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The question of the validity of the scaling ansatz in discrete deposition models and their connection
with the scaling exponents of continuum differential equations is addressed. We specifically focus on the
scaling properties of the Wolf–Villain type models and, as an extension of this model, on the influence
of attractive and repulsive interactions up to second neighbors on the scaling relation. As an example
of technological relevance, we present the evolution of steps in the vicinal (100) surface of Si during
deposition at relatively low temperatures. We have found that, in general, one should not expect that
discrete models, as well as real crystals, exhibit scaling.

1. Introduction

In the last two decades, kinetic roughening of in-

terfaces growing far from equilibrium has become of

great interest.1–3 From a theoretical point of view,

growth processes have been described using both dis-

crete models and continuum equations. It has been

argued that the interface roughness, w(t), follows a

scaling function of the form

w(L, t) ∼ Lαf(t/Lz) , (1)

where L is the system size and α and z are char-

acteristic scaling exponents.1 In general, two scal-

ing regimes are found depending on the argument

u of the function f . For u � 1 f(u) ∼ uβ (with

β = α/z) and f(u) = const for u � 1. In turn,

the values of the scaling exponents (α, β and z) are

used to identify several universality classes for the

roughening processes. In particular, much attention

has been specially paid to surface growth via molec-

ular beam epitaxy (MBE).2 Ideally, MBE growth

is conservative with no desorption and no surface

overhangs allowed, which is known as the solid-on-

solid (SOS) condition. The chemical-bonding envi-

ronment is considered in establishing the deposition

rules, which means that freshly landed particles relax

into local energy minima which are defined accord-

ing to the interactions among particles. In this paper

we address the question of the scaling properties in

some discrete models developed to mimic MBE and

discuss a real case. We have found that scaling is not

the rule but the exception.

2. Continuum and Discrete
Approaches

Continuous growth models in the SOS approach

must obey a mass conservation law that leads to the

continuity equation

∂h(x, t)

∂t
= ∇j(x, t) + η . (2)

Several processes give rise to different dependencies

of the surface current, j(x, t), on h(x, t), dh(x, t)/dt,

etc. However, in many models j(x, t) is considered

to be driven by the gradient of a local chemical po-

tential

j(x, t) ∼ ∇u(x, t) . (3)

With Eqs. (2) and (3), the growth equation for SOS

models adopts the form

∂h(x, t)

∂t
= ν∇2u(x, t) + η . (4)
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From a different perspective, discrete growth

models address the question from an atomistic point

of view by taking into account deposition and atomic

diffusion mechanisms. In SOS models incident atoms

stick only at the tops of substrate atoms and the

resulting growing structure is a lattice of columns

whose heights increase as matter is added. Discrete

models have been studied mainly using computer

simulations because a variety of rules are not diffi-

cult to be established. However, the analysis of the

results has been shown not to be a simple task.4

Discrete models that emphasize the role of chem-

ical bonding in the relaxation process have been pro-

posed by Wolf and Villain (WV) and Das Sarma

and Tamborenea (DT) independently. They pro-

posed two models which, at first sight, only dif-

fer slightly.5,6 WV and DT models are considered

to be suitable to represent MBE processes. During

MBE the gravitational force is negligible compared

to the binding forces acting on particles at the sur-

face and then it is very reasonable to assume that

particles tend to end their diffusion at sites with a

high binding energy (a large number of neighbors).

In both models particles are dropped at randomly

chosen positions. Subsequently, just-dropped parti-

cles can remain where they were deposited or relax

to nearby sites by moving left or right one site. In

the DT model, a just-deposited particle having only

one neighbor can choose a neighbor site with a larger

number of neighbors, while in the WV model a just-

deposited particle relaxes toward the neighbor site

having the larger number of neighbors.

There have been several attempts to establish the

equivalence between discrete growth models and con-

tinuum growth equations. Most of the work has been

done numerically by comparing the simulated expo-

nents of the discrete models with those for the con-

tinuum equations. For the DT and WV models it

was originally found that α and β had values coinci-

dent with the exponents predicted by the following

stochastic growth equation of the Mullins–Herring

type:
∂h(x, t)

∂t
= −ν∇4h(x, t) + η . (5)

The linear term in this equation can be understood

as the tendency for particles to stick at kink sites.

From Eqs. (4) and (5) it can be seen that the chem-

ical potential is directly related to the local radius

of curvature of the surface. Therefore, with the lin-

ear term in Eq. (5), it is assumed that the chemical

potential is lower if the radius of curvature is posi-

tive and small. Equation (5) can be solved exactly

and the exponents were deduced to be α = 3/2 and

β = 3/8 in 1 + 1 dimensions.1 (More recently it has

been proposed that the WV and DT models belong

to different universality classes.7)

From the direct simulation of discrete models, the

scaling exponents can be determined from the basic

relations w(t) ∼ tβ before the roughness saturation

is reached and w(L) ∼ Lα after saturation. How-

ever, Wolf and coworkers resort to the behavior of

the structure factor being much more sensitive. The

structure factor is defined as

S(k, t) = 〈h(k, t)h(−k, t)〉 , (6)

where

h(k, t) =
1

L1/2

∑
[h(x, t) − h] exp(ikx) . (7)

The roughness scaling hypothesis reflects into the

structure factor as1

S(k, t) = k−d−2αg(t/k−z) . (8)

In particular, note that the roughness scaling implies

that S(k, t) is not a function of the lattice size L. In

steady state, t → ∞, the function g(.) is constant

and then S(k, t) ∼ k−d−2α, where d is the lattice

dimension.

