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Abstract
We develop the exact renormalization group approach as a way to evaluate the 
effective speed of the propagation of a scalar wave in a medium with random 
inhomogeneities. We use the Martin–Siggia–Rose formalism to translate the 
problem into a non equilibrium field theory one, and then consider a sequence 
of models with a progressively lower infrared cutoff; in the limit where the 
cutoff is removed we recover the problem of interest. As a test of the formalism, 
we compute the effective dielectric constant of an homogeneous medium 
interspersed with randomly located, interpenetrating bubbles. A simple 
approximation to the renormalization group equations turns out to be equivalent 
to a self-consistent two-loops evaluation of the effective dielectric constant.

Keywords: waves, random media, field theory methods

(Some figures may appear in colour only in the online journal)

1.  Introduction

The goal of this paper is to implement the renormalization group method [1–4] as a tool to 
study wave propagation in disordered media [5–7]. We take as a paradigmatic problem the 
Helmholtz equation in three dimensions with a stochastic space dependent wave speed

[
∆+ ω2ε(x)

]
φ(x) = −j(x)� (1)

where ε is the inverse square speed of sound of the medium, that is, the dispersion relation 
reads k2 = εω2. Borrowing the name from Maxwell’s theory, we shall call ε the dielectric con-
stant. ε is in turn a stochastic real variable, that can be split in its mean value plus fluctuations:
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ε(x) = ε̄+ δε(x).� (2)

The properties of the medium are encoded into the self correlation 〈δε(x)δε(x′)〉 = C(x,x′), 
which we will take to be the only nontrivial moment (for the generalization to non-Gaussian pro-
cesses see [8]). As a test problem we shall focus on the mean wave propagation, obtained as an 
ensemble average over all realizations of the noise. This is described by the mean Green function 
G = 〈Gε〉, where Gε is the Green function for each realization of the noise ε. G obeys the equation

[
∆+ ω2ε̄

]
G(x,y) = −δ(x− y)− ω2〈Gε(x,y)δε(x)〉.� (3)

We define the self energy according to

ω2〈Gε(x,y)δε(x)〉 =
∫

ddz Σ(x, z)G(z,y)� (4)

which, after multiplying equation (3) by the bare green function G0 (the inverse of the nonran-
dom differential operator on the left hand side), leads to a Dyson equation [6, 9–11]

G = G0 + G0 · Σ · G� (5)

where the · denotes the matrix multiplication over the continuous index, that is integration 
over space coordinates. Although ε is real for all realizations of the noise, the self energy will 
have in general an imaginary part [12], meaning that the mean wave is losing energy which is 
scattered by the inhomogeneities [13–18]. Our goal is to compute this imaginary part, in the 
limit of zero momentum, using renormalization group methods, and to compare the result to 
a perturbative evaluation of the same quantity [8].

The renormalization group (RG) [1–4] denotes a cluster of methods to study problems 
of diverse complexity. The basic idea is to study how the properties of the physical system 
change when observed at different length scales. This is regulated through a cutoff Λ. If the 
theory is expressed through a generating functional, then one seeks an equation describing the 
dependence of the generating functional with respect to the cutoff; this approach leads to the 
so-called functional renormalization group (FRG) [19–25]. The actual equation is generally 
rather complex and demands further approximations to yield concrete results [26].

The generating functional for waves in disordered media is obtained through the Martin–
Siggia–Rose [27–29] or closed time-path formalism [29–32]. This approach, which requires 
the introduction of auxiliary fields, allows us to write a generating functional for the wave 
fields as a functional integral. There are two functionals of interest: the generating function 
for connected Feynman graphs and its Legendre transform, the generating functional for one 
particle irreducible graphs, also called ‘effective action’. We introduce a cutoff in such a way 
that the effective action reduces to the ‘classical’ action, namely, the model without noise, 
when Λ → ∞, while the full theory is recovered at Λ = 0. One can then find a functional 
differential equation for the effective action as a function of the cutoff, or else parametrize 
the effective action in terms of an infinite number of couplings and then obtain a hierarchy of 
equations for them. This hierarchy is then converted into a closed, finite system by truncation.

For the particular case of the self energy at zero momentum the FRG yields an equa-
tion with the structure of a diffusion equation with a source term. We apply the method to 
a medium made of overlapping spheres placed at random over a homogeneous background 
[8, 33]. For this particular case we both solve the RG equation numerically and provide an 
approximate analytic solution, and then compare the result with a self consistent two-loop 
evaluation of the self energy.

