresh medium with antibiotics or MO secretions, and the cells were cultured for an additional 24 h. Afterwards, the culture medium was stored at -20 °C until assayed for androstenedione release.

Steroid assays
Estradiol and androstenedione released in the media from the culture of granulosa and interstitial cells, respectively, were determined by RIA using specific antisera as described previously (Forneris & Aguado 2002). The assays sensitivities were less than 12 fmole/tube for estradiol and 0.02 ng/ml for androstenedione. For all steroids, the inter- and intra-assay coefficients of variation were less than 10%.

Nitrite assay

Liquid incubations of ovaries from control and PCO rats were removed and analyzed for NO by assaying nitrates, which is a stable product of NO oxidation, using the Griess reagent; the absorbance was read at 540 nm (Egami & Taniguchi 1974). The intra-assay coefficients of variation were less than 10%. The results were expressed as micromoles of nitrite per milliliter (µmol/ml).

Histological studies

After incubation with basal medium or MO secretions, the ovaries were fixed in Bouin’s solution. The samples were dehydrated in graded series of ethanol and embedded in paraffin. Sections of 5 µm in thickness were obtained using a Microm HM 325 rotation microtome and stained with hematoxylin-eosin. Histological analysis was carried out using a computer-assisted image analysis system consisting of an Olympus BX-40 binocular microscope. The images were captured by a Sony SSC-DC5OA camera and processed with Image Pro Plus 5.0 software under control of a Pentium IV computer.

Identification of apoptotic nuclei by TUNEL assay

Apoptotic nuclei were identified in ovarian tissue using the DeadEnd™ Colorimetric TUNEL System (Promega, Madison, USA) according to the manufacturer’s protocol. Briefly, nuclear DNA fragmentation was assessed in 5 µm thick sections of ovarian tissue mounted on silane-coated slides, deparaffinized with xylene and then treated with a graded series of ethanol [100%, 95%, 85%, 70%, and 50% (v/v)] and rehydrated in PBS (pH 7.5). Tissues were then treated with proteinase K
solution for permeabilization and then refixed with 4% paraformaldehyde solution. Slides were then treated with recombinant terminal deoxynucleotidyl transferase (TdT) reaction mix and incubated in a humidified chamber at 37 °C for 1 h. The reaction was terminated by immersing the slides in 2 × SSC solution (saline-sodium citrate) for 15 min at room temperature. After blocking the endogenous peroxidases activity (by 0.3% hydrogen peroxide), slides were washed with PBS and then incubated with streptavidin horseradish peroxidase solution for 30 min at room temperature. Afterwards, the slides were incubated for 10 min with 3,3′-diaminobenzidine (DAB) as chromogen substrate. The sections were counterstained with hematoxylin, dehydrated, mounted and coverslipped. For negative control, incubation with TdT was omitted and the positive control was prepared by treating cells on a separate slide with DNase I. Cells showing dark brown staining from the colorimetric reaction were considered as positive for DNA fragmentation.

The results of the TUNEL assay were evaluated according to the signal intensity as negative (−) and positive (+). TUNEL positive staining was examined in 10 consecutive areas from 5 independent ovarian sections. A total of 50 fields, from control and treated groups, were analysed. The number of TUNEL-positive follicles with apoptotic cells was counted in independent ovarian cross sections from three different rats under microscope at x100 objective.

