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Abstract

One of the lasting controversies in phylogenetic inference is the degree to which specific evolutionary models should influence
the choice of methods. Model-based approaches to phylogenetic inference (likelihood, Bayesian) are defended on the premise
that without explicit statistical models there is no science, and parsimony is defended on the grounds that it provides the best
rationalization of the data, while refraining from assigning specific probabilities to trees or character-state reconstructions.
Authors who favour model-based approaches often focus on the statistical properties of the methods and models themselves,
but this is of only limited use in deciding the best method for phylogenetic inference—such decision also requires considering
the conditions of evolution that prevail in nature. Another approach is to compare the performance of parsimony and model-
based methods in simulations, which traditionally have been used to defend the use of models of evolution for DNA sequences.
Some recent papers, however, have promoted the use of model-based approaches to phylogenetic inference for discrete morpho-
logical data as well. These papers simulated data under models already known to be unfavourable to parsimony, and modelled
morphological evolution as if it evolved just like DNA, with probabilities of change for all characters changing in concert along
tree branches. The present paper discusses these issues, showing that under reasonable and less restrictive models of evolution
for discrete characters, equally weighted parsimony performs as well or better than model-based methods, and that parsimony
under implied weights clearly outperforms all other methods.
© The Willi Hennig Society 2017.

Introduction

In recent years, a number of papers have used simu-
lations to examine different methods for phylogenetic
analysis of discrete morphological data. Wright and
Hillis (2014), with the aim of encouraging palaeontolo-
gists to “adopt model-based approaches”, used their
simulations to conclude that MrBayes (Ronquist et al.,
2012) with the so-called “Mk model” of Lewis (2001),
produces better trees than parsimony. Wright and Hil-
lis (2014) used a fixed model tree, taken from an ear-
lier empirical study on amphibians, and generated
their data with Lewis’ model. In another paper,
O’Reilly et al. (2016) used the same model tree as
Wright and Hillis (2014) but a slightly different evolu-
tionary model to generate their data, comparing

Bayesian with parsimony analyses under both equal
and implied weighting (Goloboff, 1993). O’Reilly et al.
(2016) concluded that Bayesian analysis produces bet-
ter trees than equal-weights parsimony, and implied
weighting performs the worst of all three methods.
Congreve and Lamsdell (2016) concurred with the pre-
vious authors that the wider use of parsimony instead
of model-based methods to analyse palaeontological
data is only because of a “legacy issue” (p. 447)
instead of appropriateness. However, they provided no
comparison between parsimony and model-based
methods; they only compared parsimony with equal
and implied weights. Like O’Reilly et al. (2016), Con-
greve and Lamsdell (2016) concluded that parsimony
with equal weights is preferable to implied weighting.
The last study in the series of simulation papers, by
Puttick et al. (2017), is very similar in design to the
one by O’Reilly et al. (2016); the authors of Puttick
et al. (2017) include all the eight authors in O’Reilly
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et al. (2016) plus another three. The main difference is
that Puttick et al. (2017) explore the influence of fac-
tors that (in their view) could have biased previous
comparisons (i.e. resolution of the model tree, impact
of the probabilistic model, tree shape and presence of
multistate characters), to conclude that a “consensus
shows that the Bayesian Mk model is the most accu-
rate method of phylogenetic reconstruction” for mor-
phological data (p. 8).
In the present paper, we discuss both the use of

models based on notions of molecular evolution [such
as the models of Neyman (1971) and Felsenstein
(1978, 1981), from which Lewis’ (2001) Mk model is a
derivative] to analyse morphology, and the simulations
for which implied weighting produced worse trees than
equal-weights analyses. When the data are generated
with alternative models (i.e. less restrictive, with
branch lengths not fixed, using distributions of homo-
plasy approaching that observed in empirical data sets)
and the trees inferred from each method of analysis
are more carefully compared, the advantage of model-
based methods over equal-weights parsimony vanishes,
and implied weighting outperforms the other methods
examined.