We show that even under strong simplifying assumptions the RG yields a result whose acc
uracy compares well with the two loops evaluation. Most importantly, because we implement 
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the RG in such a way that for any value in the cut-off we have a consistent theory, it is pos-
sible to implement the RG in such a way that relevant symmetries are explicitly enforced. We 
believe this makes the RG an important tool which will provide valuable insights in the study 
of wave propagation in random media.

The paper is organized as follows. In next section we introduce the basics of the func-
tional formalism. In section 3 we implement the FRG. In section 4 we discuss the solutions 
of the FRG equation  for the self-energy. and in section  5 we apply this formalism to the 
medium composed of overlapping spheres. We conclude with some brief final remarks on 
future directions.

2. The functional formalism

There is a way to define a generating functional that can be used to derive all moments of the 
stochastic field φ [34]. Namely,

eiWφ[Jφ,J∗φ] =

∫
DφDφ∗ P [φ,φ∗] ei(Jφ·φ+J∗φ·φ

∗).� (6)

The probability density P[φ,φ∗] is derived from the probability density for the stochastic 
field ε, as follows

P [φ,φ∗] =

∫
Dε Q[ε] δ (φ− φ[ε, j]) δ (φ∗ − φ∗[ε, j∗])� (7)

where φ[ε, j] is the solution to the differential equation (1) for a given realization of the noise ε 
and source j, and Q [ε] is the probability density for the noise. Using shorthand for the differ
ential operator Dε ≡ ∆+ ω2ε(x), we can use the following property of the functional delta

δ (Dεφ+ j) =
δ (φ− φ[ε, j])

det (Dε)
� (8)

where the same is used with the conjugated field.
Lastly, we can resort to a functional Fourier transform to write

δ (Dεφ+ j) =
∫
Dψ∗ eiψ∗·[Dεφ+j]� (9)

and to the introduction of Grassmann ghosts c and c∗ fields for the functional determinant 
[35–37]

det (Dε) =

∫
Dc∗ Dc ei c∗·Dε·c.� (10)

These last two steps will be repeated for the conjugated field φ∗, and thus including addi-
tional fields {ψ, d∗, d}, where d and d∗ are Grassmann. Regarding the noise probability, we 
will take it to be Gaussian, therefore

Q [ε] = exp
[
−1

2

∫
ddx ddx′ (ε(x)− ε̄)C−1(x,x′) (ε(x′)− ε̄)

]
.� (11)

This whole procedure allows us to write a generating functional as a path integral of a single 
‘classical’ action. The action involves the ‘matter fields’ {φ,ψ∗,φ∗,ψ}, the ‘gauge’ field ε, 
and the Grassmann ghost fields {c∗, c, d∗, d}. We shall use the variable φa, where a runs from 
1 to 4, to denote collectively the matter fields. The ‘classical’ action is the sum of three terms

F Lamagna and E Calzetta﻿J. Phys. A: Math. Theor. 50 (2017) 315102
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S = S0 [δε] + Sm [δε,φa] + Sg� (12)

where ‘m’ stands for matter, and ‘g’ for ghosts; concretely

S0 [δε] =
i
2
δε · C−1 · δε

Sm [δε,φa] = ψ∗ · (Dεφ+ j) + ψ · (Dεφ
∗ + j∗)

Sg = c∗ ·Dε · c + d∗ ·Dε · d.

�

(13)

It can be shown that the only role of ghost fields is to enforce that 〈δε(x)δε(x′)〉 = C(x,x′) 
to all orders in perturbation theory, because for each loop of matter fields there is a corre
sponding loop of ghost fields that, being anti-commuting, carries the opposite sign. Taking this 
into account, they can be ignored, concentrating on matter fields only.