Western blot analysis for iNOS

Ovaries were homogenized in tris-HCl 50nM (pH 7.8) containing protease inhibitors. Protein was measured by the method of Lowry et al. (1951). 40 mg of proteins were mixed with 10 ml of sample buffer (125 mM Tris-HCl, pH 6.8, 4% SDS, 0.5 mM DTT, 0.02% bromophenol blue and 20% glycerol), boiled for 2–3 min and loaded into 8% SDS-PAGE gel. Protein molecular mass markers were always loaded on each gel. The separated proteins were transferred to PVDF membranes (Polyscreen NEF 1000 purchased from NEN Life Science Products) using a blot transfer system (BioRad Laboratories, Hercules, CA). After being blocked overnight with 5% BSA-TBS solution
(20 mM Tris, 500 mM NaCl, pH 7.5) at 48 °C, membranes were incubated with a primary rabbit anti
iNOS polyclonal antibody solution (Santa Cruz Biotechnology) (1:1000 dilution), for 1 h at room
temperature. β-actin expression was measured as a control for protein loading using a rabbit
polyclonal antibody. After washing three times with TTBS (0.1% Tween 20, 100 mM Tris-HCl, pH
7.5, 150 mM NaCl), the membranes were incubated with an anti-rabbit IgG secondary antibody
linked to peroxidase for 1 h at room temperature. The membranes were washed and the colour was
developed using a Vectastain ABC detection system.

Prostaglandin E$_2$ radioimmunoassay

PGE$_2$ was determined by radioimmunoassay (RIA) as it has been previously reported (Motta et
al. 1999). PGE$_2$ was quantified in incubation medium from ovary, and in ovary homogenate from
PCO and control rats. To extract PGE$_2$, the samples were first acidified to pH 3.0 with 1 M HCl and
then extracted three times with 1 ml of ethyl acetate. The ethyl acetate extracts were dried under an
atmosphere of N$_2$ and stored at -20°C until prostaglandin RIA was performed. PGE$_2$ was quantified
by using rabbit antiserum from Sigma Chemical Co (St. Louis, USA). The sensitivity was 10
pg/tube and the cross-reactivity was 100% PGE$_2$ and < 0.1% with other prostaglandins. Results are
expressed as pg/mg of tissue or ml of medium.

RNA extraction and semiquantitative RT-PCR

Total RNA was extracted from MO culture using TRIzol reagent. The semi-quantitative analysis of
mRNA, was performed using a one-step RT-PCR method (Access RT-PCR system, Promega,
Madison, USA). All components for RT and PCR were assembled in 50 µl reactions containing 5x
reaction buffer (10 mM Tris–HCl, pH 8.3, 50 mM KCl), 3 mM MgCl$_2$, 10 mM dNTP mixture, 1 µM
of each gene specific primers, 2 µg template RNA, 5 units of AMV reverse transcriptase and 5 units
of Tfl DNA polymerase. The amplification of cDNA was performed under the following conditions:
denaturation at 94 °C for 2 min followed by 35 cycles of denaturation at 94 °C for 30 s; annealing at
60 °C for Bcl2, NfkB and GAPDH, and at 61 °C for Bax, during 1 min; and extension at 72 °C for 2 min. The reaction was completed with a final extension at 72 °C for 7 min (thermal cycler). The following primers were used: Bax: (5′-GCGAATTGAGATGAACTGG -3′ sense, and 5′-GTGAGCGAGGCGGTGAGGAC-3′ anti-sense), Bcl2 (5′-GCAACGAACGCCCAGCTGTG -3′ sense and 5′-GTGATGCAGGCCCGCACAG-3′ antisense), NfkB: (5′-AGCCAGAAATATGGACCGT-3′ sense and 5′-TCGAAATCTGAAGCCTCGCTG-3′ antisense), GAPDH: (5′-GGGCTGCTTCTCTTGAC-3′ sense and 5′-CGCCAGTAGACTCCACGACA-3′ antisense). The predicted sizes of the PCR-amplified products were 366, 474, 180, and 325 base pairs (bp) for Bax, Bcl2, NfkB and GAPDH, respectively. The PCR products were resolved on 2% agarose gel electrophoresis, containing 0.5 mg/ml GelRed, and photographed with a Polaroid camera. Band intensities of RT-PCR products were quantified using NIH Image software. The relative abundance of each band was normalized according to the housekeeping GAPDH gene, calculated as the ratio of the intensity values of each product to that of GAPDH. Thus, results are expressed as mRNA/GAPDH in arbitrary units.