Realism

Felsenstein (1978) proposed a model of evolution
under which parsimony (then the most widely used cri-
terion for phylogenetic inference) would be statistically
inconsistent, and thus “positively” misleading. The
main reason why parsimony becomes inconsistent
under Felsenstein’s (1978, 1981) models is that there is
a uniform branch length for all sites (with inconsis-
tency becoming more likely for lower numbers of pos-
sible character states, as noted by Farris, 1983, p. 14).
Felsenstein’s model assumed that all characters evolve
at the same rate. Later work on likelihood (e.g. Jin
and Nei, 1990; Yang, 1994) incorporated the idea that
some characters may evolve at a faster rate than
others, but the relative branch lengths still determine
the relative probabilities of change along each branch
for all characters (or all the characters in a partition,
in the case of unlinked models). Thus, if change in a
slow-evolving character is more likely on one tree
branch than on another, then the same is also true for
fast-evolving characters. In other words, the probabil-
ity of change for all characters, fast and slow,
decreases or increases in concert at each branch–in
which case, despite the rate-heterogeneity model, par-
simony is also prone to inconsistency. But in the speci-
fic case of morphology, it is well known that some
character systems may well change mostly along some
branches, whereas others do so on other branches. For
example, in the branches interconnecting some species
of insects, thoracic wings evolve more than vertebrae;

the opposite is true for the branches interconnecting
some species of vertebrates (Farris, 1983 made this
exact same point, pp. 14–15, using tooth counts and
paired appendages as example). On a given branch of
the tree, the evolution of some characters may be sped
up while the evolution of others is slowed down; this
is not how different rates are normally treated in
model-based analyses, which preserve the relative
branch lengths across all characters. Evolutionary
models with uniform branch lengths, which forbid
these differences, may be defensible in the case of
molecular sequences, but seem implausible for mor-
phology.1 This implausibility, more than any “legacy
issue” (Congreve and Lamsdell, 2016, p. 447) or “con-
sequence of tradition” (O’Reilly et al., 2016, p. 1), is
the main reason why many phylogeneticists still prefer
parsimony for analysing morphological data.
The almost universal use of models with common

relative branch lengths may create the impression that
those are the most natural models, or even the only
ones possible. This universality also may have been
fostered by the availability of numerous programs (e.g.
Seq-Gen, Rambaut and Grassly, 1997; Paml, Yang,
2007; Geiger, Harmon et al., 2008) that facilitate gen-
erating data sets under that model, and by most cla-
dists apparently lacking interest in simulations and
thus not proposing alternatives.
The studies of Wright and Hillis (2014), O’Reilly

et al. (2016) and Puttick et al. (2017; but see below for
symmetrical trees) are no different in this regard,
because they also assume proportional branch lengths
across all simulated characters. These studies generate
their data sets using the Mk model and use a tree
(taken from Pyron, 2011) with very unequal branch
lengths. Thus, their finding that model-based inference
outperforms parsimony is hardly shocking—phyloge-
neticists have known about long-branch attraction for
almost 40 years. Implied weighting is conceived to cor-
rect for differences in the reliability of different charac-
ters, but it is affected by long-branch attraction in
exactly the same manner as parsimony under equal
weights (if this seems counterintuitive, consider the 4-
taxon case, the prime example of inconsistency for
parsimony, for which implied and equal weighting
always produce the same result). O’Reilly et al. (2016)
stated that their simulation would not favour Bayesian
inference because they used data violating the Mk

1

We are aware, of course, that a likelihood model without such

restriction could be constructed (e.g. taking ideas from covarion

models; Fitch and Markowitz, 1970), but not having been imple-

mented in any of the major programs or used in studies assessing

the performance of parsimony, that hardly matters in practical

terms. Likewise, that different partitions can have independent

branch lengths, as in so-called unlinked models, makes no difference

to our present argument.
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model (they generated their data using HKY85 instead
of the Mk model, and subsequently recoded the data
in binary form, as purines/pyrimidines). It is true that
the data patterns so produced are not exactly the ones
expected under the Mk model, but that hardly means
that the recoding will diminish long-branch attraction.
The recoding might instead increase long-branch
attraction, because it is reducing the number of states
(thus making independent parallel derivations more
likely), or at least leave long-branch attraction unaf-
fected (much like the case of supersites or “k-tuples”;
see Steel and Penny, 2000, p. 845). O’Reilly et al.
(2016) are correct that their data slightly violate the
model, but there is no real basis for their statement
that the resulting data are then not “in favour of either
method of phylogenetic inference” (p. 2).
O’Reilly et al. (2016, p. 1) worried that Wright and