It is useful to resort to the effective action, which is a functional of the mean fields and the 
equations of motion are derived by differentiation. First we introduce external sources J and 
Ja coupled to the fields ε and φa, respectively. Adopting the convention that repeated indexes 
mean sum over discrete indexes as well as space integration, we define the generating func-
tional W[J, Ja]

eiW[J,Ja] =

∫
DεDφa ei[S+Jε+Jaφ

a].� (14)

Since we have dropped the ghost fields, henceforth S = S0 + Sm.
We call E the expectation value (or ‘mean field’) of ε and Φa the expectation value (or 

‘mean field’) of φa. Observe that when J �= 0 the mean value E of ε deviates from its ‘on 
shell’ value ε̄  as given by equation (2). Later on, when we adopt the effective action formal-
ism, we shall take E as an independent variable, assuming the necessary external source J has 
been introduced. Also observe that when the sources coupled to ε, ψ and ψ∗ are set to zero, 
and those coupled to φ and φ∗ are set equal to Jφ and J∗φ, respectively, then the generating 
functional W in equation (14) reduces to Wφ[Jφ, J∗φ] in equation (6).

The ‘mean fields’ are recovered as functional derivatives of the generating functional 
W[J, Ja] with respect to the external sources:

E =
δW
δJ

= e−iW[J,Ja]

∫
DεDφa ε ei[S+Jε+Jaφ

a]

Φa =
δW
δJa

= e−iW[J,Ja]

∫
DεDφa φa ei[S+Jε+Jaφ

a].
�

(15)

Taking a Legendre transform of W we define the effective action

Γ [E,Φa] = W [J, Ja]− J · E − Ja · Φa.� (16)

In this equation the mean fields E and Φa are regarded as independent variables, and once they 
are fixed the sources J and Ja are adjusted at the necessary values so that eqs. (15) give back 
the chosen E and Φa. In particular, there is no assumption that E and Φa are limited to their ‘on 
shell’ values, i. e., E is not necessarily ε̄  from equation (2).

3. The FRG flow equation

We will apply the functional renormalization group to evaluate the 1PI effective action. For 
this, we introduce a cutoff scale Λ, through which we modify the classical action by replacing 
the two-point correlation C with CΛ, with the fundamental property [22–25]
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CΛ =

{
0 if Λ → ∞
C if Λ → 0� (17)

With this correlation we explore theories with different fluctuations, from zero fluctuations 
when Λ = ∞, to the full correlation when Λ is set to zero.

At each value of Λ, we define S0,Λ ≡ 1
2δε · C−1

Λ · δε, where δε = ε− ε̄, and SΛ = S0,Λ + Sm, 
with Sm as in equation (13). Defining the generating functional in the same way but with the 
modified action SΛ, we then take the Legendre transform to define the effective average action 
ΓΛ. This functional is such that

lim
Λ→∞

(
ΓΛ[E,Φa]− S0,Λ[E]

)
→ Sm[E,Φa]� (18)

And taking Λ to zero is such that the full effective action is recovered, therefore, ΓΛ inter-
polates between the ‘classical’ action equation (13) and the full effective action. We are thus 
interested in the differential equation  that describes the evolution of ΓΛ, usually called the 
flow equation.

One way of performing such a cutoff procedure is through a multiplicative function in 
momentum space, for instance [21]

C̃Λ(k) = D
(

k2

Λ2

)
C̃(k)� (19)

with the function D such that

D(x) =
{

0 if x � 1
1 if x � 1.� (20)

While the most obvious choice is a step function, in some cases a smooth cutoff is preferred.
Since ΓΛ is a Legendre transform of WΛ, but the variable Λ is untouched by the transforma-

tion, the partial derivatives with respect to this parameter coincide

∂

∂Λ
ΓΛ

∣∣∣
E,Φa

=
∂

∂Λ
WΛ

∣∣∣
J,Ja

.� (21)

Taking this derivative from the path integral representation of WΛ, we obtain

∂WΛ

∂Λ

∣∣∣
J,Ja

= e−iWΛ[J,Ja]

∫
ddx ddx′

i
2
∂ΛC−1

Λ (x,x′) ·
∫
DεDφa δε(x)δε(x′)ei(SΛ+Jε+Jaφ

a).

� (22)
In turn, if we differentiate the definition of the mean field E with respect to its source we obtain

δE(x)
δJ(y)

= e−iWΛ

∫
DεDφa i ε(x) ε(y) ei(SΛ+Jε+Jaφ

a) − iE(x)E(y).� (23)

Now, we write out ε(x) = ε̄+ δε(x), and E(x) = ε̄+ 〈δε(x)〉 (since there is an external 
source in place, J �= 0, 〈δε(x)〉 does not necessarily vanish). Thus

1
i
δE(x)
δJ(y)

= 〈δε(x)δε(y)〉 − 〈δε(x)〉 〈δε(y)〉.� (24)

Substituting this into equation (22), we get the desired equation

∂ΓΛ

∂Λ

∣∣∣
E,Φa

=

∫
ddx ddx′

i
2
∂ΛC−1

Λ (x,x′)

{
1
i
δE(x)
δJ(x′)

+ 〈δε(x)〉 〈δε(x′)〉
}

.