Statistical analysis

All data shown are expressed as mean ±S.E.M. and analyzed using GraphPad Prism 5. Significant differences among means were considered at a level of \(P<0.05\) and identified by one-way ANOVA and Tukey’s test.

Results

Macrophage secretions action on the ovarian Bax, Bcl2 and NfkB mRNA expressions

Presented in Fig. 1A are the results of the densitometric analysis of Bax mRNA (an apoptosis promoter) corrected for GADPH expression (relative densitometric units), in PCO and control ovaries incubated with basal medium (basal conditions), control MO secretions and PCO MO
secretions. It is observed that in basal conditions, the Bax mRNA expression of the PCO ovary was
not significantly different to that of the control ovary. Incubating control ovaries with either control
or PCO MO secretions resulted in a similar Bax mRNA expression in relation to the control ovary in
basal conditions. Furthermore, incubation of PCO ovary with control MO secretions did not show
significant variations in the Bax mRNA expression with respect to PCO ovary in basal conditions.
However, incubation of the PCO ovary with PCO MO secretions presented a significant increase of
Bax mRNA expression with respect to PCO ovary incubated in basal conditions (\(P < 0.01 \)), and
therefore also showing a significant increase compared to the respective control ovary (\(P < 0.001 \)).
As shown in Fig 1B, no differences in the Bcl2 (an apoptosis inhibitor) mRNA expression were
observed between PCO and control ovaries incubated with either basal medium, PCO
MO secretions or control MO secretions. From the data shown in Fig. 1A and 1B, it can be
concluded that incubation of PCO ovaries with PCO MO secretions, leads to an increase of the Bax
to Bcl2 ratio with respect to PCO ovaries incubated in basal conditions (1.49 ± 0.06 vs 1.16 ± 0.03;
\(P < 0.05 \)), and also respect to the control ovaries incubated with PCO MO secretions (1.49 ± 0.06 vs
0.97 ± 0.03; \(P < 0.05 \)).
Incubation of PCO ovaries in basal medium shows no significant differences in the NFkB mRNA
expression compared to the corresponding control ovaries. Furthermore, after incubating with both
control and PCO MO secretions, no variations were observed in the NFkB mRNA expression of the
control ovaries compared to the control ovary in basal conditions. However, PCO ovaries incubated
with both control and PCO MO secretions, presented an increase of the NFkB gene expression
compare to PCO ovaries incubated in basal conditions (\(P < 0.05 \) and \(P < 0.01 \), respectively). Likewise,
there was also an increase of the gene expression with respect to the corresponding control ovaries
incubated with both control and PCO MO secretions, being this increase greater when PCO ovaries
were incubated with PCO MO secretions \((P<0.05 \text{ for control and } P<0.01 \text{ for PCO MO secretions}) \)

(Fig. 1C).

Macrophage secretions on the ovarian PGE\(_2\) content and release

Presented in Fig. 2A are the results of the PGE\(_2\) content in the ovaries. It is observed that under basal conditions, the PGE\(_2\) content was significantly increased in the PCO ovary respect to the control ovary \((P<0.001) \). It is also observed that incubating the control ovaries with both control and PCO MO secretions, does not show an appreciable variation of prostaglandin content with respect to ovaries incubated in basal conditions. However, incubation of the PCO ovary with both control and PCO MO secretions showed a significant decrease of PGE\(_2\) content with respect to PCO ovary in basal conditions, and also compared to their respective control ovaries \((P<0.001) \), being this decrease more pronounced in the case of PCO ovary incubated with PCO MO secretions.