3. Discrete Models and Particle
Interactions

As described above, in the WV model, particles

choose sites with the largest number of neighbors.

For the WV model it was originally found that

α = 1.4 ± 0.1 and β = 0.365 ± 0.015.5 These values

are quite close to α = 3/2 and β = 3/8 predicted by

Eq. (5). However, it has been argued that the Wolf–

Villain and related models do not obey the scaling

hypothesis. Indeed, Wolf himself, using the steady-

state structure factor, showed that the WV model

has no self-affine scaling and proposed a modifica-

tion of the scaling function for his model.8

Later, Kim and Das Sarma introduced a model

known as the larger curvature (LC) model, in which,

in relaxing, particles must choose the site with the

highest value of, i.e. with larger curvature.9 They
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Fig. 1. Several examples for the relaxation processes
in the Wolf–Villain model (a) and the large curvature
model (b).

adopted a finite-difference approximation to evaluate

the second derivative as in Eq. (5). This is not what

is done in WV or DT models.

In Fig. 1 the relaxation mechanisms in the WV

and LC models are depicted for the same structure.

We have specially chosen some cases for which the

particles relax in a different manner. Note that in the

WV model relaxation occurs regardless of the differ-

ence between heights involved. In the LC model the

heights of columns determine the value of ∇2h(x, t).

Particles 1, 2 and 3 in the WV model choose indis-

tinctly to relax to the left or to the right because of

the same number of first neighbors, but in the LC

model there is one specific site where the just arriv-

ing particle chooses to diffuse. Interestingly, particle

4 relaxes by diffusing to opposite sites, depending on

the model. It is clear that the WV model cannot be

considered a discretization of the relaxation mecha-

nism represented by ∇4h(x, t). Conversely, the LC

model is a discrete version of the relaxation included

in Eq. (5), and thus one would expect a good corre-

spondence with its resulting surface roughening.

From an atomistic point of view, the LC model

is far from being realistic because it implies inter-

actions that do not depend on the distance between

the particles involved. Indeed, the chemical potential

is determined by the second derivative that propor-

tionally depends on the height differences between

neighbor columns, i.e. adding a particle on a neigh-

bor site affects the chemical potential for a site inde-

pendently of the kink size. This becomes apparent if

−4 −3 −2 −1 0 1 2 3 4
h i+1 −h i

−4

−3

−2

−1

0

1

2

3

4

C
he

m
ic

al
 P

ot
en

tia
l (

ar
b.

 u
ni

ts
)

(a) Large curvature

(b) Wolf−Villain

(c) Second neighbor

(a)

(b)

(c)Interaction (atractive)

Fig. 2. The contribution of the right kink size to the
chemical potential in the large curvature model, the
Wolf–Villain model, and a model which includes attrac-
tive interactions with second neighbors.

∇2h is discretized as

∇2h = [h(i− 1)− h(i)] + [h(i+ 1)− h(i)] , (9)

where now the second derivative at a given site, and

then the chemical potential, is directly expressed as

the sum of the kink sizes on the left and right. In

Fig. 2 we can see the contribution of the right kink

size to the chemical potential for the LC and WV

models up to kinks of size 3.

Finally, we mention a model introduced by Ryu

and Kim that is a natural extension of the WV model

in which second neighbor interactions are included.10

We also present here results corresponding to sec-

ond neighbor repulsive interactions not studied in

Ref. 10. Figure 2 shows the resulting contribution

of the right kink size to the chemical potential when

second neighbor interactions are positive and a half

of that corresponding to first neighbors. Interest-

ingly, the structure factor for this model shows a

better scaling than that for the WV model as shown

in Fig. 3, i.e. with the inclusion of attractive second

neighbor interactions the model behaves closer to the

LC model. As farther neighbors of the contiguous

columns are taken into account, the chemical poten-

tial better resembles the LC model and we found that

the resulting model exhibits a better scaling.
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Fig. 3. Steady-state structure factor, S(k), for the WV
model (filled symbols) and for a model that includes at-
tractive interactions with second neighbors (empty sym-
bols). w16, w32, w64 and w128 refer to the WV model for
L = 16, 32, 64 and 128, respectively. a16, a32, a64 and
a128 refer to the model with interactions up to second
neighbors for L = 16, 32, 64 and 128, respectively. For
the sake of clarity, S(k) for the WV model is displayed
shifted up by an order of magnitude.