�

(25)
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We see that if we define ΓΛ = ΓE[E] + ΓΦ[E,Φa], with

ΓE [E] =
i
2

∫
ddx ddx′ (E(x)− ε̄) C−1

Λ (x,x′)(E(x′)− ε̄)� (26)

then we get a differential equation for ΓΦ[E,Φa],

∂ΓΦ,Λ

∂Λ

∣∣∣
E,Φa

=

∫
ddx ddx′

1
2
∂ΛC−1

Λ (x,x′)
δE(x)
δJ(x′)

.� (27)

Suppose we are interested in

∂

∂Λ

∂2ΓΦ,Λ

∂ΦaΦb |Φa=0,E.� (28)

Notice that we take E to be nonzero, while making zero all other mean values. Taking the 
functional derivatives, and using the chain rule, we get to

δ2

δΦeδΦ f

δE(x)
δJ(x′)

= − δE(x)
δJ(x′′)

{
δ2J(x′′)

δΦeδΦc

δ2Φc

δΦ f δJ(x′)

+
δ2J(x′′)

δΦ f δΦc

δ2Φc

δΦeδJ(x′)
+

δ3J(x′′)

δΦeδΦ f δE(x′′′)

δE(x′′′)

δJ(x′)

}�

(29)

as already noted, repeated indexes imply both a summation over discrete ones, and integration 
over continuous ones. That is, JaΦ

a =
∑

a

∫
ddx Ja(x)Φ

a(x). Rewriting both mean fields and 
sources as functional derivatives of W and Γ respectively, and replacing in equations (28,27) 
we arrive at

∂Λ
δ2ΓΦ,Λ

δΦeδΦ f

∣∣∣∣
Φa=0

=
1
2
∂ΛC−1

Λ (x,y)
δ2WΛ

δJ(x)δJ(x′)

δ2WΛ

δJ(y)δJ(y′)

×
[

2
δ3ΓΛ

δΦeδΦcδE(x′)

δ2WΛ

δJcδJc′

δ3ΓΛ

δΦ f δΦc′δE(y)
+

δ4ΓΛ

δΦeδΦ f δE(x′)δE(y′)

]
.

� (30)
This is the so-called flow equation for the two point effective vertex [22–25], and we see it 

connects ∂ΛΓ(2) with the higher order vertices Γ(3) and Γ(4), so it is actually a whole hierarchy 
of equations. Being interested in the effective dielectric constant for the medium, we propose 
a certain functional structure for ΓΛ, as follows:

ΓΛ[E,Φa] = Γ0(Λ) + ΓE[E,Λ) +
1
2

∫
d3xIab

{
Φa(x)∇2Φb(x) + ω2εΛ[E;x) Φa(x)Φb(x)

}
.

� (31)
The matrix Iab in one that connects the fields Φa respecting the structure of the classical 

action, for instance it has to connect 〈ψ∗〉 with 〈φ〉. Therefore, it shall have the following form

Iab = Iab =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


� (32)

Also, we consider the functional εΛ[E;x) to have an expansion in gradients [26]

εΛ[E;x) = fΛ(E(x)) + fi(E(x))∂iE(x) +
1
2

fij(E(x))∂iE(x)∂ jE(x)...� (33)
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of which we will keep just the first term.
We first take the functional derivatives of ΓΛ in order to construct the two-point, three-point 

and four-point effective vertices:

δ2ΓΛ

δΦe(x)δΦ f (y)
= Ief

[
∇2

xδ(x− y) + ω2fΛ(E(x)) δ(x− y)
]
≡ Iefγ

(2)(x,y)

�

(34)

δ3ΓΛ

δΦe(x)δΦ f (y)δE(x′)
= Ief ω

2f ′Λ(E(x))δ(x− x′) δ(x− y) ≡ Iefγ
(3)(x,y;x′)

�

(35)

δ4ΓΛ

δΦe(x)δΦ f (y)δE(x′)δE(y′)
= Ief ω

2f ′′Λ(E(x)) δ(y
′ − x) δ(x− x′) δ(x− y)

≡ Iefγ
(4)(x,y;x′,y′).