As shown in Fig. 2B, under basal conditions, the amount of PGE\(_2\) released from the PCO ovary was significantly increased compared to the control ovary \((P<0.001) \). Incubating the control ovaries with both control and PCO MO secretions, resulted in no significant variation in the amount of PGE\(_2\) released with respect to control ovaries incubated with basal medium. However, incubation of the PCO ovary with both control and PCO MO secretions showed a significant decrease of PGE\(_2\) release with respect to PCO ovary in basal conditions \((P<0.001) \), being this decrease more pronounced in the case of PCO ovary incubated with PCO MO secretions. Therefore, incubating the PCO ovary with PCO MO secretions showed a decrease of PGE\(_2\) release compared to the corresponding control ovary \((P<0.05) \).

Macrophage secretions on the ovarian nitrite release and iNOS protein expression

Presented in Fig. 3A are the results of nitrite released from the ovaries. The release of nitrites from PCO ovary incubated in basal conditions showed an increase with respect to the nitrites released by the corresponding control ovary \((P<0.01) \). Stimulating control ovaries with both control and PCO
MO secretions, resulted in a similar increase of nitrite release compared to control ovaries in basal condition \((P<0.001)\). Furthermore, incubation of the PCO ovaries with control MO secretions showed an increase of nitrites released \((P<0.01)\) with respect to basal conditions, while no change was observed when incubating with PCO MO secretions. Thus, incubation PCO ovaries with PCO MO secretions showed a significant decreased of the nitrite released from the PCO ovaries in relation to the respective control ovary \((P<0.001)\).

Figure 3B shows the results of iNOS protein expression in the ovaries. Immunoblot analysis with an anti-iNOS monoclonal antibody demonstrated enhanced levels of iNOS protein expressions in PCO ovaries incubated in basal conditions relative to the corresponding control ovary \((P<0.05)\). Stimulation of the control ovaries with both control and PCO MO secretions, did not show changes of the iNOS expression with respect to that in basal conditions; while stimulating the PCO ovaries with both secretions resulted in a decrease of the iNOS expression relative to the PCO ovary in basal conditions \((P<0.001)\), being this decrease more important with PCO MO secretions. Therefore, incubating the PCO ovary with PCO MO secretions showed a decrease of iNOS protein compared to the corresponding control ovary \((P<0.001)\).

Effect of macrophage secretions on the steroids release from ovarian cells

Incubating with MO secretions from PCO as well as from control rats had a stimulatory effect on the androstenedione release from interstitial cells of both control and PCO ovaries, compared to their respective basal values \((P<0.001)\). In all cases, including basal conditions, PCO ovaries released more androstenedione than control ovaries (Fig. 4A), being this difference greater when stimulating with PCO MO secretions. Figure 4B shows that after stimulation with both control and PCO MO secretions, estradiol release from control granulosa cells showed no significant differences compared to basal conditions. However, incubating the PCO granulosa cells with both secretions, resulted in a decrease of the estradiol release relative to the cells in basal conditions, and this
decrease was more pronounced when PCO granulosa cells were incubating with PCO MO secretions
(P<0.05 for control and P<0.01 for PCO MO secretions).

Effect of macrophage secretions on the ovarian TUNEL staining

In situ TUNEL analysis was used to detect the presence of apoptotic activity in ovarian sections
(Fig. 5A-F). As expected, in basal conditions, the control ovary showed low or no staining, and
absence of cystic follicles. Only a negligible amount of apoptosis in granulosa cells of secondary
and antral follicles was observed (Fig. 5A). On the other hand, the PCO ovary showed TUNEL
positive reaction in few primary follicles, an increased reactivity in secondary and antral follicles, as
well as abundance of cystic follicles, compared to control (Fig. 5B). TUNEL staining was
predominately localized in granulosa cells and in less extent on theca cells. It was observed that
when incubating with PCO MO secretions, the TUNEL reactivity in secondary and antral follicles of
control ovary increased (Fig. 5E), and even more in secondary and antral follicles of PCO ovary
(Fig. 5F), compared with the respective ovary in basal conditions. TUNEL staining was seen in both
granulosa as well as theca cells in PCO ovaries under stimulation with PCO MO secretions. The
distribution of TUNEL positive reactions in granulosa cells in primary, secondary and antral
follicles is illustrated in the Table 1.