As can be seen in Fig. 4, if second neighbor inter-

actions are of the repulsive type, the resulting inter-

face roughness clearly does not scale; the structure

factor becomes more strongly dependent on L. Even

worse, the exponent α deduced from S(k) depends

on the chosen value of L. For instance, the value of

α, calculated from the slope of S(k), for L = 128 is

0.11 while for L = 16 it is 0.38. On the other hand,

if α is calculated from the roughness under satura-

tion conditions (plots not shown), it is found to be

greater than 2.

4. Roughening of Si(100) Steps
During Homoepitaxial Growth

The most pronounced feature of Si(100) is that it

forms parallel rows of dimerized atoms. These rows

are orthogonal on adjacent atomic terraces, giving

rise to alternating 2 × 1 and 1 × 2 domains. Step

edges aligned parallel to the dimer rows of the upper

terrace are denoted as SA, and step edges perpen-

dicular to the upper terrace dimer rows are denoted

as SB. Consistent with the energetically favorable
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Fig. 4. Steady-state structure factor, S(k), for the WV
model (filled symbols) and for a model that includes re-
pulsive interactions with second neighbors (empty sym-
bols). w16, w32, w64 and w128 refer to the WV model for
L = 16, 32, 64 and 128, respectively. r16, r32, r64 and
r128 refer to the model with interactions up to second
neighbors for L = 16, 32, 64 and 128, respectively. For
the sake of clarity, S(k) for the WV model is displayed
shifted down by two orders of magnitude.

way in which the ends of dimer rows terminate on

the lower terrace,11,12 SB step edges tend to offset

by an even number of dimers. The configurations of

these steps have attracted considerable interest be-

cause of their role in crystal growth, epitaxy, and

etching.13–19

Wu et al.20 reported a very interesting study for

kinetic roughening and finger formation in steps of

Si(100) miscut toward [100] during homoepitaxial

growth. Because of the high anisotropy in diffusion,

an adatom landing on a particular dimer row would

diffuse preferentially along the row and would even-

tually arrive at one of the ends. Adatoms arriving at

SB steps fall over the step and can be incorporated

into the step, while atoms arriving at SA steps are

reflected. Thus adatoms deposited on a particular

dimer row tend to extend that row at its down-step

end. The longer the row, the more it is able to col-

lect deposited atoms. Fluctuations present in the

equilibrium pattern or in the flux of arriving atoms

will cause some rows to grow more quickly than oth-

ers and, subsequently, to collect even more atoms.
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Fig. 5. Roughness as a function of time for a model that
mimics the roughening of Si(100) steps during homoepi-
taxial growth. Experimental points were extracted from
Ref. 20.

This implies a positive feedback that would produce

fingers.

The discussion above is correct but an impor-

tant point must be taken into account: rows do

not directly collect individual atoms arriving to their

ends. Since kinks in monatomic step edges on vicinal

Si(100) present mostly a length corresponding to an

integer number of dimer rows, fluctuations must oc-

cur dominantly through the attachment and detach-

ment of sets of two dimers, as has been confirmed by

STM observations.16 Then, the attaching of a block

involves four atoms and intermediate structures have

very short lifetimes. Since blocks (not atoms) are the

stable attaching “particles”, “block events” need to

be modeled. In doing so, the atom deposition influ-

ence on block attaching at step edges has to be incor-

porated. Based on this kind of known mechanisms

present in homoepitaxial Si growth, we introduced a

model that leads to the observed fingerlike configu-

rations and their evolution.21 In Fig. 5 we show the

roughness as a function of time for this model includ-

ing the experimental results extracted from Ref. 20.

The time evolution of the roughness shows an initial

slow increase that can be understood as an effect

of the positive feedback. This is, some roughness in-

volving short and long rows is needed for the positive

feedback to act. This explains an increasing delay,

observed in experiments, for the onset of fingering as

the temperature is raised.

Thus, comparison to experimental findings indi-

cates that dendrite-like fingers are the result of a

positive feedback due to the well-known diffusional

anisotropy in Si(100) within a solid-on-solid model.

This specific example shows that real growing inter-

faces can be much more complex than theoretical

models as the WV or DT models. Clearly, as shown

in Fig. 5, the time evolution of the roughness is far

from showing scaling properties.

5. Final Remarks

Continuum models of deposition processes are only

approximations to reality because the surface of a

crystal is discrete, since it is made up of individ-

ual atoms. Thus, the height of a crystal does not

change continuously but in jumps corresponding to

the adding or removing of particles from the surface.

In that sense, an atomistic approach is a better rep-

resentation of depositions on crystals.

It is important to point out that universal scal-

ing has been unambiguously proved only for some

continuum models. In discrete models, by analyzing

the behavior of the basic relations w(t) ∼ tβ before

saturation and w(L) ∼ Lα and specially S(k, t) af-

ter saturation, the lack of scaling can be proved but,

strictly speaking, scaling can only be conjectural.

Discrete models appear to show scaling as they

are a discretization of continuum models that do

scale. This is the case for the LC model, a discretiza-

tion of a Mullins–Herring type equation, and for

the Family–Vicsek model, a discretization of the the

Edwards–Wilkinsonn equation.14 However, in gen-

eral, one should not expect that discrete models (as

well as real crystals) exhibit scaling.
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