�
(36)

These are inserted in equation (30). We note, first

δ2WΛ

δJc(x)δJc′(x′)
≡ Gcc′(x,x′).�

(37)

And, as δ2ΓΛ

δΦe(x)δΦ f (y)
 is proportional to the matrix Ief , which is its own inverse, Then Gcc′ is 

proportional to the same matrix, such that

∑
f

∫
ddx′

δ2ΓΛ

δΦe(x)δΦ f (x′)

δ2WΛ

δJf (x′)δJg(y′)
= −δg

e δ(x,y′)� (38)

a property that derives from the Legendre transform. This allows us to write Γ(2)
ef ≡ Iefγ

(2), 

and Gcc′ ≡ Icc′g, because the I matrix is its own inverse. We will be interested in the case in 
which the mean field is homogeneous, ∂iE = 0. Then,

δ2WΛ

δJ(x)δJ(x′)
= i [CΛ(x,x′)− 〈δε(x)〉〈δε(x′)〉]� (39)

and we can use
∫

ddx′ddy′ CΛ(x,x′)∂ΛC−1
Λ (x′,y′)CΛ(y

′,y) = −∂ΛCΛ(x,y) ≡ −ĊΛ(x,y).

�

(40)

We thus arrive at

∂Λγ
(2)(x,y) =

1
2

ĊΛ(x
′,y′)

[
2g(z, z′)γ(3)(x, z;x′)γ(3)(y, z′;y′) + γ(4)(x,y;x′,y′)

]
.

� (41)
Integrating out the term with the four-point vertex, we notice that

∫
ddx′ ddy′ ĊΛ(x

′,y′) γ(4)(x,y;x′,y′) = ĊΛ(0)
∂2γ(2)

∂E2 (x,y)� (42)

where we are assuming from now onwards that the correlation CΛ is translationally invariant, 
CΛ(x− y). With γ(2) also being invariant, the green function g has to be as well. This allows 
us to perform a Fourier transform of the whole equation. The flow equation for f (Λ, E) is 
obtained by setting p = 0 on both sides. This differential equation has to be solved through 
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Λ = 0, from its initial condition at Λ = ∞. By requiring that ΓΛ=∞ = S from equation (13), 
and comparing equations (13) and (31), we have

f (Λ = ∞, E) = E.� (43)

And after setting p = 0 we have the equation (where a ~ denotes a Fourier component)
[
∂

∂Λ
− 1

2
ĊΛ(0)

∂2

∂E2

]
f (Λ, E) =

∫
d3q
(2π)3 ∂ΛC̃Λ(q2)g̃(q2)ω2f ′2.� (44)

We are interested in the value of f because its related to the self energy. Indeed, by writing the 
equation for the propagator g, we have:

∇2g(x) + ω2f (E)g(x) = −δ(x)� (45)

as we know that g is the propagator from equation (3), by comparing the two expressions, we 
obtain

f = ε̄+
1
ω2 Σ̃( p = 0).� (46)

Thus, f is identified with an effective inverse square speed of sound, εeff such that k2 = εeff ω
2. 

This propagator is then written as (three dimensions)

g(r = |x|) = eikr

4πr
g̃( p) =

1
p2 − ω2f − iδ

(δ → 0) .� (47)

As k can be complex, its imaginary part will be responsible for an exponential decay of the 
wave inside the medium.

3.1.  Correlation function and cutoff

In order to solve equation (44), we must first propose a shape for the cutoff. Choosing a step 
function in momentum space we can readily calculate the integral.

C̃Λ(p) = Θ( p − Λ)C̃(p).� (48)

Also, assuming rotational invariance, the correlation function C̃ will only depend on the abso-
lute value of momentum. This allows us to write

ĊΛ(0) =
∫

d3p
(2π)3 ∂ΛC̃Λ( p) = − 1

2π2

∫ ∞

0
dp p2δ( p − Λ) C̃( p) = − 1

2π2 Λ
2C̃(Λ2).