Discussion

Cystic ovarian disease and/or polycystic ovarian syndrome (PCOS) are reproduction disorders that
affect human beings and other species such as bovine, ovine, caprine and porcine (Garverick 1997,
of the syndrome is reflected in many polycystic ovaries animal models (Mahajan 1988, Salvetti et
al. 2004, Baravalle et al. 2006, Francou et al. 2008). Furthermore, estradiol valerate is one of the
most widely used steroids to induce PCO in rats (Brawer et al. 1986, Rosa et al. 2003). On this
basis, in the current work, the effect of macrophage secretions on the polycystic ovarian apoptosis has been studied in order to gain further knowledge on the mechanisms determining PCO. The results show that macrophage secretions induce apoptosis in the PCO ovary.

In the ovary, the mechanisms underlying decisions of life and death involve cross-dialogue between pro-apoptotic and pro-survival molecules through fetal and adult life, which are carried out by several molecular pathways, out of which the Bcl2 family, TNFα and caspases proteins appear to be important players. The Bax/Bcl2 ratio, which is thought to be a critical determinant of cell fate (a low ratio favours extended survival of cells, whereas a high ratio accelerates cell death) (Rueda et al. 1999, Tilly 2001, Skarzynski et al. 2005, Bas et al. 2011), was significantly higher in PCO than in control ovary incubated with PCO MO secretions, suggesting that these secretions may be involved in an imbalance among apoptotic and pro-apoptotic family members in the PCO ovary. In this sense, the NFkB mRNA expression was increased in the PCO ovary after incubation with the PCO MO secretions. It is known that the activation of this transcription factor, which induces the transcription of downstream target genes involved in the inflammatory and apoptotic process (Perkins 2007), is induced by TNFα in rat granulosa cells through phosphorylation of IkB (Gonzalez-Navarrete et al. 2007). Considering the pro-apoptotic role for TNFα in reproductive tissues (Kaipia et al. 1996, Hussein 2005, Haider & Knöfler 2009), and having observed that secretions from spleen MO of PCO rats contain more TNFα than secretions from control MO (Figueroa et al. 2012), the induction of NFkB mRNA expression in the PCO ovary after incubation with control MO secretions, which was even more accentuated with PCO MO secretions, could be associated, at least till some extend, to the TNFα levels of the MO secretions. In addition, after incubation with PCO MO secretions, an increase of the apoptotic nuclei number in the granulosa cells of PCO ovary was detected by TUNEL staining. All these findings suggest that PCO MO
secretions induce apoptosis in the PCO ovary. Furthermore, immune cells play an important role in
the pathology of PCOS, as suggested by the high concentration of white cells in PCO ovary
(Bukulmez & Arici 2000, Wu et al. 2004, 2007). Thus, resident macrophage population could
possibly modulate the cell death in the PCO ovary.

In the ovary, resident macrophage and other white cells, as well as follicular granulosa and theca
cells, are known to produce prostaglandins (Takaya et al. 1997). In particular, PGE$_2$ has been shown
to mediate the ovarian follicle growth in the rat *in vivo* (El-Neiaawy et al. 2005). In the present
work, it was found that the content of PGE$_2$ in the PCO ovary incubated with basal medium was
higher than in control ovary, as it was also observed with the PGE$_2$ release. This agrees with results
from other authors who found an increased PGE$_2$ release from dehydroepiandrosterone- or letrozole-
induced polycystic ovaries in rats, and also from polycystic ovary granulosa cells collected from
and PCO MO secretions decreased the PGE$_2$ content of PCO ovary, and this decrease was more
pronounced with PCO than with control MO secretions. It is known that NO, which is produced by
the resident and infiltrating ovarian MO, and also by ovarian cells (Bukulmez & Arici 2000, Wu et
al. 2004, 2007), stimulates cyclooxygenase-2 (COX-2) activity, which is the rate-limiting step in
prostaglandin synthesis (Chandrasekharan & Simmons 2004). Therefore, the fact that iNOS protein
expression and nitrite levels follow a similar pattern than the PGE$_2$ content, suggests that PGE$_2$
synthesis can be modify by PCO MO secretions.