Hillis’s (2014) study “did not consider whether the
simulated data exhibited realistic levels of homoplasy”,
and set out to correct this problem. They filtered their
simulated data sets, eliminating those with an ensem-
ble consistency index (CI; Kluge and Farris, 1969)
below 0.26, using as reference the values found by
Sanderson and Donoghue (1989). Puttick et al. (2017)
used exactly the same type of filtering for their simu-
lated matrices. The problem is that the ensemble con-
sistency index is an overall measure of homoplasy.
Being an overall measure, the same averages may well
be obtained by very different distributions of the
homoplasy in the characters. For example, a binary
data set with 500 characters with no extra steps and
500 characters with four extra steps produces (on the
most-parsimonious tree) a CI = 0.333, exactly the
same as another binary data set with, 1000 characters
with two extra steps each (and, yes, two data sets like
these can exist). Yet the first data set comprises some
characters that are much more reliable than others,
whereas the reliability of all the characters in the sec-
ond data set is exactly the same (thus making a
method such as implied weighting simply irrelevant).
The use of the ensemble CI to determine the realism
of the homoplasy distribution is thus overly simplistic.
Congreve and Lamsdell (2016) used a gamma distri-

bution which, in their view, “allows for every character
within the matrix to have a variable rate of change,
which results in more naturalistic data sets by account-
ing for the observed patterns of mosaic2

evolution. . .and allows for the overall levels of homo-
plasy within each data set to be highly variable.”
Unlike O’Reilly et al. (2016), Congreve and Lamsdell
(2016) did not use any quantitative comparison to
back their claim that the levels of homoplasy in their
data sets are realistic—but they are not.
Although the CI may be a crude approximation of

the distribution of homoplasy among characters, a
much better estimation can be gained by looking at
precisely that—the distribution of homoplasy among
characters in morphological data sets.

Data sets and methods

We used the 70 data sets of Goloboff et al. (2008a),
as well as 88 other empirical data sets (with 50–149
taxa, and 22–1844 characters; average number of taxa
is 80.7, average number of characters is 214.3). A few
of the data sets are elaborations of others (e.g. the
improvement of a previous matrix), but most of the
data sets are independent. The details of the 158 mor-
phological data sets are in Appendix 1, and the data
sets themselves are included as Supplementary Mate-
rial (at http://www.lillo.org.ar/phylogeny/published/).
A rough estimation of a most-parsimonious tree was

performed (with the mult 10 = hold 1 command of
TNT; see Goloboff et al., 2008b) for each of these 158
empirical data sets. A single tree was held at the end
of the search. The frequencies of characters with dif-
ferent numbers of extra steps were then calculated and
pooled over the 158 data sets (continuous and uninfor-
mative characters, if present, were excluded from these
counts). The results are shown in Fig. 1a. The curve
(black dots) is a very regular one, with an almost per-
fect fit to an exponential distribution (R2 = 0.985).
Note that the exponential distribution is typical of
Poisson and Markov processes; the assumption of a
Markov process in phylogeny is essentially sound, as
lineages are independent after cladogenesis. Standard
likelihood models are much more restrictive in that the
Markov process is supposed to be homogeneous, mak-
ing use of branch lengths common to all characters.
The same procedure was repeated for the 100 data

sets of Congreve and Lamsdell (2016), and the data
sets for 100 characters of O’Reilly et al. (2016) for
which CI ≥ 0.26 (these are 172 out of the 10003). The
shape of the distribution of homoplasy in the data sets
of O’Reilly et al. (2016) resembles that observed in
empirical data, approaching an exponential distribu-
tion, although the proportion of characters with no
homoplasy is considerably larger than the observed

2

Note that using the term “mosaic evolution” to refer to differ-

ences in rate of change of the different characters is highly unusual;

mosaic evolution normally refers to the fact that, on a given branch

of the tree, only some characters change to the derived state,

whereas others remain in their plesiomorphic condition, so that taxo-

nomic groups are a “mosaic” of primitive and derived features. This

will happen even for completely uniform rates of change, so that

there is no logical connection between mosaicism and rates of

change.