�

(49)

The right-hand side of equation (44) can be similarly integrated, to yield
[
∂

∂Λ
− 1

2
ĊΛ(0)

∂2

∂E2

]
f (Λ, E) = ĊΛ(0) g̃(Λ2)ω2f ′2.� (50)

We can define a new ‘time’ variable, by setting

t =
CΛ(0)
C(0)

.� (51)

This maps Λ = ∞ to t = 0, and Λ = 0 to t = 1, and the inverse map will be called Λ(t). The 
factor C(0), being the original correlation between a point and itself, can be also absorbed by 
a change in the other variable
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e =
E√
C(0)

.� (52)

Finally, we call R the length of correlation, such that C(x) will typically be non-zero inside 
the sphere |x| � R. With this, defining X = RΛ(t), and F = ω2R2f , we reach the adimensional 
differential equation

[
∂

∂t
− 1

2
∂2

∂e2

]
F(t, e) =

1
X2(t)− F

(
∂F
∂e

)2

� (53)

with initial condition

F(t = 0, e) = ω2R2
√

C(0)e ≡ Qe.� (54)

This parameter Q is called the generalized Reynolds number, and is a measure of the strength 
of randomness in the medium [6].

4.  Parametric solution on the imaginary part

Focusing on the imaginary part of the solution, which will be related to the length of expo-
nential decay of the coherent wave, we write F = Re(F) + iσ. The initial condition, F = Qe, 
implies σ(t = 0, e) = 0, and we will also take σ � 1. As X(t = 0) = ∞, for t � 1, we have

X2(t) � F.� (55)

And therefore we have, writing Re(F) = Qe + α(t),

∂

∂t
α(t) =

Q2

X2(t)
.� (56)

Which can be readily integrated to yield

F(t � 1, e) = Qe + Q2
∫ t

0

dt′

X2(t′)
.� (57)

Inverting the relationship between X and t we obtain

dt
dX

=
1
R

dt
dΛ

=
1
R

ĊΛ(0)
C(0)

= − Λ2

2π2R
C̃(Λ)

C(0)
≡ − X2

2π2R3

C̃(X)
C(0)

.� (58)

For the imaginary part, we first write the right hand side as

1
X2 − F

=
X2 − F∗

|X2 − F|2
=

X2 − Re(F) + iσ

(X2 − Re(F))2
+ σ2

� (59)

and

(F′)
2
= (Q + iσ′)

2 .� (60)

Then, taking both σ � 1 and σ′ � 1, we take

(F′)
2 ∼ Q2.� (61)

Thus we get the equation
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[
∂

∂t
− 1

2
∂2

∂e2

]
σ(t, e) = Q2 σ

(X2 − Re(F))2
+ σ2

.� (62)

The right hand side, being a Cauchy distribution, when σ � 1 we can write
[
∂

∂t
− 1

2
∂2

∂e2

]
σ(t, e) = Q2πδ

(
X2(t)− Re(F)

)
� (63)

X goes from ∞ to 0 when t goes from 0 to 1. Thus, there is is a value of t = t∗(e) such that the argument 
of the delta function becomes zero, when

Re(F) = X2(t∗).� (64)

Then, for each e, there is a ‘time’ t∗ at which σ develops its final value. This solution at t = 1 
can be written in parametric form, as

e(X) =
X2

Q
− Q

2π2R3

∫ ∞

X
dX′ C̃(Λ(X′))

C(0)
� (65)

σ(X) =
π Q2 X2 C̃(Λ(X))

Q2 C̃(Λ(X)) + 4π2XR3C(0)
.� (66)

5.  Effective dielectric constant for overlapping spheres

In order to check the validity of the method, we use a correlation function for overlapping 
spheres in a homogeneous background with difference in dielectric constant, as found in 
[8, 33]. In the limit of low density, we have (see figure 1)

{
ε̄ = ε0 +∆ε ρv

C(x,x′) = (∆ε)
2
ρvΩ(x,x′)

� (67)

with ∆ε the difference in the dielectric constant between background and spheres, ρ the num-
ber density of spheres, and vΩ(x,x′) the volume of intersection between two spheres with 
centers located in x and x′. The system of spheres is not actually Gaussian [8], but we are 
ignoring all higher moments. The advantage of this correlation function is that its momentum 
space form can be exactly calculated (see figure 2).