The exact role of prostaglandins during apoptosis remains unclear. On the other hand, PGE$_2$
promotes survival of pathological cells by inhibiting apoptosis (Sheng et al. 1998, Rask et al. 2006),
as well as death cells by a pro-apoptotic effects (Bowolaksono et al. 2008). We have observed an
inverse relationship between PGE$_2$ content and apoptosis of the PCO ovary after stimulation with
PCO MO secretions, where a lower ovarian PGE$_2$ content and release, and a higher apoptotic nuclei
numbers, were found compared with the effect induced by control MO secretions. It is also known that PGE\(_2\) suppress cell death induced by TNF\(\alpha\) in ovarian bovine luteal cells (Bowolaksono et al. 2008), and Kunisch et al. (2009) have shown that PGE\(_2\) can act as a negative feedback molecule in the signalling pathway linking TNF\(\alpha\) to pro-destructive matrix metalloproteinase (MMP1) production in fibroblasts cells. In addition, a high ovarian matrix metalloproteinase-2 (MMP2) has been found to be increased in PCO rats compared with healthy controls (Rezvanfar et al. 2014). Therefore, since from our previous results we know that the TNF\(\alpha\) level of PCO MO secretions is higher than control MO secretions (Figueroa et al. 2012), it is conceivable that the low PGE\(_2\) content of PCO ovary stimulated with those secretions can contribute to apoptosis promotion. Moreover, an apoptotic role of androgen has been recognized in reproductive tissues. In this sense, global knockout of the androgen receptor in female mice leads to reduced fertility, with reduced numbers of antral follicles and increased granulose cells apoptosis (Shiina et al. 2006, Walters et al. 2008, Tyndall et al. 2012). We have previously shown that PCO MO secretions decrease the conversion of androstenedione to estradiol in the PCO ovary, leading to an increase of androstenedione (Figueroa et al. 2012). This was also observed in the current study when PCO ovarian cells were incubated with PCO MO secretions, where an increase of androstenedione release from interstitial cells and a decrease of estradiol release from granulosa cells occurred. This effect can be attributed, at least in part, to the high TNF\(\alpha\) content of PCO MO secretions. It has been reported that TNF\(\alpha\) activates transcription of an inducible repressor form of 3',5'-cyclic adenosine 5'-monophosphate-responsive element binding modulator, and represses P450 aromatase in ovarian rat granulosa cells (Morales et al. 2006). In addition, we have previously observed an increase of IL6 mRNA expression in PCO MO, compared with control MO, which was even greater after treatment with testosterone (Figueroa et al. 2012), indicating that IL6 mRNA abundance seems to be
modulated, as it was observed with TNFα, by testosterone environment. Since an enhanced IL6 production may attenuate estradiol production, partially by inhibiting the expression of aromatase mRNA in rat granulosa cells (Tamura et al. 2000), it is possible that the increased IL6 expression of PCO MO may contribute to the steroidogenic ability of the MO secretions to decrease the androstenedione conversion to estradiol in the PCO ovary.

Moreover, the low PGE2 content and NO production found in the PCO ovaries stimulated with MO secretions could contribute to the androgen environment. PGE2 stimulates Cyp19 expression, the key gene of estrogen biosynthesis, in rat granulosa cells (Cai et al. 2007). In relation to NO, it is known that the in vitro synthesis of estradiol is inversely regulated by NO in ovarian rat cells (Dave et al. 1997) and also in human granulosa-luteal cells cultures, being the NO capable of directly inhibiting the activity of aromatase or indirectly decreasing the levels of the mRNA of the enzyme (Snyder et al. 1996).