3

O’Reilly et al. (2016) report that only 128 of their 1000 data sets

had a CI ≥ 0.26. They probably measured homoplasy on the model

tree, whereas we measured it on a most-parsimonious tree.
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(0.41212 vs. 0.25556; Fig. 1a, grey dots). Congreve and
Lamsdell’s data sets (Fig. 1a, white dots) depart more
significantly from empirical data sets, because the fre-
quency of characters with no extra steps (0.11255) is
much less than the frequency of characters with one
(0.20127) to three extra steps (0.18291). Implied
weighting works by identifying the more reliable char-
acters, but these are rarer in Congreve and Lamsdell’s
simulated data sets than in empirical data sets.
Because there are basically no reliable characters to be
identified in their matrices, Congreve and Lamsdell’s
(2016) assertion that “in incorporating rate

heterogeneity our simulations were designed to favour
implied weighting over equal weights parsimony” (p.
457) is unjustified.
Given that the exponential distribution (ke�kx)

almost perfectly fits the observed pattern of homoplasy
and that it is a simpler distribution than the gamma
distribution (for which there is no reason other than
convenience; see, e.g., Felsenstein, 2004, p. 219), we
used the exponential distribution to simulate our data
sets. The exponential function provides point values
that were converted into cumulative probabilities (so
that the probabilities sum to 1 at 50 extra steps).

Fig. 1. (a) Homoplasy distribution in different data sets: our 158 empirical data sets (black), O’Reilly et al. (2016) (grey), and Congreve and
Lamsdell (2016) (white). (b) Probabilities of numbers of changes, for k = 0.05 and k = 0.25; probabilities are normalized so that they sum to
unity at 50 extra steps. (c) Probabilities of different numbers of extra steps in generated data sets (this is not exactly the same as in (b) because
some changes can appear on sister or consecutive branches). (d) Absolute (black) and proportional (white) number of incorrect groups for clique
analysis and equal weights.
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A different “model”

In addition to using the frequencies observed in real
data sets to determine more realistically the probabili-
ties of homoplasy in the simulated data sets, the mode
of generation of data used here is less restrictive than
the Lewis model in that it does not assume that there
is a branch-length parameter common to all charac-
ters. To evolve a character with n transformations on
the model tree (where the number n is decided with
the exponential function), n branches of the tree are
chosen at random and marked as points of change.
Then, the character always starts as state 0 at the root,
changing to a different state (randomly picked from
each of three other alternatives) every time a branch
marked as a point of change is encountered. We hesi-
tate to call this a “model,” because it is very unrestric-
tive, but it does evolve the characters on a given tree
(the “model” tree) according to a fixed set of rules.
Incidentally, this way to evolve data produces

changes distributed on the branches of the tree just as
in Lewis’s (2001) model with the parameters used by
Congreve and Lamsdell (2016). These authors used
(2016, p. 452) a model tree for which all branches have
the same length, and different characters have different
rates. Thus, in a given character, a change has the
same chances of occurring at any of the branches of
the tree, just as in our simulations. The distribution of
changes across the tree branches is also (“paradoxi-
cally”, as noted by Steel, 2011, p. 104) the same one
that results if branches are assigned different lengths
for each character independently, and the characters
are then evolved in the standard way, with suitable
distributions of branch lengths and character rates; the
models of extreme uniformity and extreme heterogene-
ity thus converge to similar outcomes. As a conse-
quence, there are significant similarities between our
“model” and standard Markov models, and the simu-
lations are not expected to be specially unfavourable
to methods based on maximum likelihood—other
models, with mixes of different rates (e.g. as in Kolacz-
kowski and Thornton, 2004) are likely to produce
worse results for likelihood.
The performance of parsimony under equal and