C̃(kR) = 12πR3C(0)
[
sin(kR)− kR cos(kR)

(kR)3

]2

.� (68)

This allows for the parametric solution to be obtained readily. As to the full differential 
equation, the function t(X) can be calculated explicitly (see figure 3),

t(X) =
1

πX3

{
1 + 3X2 − 2 sin(2X)− cos(2X)

(
1 + X2)− 2X3

(
sinI(2X)− π

2

)}
.

�

(69)

We also obtain the explicit dependence

C̃(X)
R3C(0)

=
12π (sinX − X cosX)2

X6 .� (70)
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The parametric equation becomes

e = Q−1X2 − 6Q
π

J(X)� (71)

σ(e) =
3Q2X2 (sinX − X cosX)2

X7 + 3Q2

π (sinX − X cosX)2� (72)

where

J(X) =
∫ ∞

X
dY

(sinY − Y cos Y)2

Y6 .� (73)

Explicitly

J(X) = X−5

{
1

10
(1 − cos(2X))− 1

5
X sin(2X) +

1
30

X2 (cos(2X) + 5)

− 1
30

X3 sin(2X)− 1
15

X4 cos(2X)− 2
15

X5
(

sinI(2X)− π

2

)}�

(74)

which is plotted in figure 4.
We evaluated numerical solutions to the differential equation (53) for different values of the 

parameter Q, alongside with parametric solutions to the differential equation.
We also compared these solutions to a self consistent calculation of the effective dielectric 

constant from the 1 and 2 loop diagrams in the non-linear approximation to the self energy [8]

Σ̃(0) = Σ̃
(1)
NL (0) + Σ̃

(2)
NL (0).� (75)

At zero momentum this becomes an equation for the effective dielectric constant

εeff = ε̄+ ε1 + ε2.� (76)

Figure 1.  Position space correlation function equation  (67). Both the coordinate 
variable and the correlation function have been rendered dimensionless.
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We compute the relevant Feynman graphs approximating the self energy by the effective 
dielectric constant itself. Then

ε1 = ω2∆ε2ρ

∫
d3q
(2π)3

vΩ̃(q)
q2 − εeffω2 .� (77)

Explicitly [8]

ε1 =
3
2
ω2R2∆ε2ρv G(ωR

√
εeff).� (78)

Recall Q = ω2R2
√

C(0), C(0) = ρv∆ε2, and F = ω2R2f , whereby

F1 = ω2R2ε1 =
3
2

Q2 G(
√

Qe + F1 + F2 )� (79)

where

G(x) = i
x5

[
1 − e2ix + x2 (1 + e2ix)+ 2ix

(
x2

3
+ e2ix

)]
� (80)

whose real and imaginary parts are plotted in figures 5 and 6
The two loops contribution is

ε2 = ω6∆ε2ρ2
∫

d3q d3p
(2π)6

vΩ̃(q)vΩ̃( p)

( p2 − εeffω2) (q2 − εeffω2) +
(
(p+ q)

2 − εeffω2
)

�

(81)

whose dominant term is

F2 =
Q4

9
ln
(√

Qe + F1 + F2

)
.� (82)

Figure 2.  Momentum space correlation function equation (68). Both the momentum 
variable and the correlation function have been rendered dimensionless.
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Using equations (79) and (82) into (76) we obtain a self consistent equation for εeff  which 
may be solved numerically. Figures 7 and 8 show plots of the solution by all three methods 
(numerical solution of the RGE, parametric approximation to it, and self-consistent two loop 
calculation) for Q = 1 and Q = 0.7 respectively. Even at the high value of Q = 1 results are 
similar, for Q lower than 0.7 there are no significant differences.

6.  Final remarks

In this paper we implemented the functional renormalization group as a tool to study wave 
propagation in random media. This implies three steps. First an effective action for the wave 
fields is introduced by using the Martin–Siggia–Rose [27–29] or closed time-path formal-
ism[29–32]. Then an infrared cutoff Λ is introduced, in such a way that the noise is totally 
suppressed when Λ → ∞, while the original theory is recovered at Λ = 0 [22–25]. Finally, 
a renormalization group equation  for the effective action is derived by using exact renor-
malization group techniques [19–21]. Equivalently, we may parametrize the effective action 
in terms of cutoff-dependent coupling constants, and then the RGE becomes a hierarchy of 
equations for these constants.

Figure 3.  Plot of t(X) from equation (69).)