Considering the present results and knowing that testosterone stimulates the TNFα and IL6 production by MO, it is reasonable to suggest that the increase of androgens stimulated in ovarian cells by PCO MO secretions could in turn stimulate the cytokine production from MO, thus maintaining an apoptotic vicious cycle in the PCO ovary.

Despite the bidirectional relationship between pro-inflammatory cytokines and the androgen excess in PCOS is still unclear, our results suggest that the detrimental effect of up-regulation of proinflammatory cytokines of spleen macrophages, could contribute to explain the lack or loss of reproductive capacities observed in the PCOS. Also, the possibility that MO secretions released into the general circulation can act on hypothalamic-pituitary sites, and subsequently produce changes in the ovary, cannot be discard.

References

Forneris ML, Aguado LI & Oliveros LB 2003 A neuroimmune regulation at peripheral level on the steroidogenesis of polycystic ovary in rats. *Cellular and Molecular Biology* **49** 965–971.

Forneris M, Rosales E, Ciuffo G & Oliveros L 2008 Testosterone environment of splenocytes modifies the steroidogenesis of polycystic ovary in rats. *Hormone Metabolism Research* **40** 239–244.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by grant 9302 from the National University of San Luis, Argentina.
Legends

Figure 1A

Macrophage secretions on the ovarian Bax mRNA expression. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for three hours. Target mRNA was normalized by the level of GAPDH mRNA. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. ***$P<0.001$ compared with respective control.

Figure 1B

Macrophage secretions on the ovarian Bcl2 mRNA expression. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for three hours. Target mRNA was normalized by the level of GAPDH mRNA. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. **$P<0.01$; * $P<0.05$ compared with respective control.

Figure 1C

Macrophage secretions on the ovarian NFkB mRNA expression. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for three hours. Target mRNA was normalized by the level of GAPDH mRNA. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. **$P<0.01$; * $P<0.05$ compared with respective control.

Figure 2A

Macrophage secretions on the ovarian prostaglandin E$_2$ (PGE$_2$) content. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture
medium of C and PCO macrophages (macrophage secretions) for three hours. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. ***P<0.001 compared with respective control.

Figure 2B

Macrophage secretions on the ovarian prostaglandin E\(_2\) (PGE\(_2\)) release. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for three hours. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. ***P<0.001; *P<0.05 compared with respective control.

Figure 3A

Macrophage secretions on the ovarian nitrite release. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for three hours. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. ***P<0.001; **P<0.01 compared with respective control.

Figure 3B

Macrophage secretions on the ovarian iNOS protein expression. Ovaries from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for three hours. The corresponding graph shows integrated optical density of the bands. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. ***P<0.001; *P<0.05 compared with respective control.

Figure 4A

Effect of macrophage secretions on the androstenedione release from ovarian cells. Interstitial cells (IC) from control (C) and polycystic (PCO) rats were stimulated with either basal
medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for 24 h. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. **P<0.01; * P<0.05 compared with respective control.

Figure 4B

Effect of macrophage secretions on the estradiol release from ovarian cells. Granulosa cells (GC) from control (C) and polycystic (PCO) rats were stimulated with either basal medium (basal) or culture medium of C and PCO macrophages (macrophage secretions) for 24 h. Values are mean ± S.E.M. of three independent experiments, each experiment performed with three C and three PCO rats. **P<0.01; *P<0.05 compared with respective control.

Figure 5

In-situ detection of apoptosis by TUNEL in ovarian sections of control and PCO rats. Representative photomicrographs of control (A, C and D) and estradiol valerate exposed (B, E, and F) rat ovary sections are shown. Ovaries from control and PCO rats were incubated for 6h in basal medium (Basal) or macrophage secretions from control (MO Control) and PCO (MO PCO) rats. Nuclear dark brown staining shows a positive reaction. Arrowheads indicate isolated apoptotic cells and arrows indicate apoptotic follicles. In basal conditions, increased apoptosis on PCO ovary is evident as compared to negligible apoptosis in control ovary (figure A-B). PCO MO secretions increase TUNEL reactivity in control ovary and even more in PCO ovary (figure E-F). Control MO secretions do not modify TUNEL reactivity in control or PCO ovary compared to respective basal (figure C-D).TUNEL staining was predominately localized in granulosa cells. Magnification X100.