implied weights (with TNT v.1.5; Goloboff and Cata-
lano, 2016), Bayesian analysis (with MrBayes v.3.2.6,
using the default Lewis model, summarizing the results
of the Markov chain with the standard procedure of
using frequency of groups in the tree sample as the
posterior probability) and maximum likelihood (with
RAxML; Stamatakis et al., 2005; v.7.7.2, with default
settings) was compared. For this, we generated 200
combinations of different numbers of taxa, characters,
and values of k (with the number of taxa randomly
chosen between 40 and 80, number of characters one
and half times the number of taxa, and k randomly

chosen between 0.05 and 0.25). The resulting probabil-
ities of the different numbers of changes are shown in
Fig. 1b. For each of those 200 combinations, we gen-
erated 10 data sets, and analysed them with the differ-
ent methods (the 10 data sets per combination of
parameters is intended to reduce dispersion). Thus, a
total of 2000 data sets was generated; the model tree
was generated at random (all trees equiprobable, with
a different random seed) for each of the 2000 data
sets. TNT scripts were used to generate the data,
denoted MrBayes and RAxML, import the trees pro-
duced by those programs and produce all of the com-
parisons. Parsimony analyses considered all characters
as nonadditive, and eliminated unsupported groups
with TBR-collapsing. Note that parallel changes in sis-
ter branches are not corrected by the script when it
generates the data; thus, the resulting homoplasy need
not be exactly the same as in the exponential function.
The actual homoplasy distribution in the resulting
data sets was examined in 100 data sets with 80 taxa
and 1000 characters (Fig. 1c). The values of k used
here produced data sets that completely include the
distribution of homoplasy observed in the empirical
data sets. The scripts and individual results of the sim-
ulations are included in the Supplementary Material
(at http://www.lillo.org.ar/phylogeny/published/).

Measures of comparison

The comparisons of Wright and Hillis (2014),
O’Reilly et al. (2016) and Puttick et al. (2017) were
based exclusively on the Robinson–Foulds distances
(RF; Robinson and Foulds, 1981). Although there is
no reason to think that this measure could be biased
in favour of any method of phylogenetic analysis, the
measure is not without problems, because just one or
a few taxa moving to a faraway location in one of the
trees will strongly increase the distance without
significantly altering the tree. In the present paper,
other measures that are less affected by such floating
taxa are used in addition to RF. The second measure
used is a modification of the distortion coefficient
(DC) of Farris (1973), the complement of
(Ga + Gb � Sab � Sba)/(Ga + Gb � Ma � Mb),
where Ga is the maximum possible steps of the matrix
representing tree a, Sab is the number of steps of the
matrix representing tree a when mapped onto tree b,
and Ma is the minimum possible number of steps of
the matrix representing tree a. By using the reciprocal
sums, the DC is made symmetrical (the original for-
mulation is an asymmetric measure; see Goloboff,
2005). This measure is implemented in the TNT com-
mand tcomp. The third measure used is the SPR dis-
tance (SPRd), but with moves weighted by distance
(Goloboff, 2007), so that longer moves, which change
the tree more, are more “costly” than shorter ones

Pablo A. Goloboff et al. / Cladistics 0 (2017) 1–31 5

http://www.lillo.org.ar/phylogeny/published/


(with the sprdiff command of TNT). Finally, the
fourth measure is (the complement of) the average
group similarity between the model tree and the
inferred tree, as measured in terms of group composi-
tion (as in Goloboff et al., 2009, p. 215; Goloboff and
Catalano, 2012, p. 509, implemented in the tcomp
command of TNT).
The previous four measures provide an evaluation

of the similarity between model and inferred tree.
Another aspect that is of interest is the number of
groups of the model tree that are recovered by an
inference method, which is the number of correct
groups retrieved, normalized by the number of taxa
minus two (because model trees are binary), and the
proportion of groups in the inferred tree that are
incorrect (the number of incorrect groups divided by
the total number of groups in the inferred consensus
tree). Congreve and Lamsdell (2016) used the absolute
number of incorrect groups, instead of the proportion,
but (as they noted themselves, p. 457) this will favour
unresolved trees. What matters in this context is the
probability that a group concluded from an analysis
is incorrect, and this measure must consider the ratio
between the number of incorrect groups and the total
number of groups in the inferred tree. Another rea-
son to not consider the absolute number of wrong
groups is that such a measure is in fact improved by
cliques, an extreme form of weighting (where charac-
ters have weights either unity or zero). Clique analy-
sis (Fig. 1d) recovers a lower absolute number of
incorrect groups than equal weights (average 0.01777
instead of 0.03196, black dots), but a larger propor-
tion (0.05468 instead of 0.05005, white dots). We do
not consider clique analysis a defensible method for
phylogenetic analysis (Farris, 1983), and presumably
neither would Congreve and Lamsdell, so we con-
clude that a decreasing absolute number of groups is
not a reliable indication that a method performs
worse.
A possible improvement in calculating the propor-