Figure 4.  Plot J(X) from equation (74) .
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As a demonstration of the method we computed the imaginary part of the self energy at 
zero momentum for a medium composed of overlapping spheres on an homogeneous back-
ground [8, 33]. The RGE for the self energy at zero momentum is very simple: it reduces to 
a diffussion equation with a source term. It can be solved both numerically and (under some 
approximations) analytically. We show the solution has an accuracy equivalent to a full two-
loops self-consistent evaluation in perturbation theory.

We aim to apply this method to computing not only the total absorption from the mean 
wave field, as we have done here, but also the spectrum of the scattered wave. For this task not 
only the self energy but also the intensity operator must be known. This is a challenge to ordi-
nary perturbation theory because, as is well known, a resummation of the simplest nonlinear 
approximation leads to the ladder approximation, which violates reciprocity invariance and 

Figure 5.  Plot of the real part of G(x) from equation (80).

Figure 6.  Plot of the imaginary part of G(x) from equation (80).
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misrepresents coherent backward scattering [17, 18, 38, 39]. In turn, if reciprocity is restored 
by adding the maximally crossed graphs, then the Ward identities are no longer satisfied.

In the RG framework it is obvious that reciprocity holds at Λ → ∞, since this is just propa-
gation in an homogeneous medium. It must actually hold at all values of Λ, since at every 
value of Λ we have propagation on a physically realizable medium. So it ought to be pos-
sible to enforce reciprocity already at the level of the RGE, which would mean a substantial 
improvement over a straightforward loop expansion.

We expect to report on this issue in a separate contribution.

Figure 7.  The three results concerning the imaginary part of the effective dielectric 
constant at generalized Reynolds number Q = 1.

Figure 8.  The three results concerning the imaginary part of the effective dielectric 
constant at generalized Reynolds number Q = 0.7.
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Appendix. The white noise limit

In the white noise limit where C(x,x′) = ηδ(x− x′) the self energy may be obtained analyti-
cally within the bilocal (one loop) approximation [12]. It is interesting to see how the corre
sponding result is obtained from the RG.

Observe that in this limit C(0) → ∞. Since E = ε0 +∆ε ρv remains finite, this means that 
for white noise e = 0 corresponde a C(0) → ∞. Concretely, the white noise limit is obtained 
provided





∆ε → ∞
v → 0

v2 (∆ε)
2 → η

ρ .
� (A.1)

This means that the bubble volume goes to zero but the contrast in the dielectric constant 
between the homogeneous medium and the bubbles diverges in such a way that the product 
remains finite. The momentum space correlation equation (68) becomes

C̃B(k) = η.� (A.2)

The on-shell mean value for the dielectric constant becomes

E = ε0 +
√
ρη.� (A.3)

The coincidence limit of the position space correlation function diverges as C(0) ∼ ηv−1, and 
so the generalized Reynolds number Q = ω2R2

√
C(0) becomes

Q ∼ ω2R2
√

η

v
∼

√
R → 0.� (A.4)

So that ordinary perturbation theory ought to be reliable. The perturbative result is obtained 
neglecting the one loop contribution to the real part of the effective dielectric constant (which 
is formally infinite) in the right hand side of equation (78). From the imaginary part of the 
function G(x) (equation (80)) in the limit x → 0 we find

Im (G) (x) ∼ 2
9

x +O(x2)� (A.5)

and so

Im(ε1) =
ηω3

4π

√
E.� (A.6)

We now consider this problem from the point of view of the RG. Recall the parametric form 
of the RGE (71,72). For Im( f ) = ω−2R−2σ we obtain

Im( f ) =
η

vω2R2

3ω4R4X2 (sinX − X cosX)2

X7 + 3ω4R4η
v (sinX − X cosX)2� (A.7)

F Lamagna and E Calzetta﻿J. Phys. A: Math. Theor. 50 (2017) 315102



17

and

X2 = ω2R2E +
6
π

J(X)ω4η
R4

v
� (A.8)

when R → 0, X = RΛ � 1 for any finite value of Λ. Then we may approximate

sinX − X cosX ∼ 1
3

X3� (A.9)

and

X2 ∼ ω2R2E.� (A.10)

This yields

Im( f ) =
ηω2R2

3v
X

1 + ηω4R4

3πvX

=
ηω3

√
E

4π
1

1 + ηω3

4π2
√

E

� (A.11)

in agreement with the 1-loop result equation (A.6) to first order in η.
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