Table 1

In situ detection of apoptosis by TUNEL in ovarian sections from control and PCO rats treated, or untreated, with macrophages secretions.
Adult cycling Holtzman control and PCO rats (injected with 2 mg of estradiol valerate) were sacrificed at estrus day. Ovaries from control and PCO rats were incubated for 6 h in basal medium (Basal) and macrophage secretions from PCO rats (MO PCO). Then, the ovaries were collected and processed for detection of apoptosis by TUNEL. Intensity of the positive TUNEL reaction: (-) negative; (+/-) weak positive; (+) positive; (++) strong positive; (+++) strong positive including theca and stromal cells; Ab, absence of respective type of follicle.

Legend to Supplementary Figure 1:

Giemsa staining of the adhered macrophage cells, after incubation of the splenic cells in RPMI media for 2 h, at 37 °C in 95% air-5% CO2. The morphology was determined by light microscopy, and the percentage of macrophage cells was obtained on 500 total cells counted in different microscopic fields taken at random. Magnification x400.
Macrophage secretion

Control Ovary
PCO Ovary

P<0.01
P<0.05
P<0.05

NFκB mRNA
(Arbitrary units)

Basal
C
PCO
Macrophage secretion

- Control Ovary
- PCO Ovary

PGE₂ (ng/mg ovary)

Basal C PCO

P<0.05 P<0.001 P<0.001

*** *** ***
Macrophage secretion

PGE$_2$ (pg/ml medium)

Control Ovary
PCO Ovary

Basal C PCO

*** P<0.001

P<0.001
Macrophage secretion

Nitrite (μMol/ml medium)

Control Ovary
PCO Ovary

Basal C PCO

P<0.01 P<0.001

** ***
iNOS expression (Arbitrary units)

Control Ovary
PCO Ovary

Basal C PCO

Macrophage secretion

P<0.001
P<0.001

* ***
Androstenedione (ng/ml medium)

Macrophage secretion

Control IC
PCO IC

Basal C PCO

P<0.001

\(* \)

\(** \)
Macrophage secretion

Estradiol (pg/ml medium)

- Control GC
- PCO GC

P<0.01

P<0.05

Basal C PCO

* ** **

Page 40 of 42
In-situ detection of apoptosis by TUNEL in ovarian sections of control and PCO rats. Representative photomicrographs of control (A, C and D) and estradiol valerate exposed (B, E, and F) rat ovary sections are shown. Ovaries from control and PCO rats were incubated for 6h in basal medium (Basal) or macrophage secretions from control (MO Control) and PCO (MO PCO) rats. Nuclear dark brown staining shows a positive reaction. Arrowheads indicate isolated apoptotic cells and arrows indicate apoptotic follicles. In basal conditions, increased apoptosis on PCO ovary is evident as compared to negligible apoptosis in control ovary (figure A-B). PCO MO secretions increase TUNEL reactivity in control ovary and even more in PCO ovary (figure E-F). Control MO secretions do not modify TUNEL reactivity in control or PCO ovary compared to respective basal (figure C-D). TUNEL staining was predominately localized in granulosa cells. Magnification X100.
Table 1. *In situ* detection of apoptosis by TUNEL in ovarian sections from control and PCO rats treated, or untreated, with macrophages secretions.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Follicles</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Secondary</td>
<td>Antral</td>
<td>Cystic</td>
</tr>
<tr>
<td>Control (Basal)</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>Ab</td>
</tr>
<tr>
<td>PCO (Basal)</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Control + MO PCO</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>Ab</td>
</tr>
<tr>
<td>PCO + MO PCO</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>