tion of wrong groups would be by taking into account
that missing a group because of a single terminal has
been misplaced is not equivalent to missing it because
no group in the inferred tree resembles the reference
group from the model tree. This proportional differ-
ence can be calculated as (the complement of) the sum
of the similarities of each group in the inferred tree to
the closest group in the model tree (the individual
maximum for each group is one), divided by the num-
ber of nodes in the inferred tree. In this way, all the
groups that are made incorrect by a long move of one
single terminal are still counted as relatively close to
the expected groups. Only those groups for which no
similarity is detected are counted as completely wrong.
This function was implemented with the following
TNT code:

ttag =;
rfreq [‘inferred’]’model’;
set f 0;
loop=danod (root+1) nnodes[‘inferred’]
set f += $ttag #danod;
stop
set propdiff 1 - (’f’/(tnodes[‘inferred’] * 100));

ttag -;
In the figures comparing methods, these measures

are plotted with one method on the X-axis and
another method on the Y-axis, with both axes having
the same scale. In this way, the diagonal indicates a
perfect tie between the methods in question. For most
measures, the points above the diagonal indicate a
poorer performance of the method on the Y-axis; the
only exception is the number of retrieved groups,
which would indicate better performance (more correct
groups recovered) for the method on the Y-axis when
the dots are above the diagonal.

Simulation results

Equal-weights parsimony and Bayesian analysis

For three of the measures, the distance between the
model and the inferred tree was similar, although there
is a lot of dispersion. The average RF between model
and inferred tree for equal-weights parsimony
(0.09421) was slightly less than that distance for Baye-
sian analysis (0.09642), as was the average group simi-
larity (0.05332 for equal weights, 0.05391 for
Bayesian). The DC indicated a slightly larger differ-
ence between the model and the parsimony tree
(0.01696) than between the model and the Bayesian
tree (0.01510). The SPRd indicated a much larger dif-
ference between the model and the Bayesian tree
(0.09546, instead of 0.07756 for equal-weights parsi-
mony), but this may be an artifact produced by count-
ing the number of moves needed to resolve the
Bayesian tree (which often has polytomies); the algo-
rithm used by TNT to count the number of resolving
moves is a rough approximation (and parsimony uses
the single best SPRd to one of the equally optimal
trees found by the search, not the consensus). The
measures of resemblance to the model tree, therefore,
do not indicate any clear advantage of using either
equal-weights parsimony or Bayesian analysis. The
plot for the individual values is shown in Fig. 2a.
The proportions of correct and incorrect groups

found by each method do not provide a clear choice
either. Bayesian analysis finds a higher proportion of
wrong groups, but also recovers more correct groups
than equal-weights parsimony, and these seem in prin-
ciple to balance with each other. Figure 2b shows the
values on a common 0–1 scale in order to make the
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Fig. 2. (a) Distances between model and inferred tree, for Bayesian inference. (b) Retrieved and incorrect groups for Bayesian analysis. (c) Dis-
tances between model and inferred tree for maximum likelihood (ML). (d) Retrieved and incorrect groups for ML. (e) Distances between model
and inferred tree, for implied weights. (f) Retrieved and incorrect groups for implied weights. In all cases, values plotted against equal weights
(EW). Data sets generated with an exponential distribution of homoplasy (as explained in the text), without missing entries.
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relative differences between incorrect and retrieved
groups more evident. An exact comparison is difficult
because the number of incorrect groups is normalized
by the number of nodes in the inferred tree, which
may vary among the different data sets. See below for
alternative comparisons.

Equal-weights parsimony and maximum likelihood

The comparison of equal weights and maximum
likelihood (Fig. 2c,d) is somewhat clearer than the
comparison between equal weights and Bayesian anal-
ysis. The differences between the model and the
inferred likelihood or parsimony tree are about the
same when measured with DC (average 0.016599 for
parsimony and 0.016495 for likelihood) or with group
similarity (0.053320 for parsimony and 0.05408 for
likelihood). The inferred parsimony trees are clearly
more similar to the model tree than the inferred likeli-
hood trees, when measured with the RF (0.09421 for
parsimony and 0.105194 for likelihood) or with SPRd
(0.077562 for parsimony and 0.08244 for likelihood).
In this case, the possibility that SPRd is biased against
the model-based method does not exist, because the
comparison was done with the optimal tree returned
by RAxML, which is binary.
The number of correct groups retrieved by maxi-

mum likelihood is larger than the number of correct
groups retrieved by parsimony (Fig. 2d). The problem
with maximum likelihood, however, is the very large
proportion of incorrect groups (Fig. 2d). Some of
those incorrect groups might have been found by rear-
ranging relatively few terminals (as the grey dots in
Fig. 2d are much closer to the diagonal than the black
dots), but are still farther from having been recovered
exactly than with parsimony.

Equal-weights parsimony and implied weighting

Although equal-weights parsimony and model-based
methods seem to perform similarly, implied weighting
outperformed equal weights for almost every measure.
The plots show the results for implied weighting under
K = 12. Goloboff (1993) introduced the method with a
strong concavity (K = 3, which is still retained as the
default in TNT), but it has since become evident that,
particularly for larger data sets, better results are
obtained with larger values of K (e.g. Goloboff et al.,
2008a, p. 765), so that the method weights more mildly
against homoplastic characters. The results for K = 6
and K = 8 were also calculated, but (even if superior
to those of equal-weights and model-based methods)
they were normally inferior to those of K = 12.
The tree inferred by implied weighting is (for almost

every combination of taxa, characters and exponential
function) more similar to the model tree than the tree

inferred using equal weights (Fig. 2e). This difference
is overwhelmingly in favour of implied weighting. The
number of correct groups retrieved by implied weight-
ing is, for all numbers of taxa, characters, and k,
higher than for equal weights4 (Fig. 2f). The only
aspect in which implied weighting performed worse
than equal weights is in finding a larger proportion of
incorrect groups.

Model-based methods and implied weighting

Although the difference between model-based meth-
ods and equal-weights parsimony is subtle to nonexis-
tent, the case is different with regard to implied
weights. The tree inferred by implied weighting is
much more similar to the model tree than the tree
inferred by MrBayes (Fig. 3a) or maximum likelihood
(Fig. 3c), for all measures of tree distance. The only
comparisons for which implied weighting does not
strongly outperform model-based methods are with
the number of correct nodes retrieved by maximum
likelihood (the average of which, 0.89672 is only
slightly worse than the average for implied weights
0.90446), and the proportion of wrong groups found
by Bayesian analysis (0.02944, somewhat better than
the 0.05794 in implied weights).
When all three methods (Bayesian, likelihood and

implied weights) are compared against equal weights
(Fig. 4a–d) the same picture emerges. The white dots
(representing implied weighting) are situated lower
than the black (likelihood) and grey (Bayesian) dots
for the measures that evaluate the degree of difference
between inferred and model tree (RF and DC).

Effect of different values of lambda

With different values of lambda, the distribution of
homoplasy changes (Fig. 1c). As the data set contains
(Fig. 5) more characters with no or very little homo-
plasy (higher values of lambda), the results of implied
weights become more similar to those of equal
weights (white dots). When there is greater homo-
plasy, implied weighting produces results more differ-
ent from those of equal weights (black dots), with
inferred trees more similar to model tree (e.g. Fig. 5a,
b), and a larger advantage in number of correct
groups recovered (Fig. 5c); in contrast, the proportion
of incorrect groups inferred by implied weights also
exceeds that for equal weights by a larger factor
(Fig. 5d).

4

Note that each dot in the graphs represents the average of 10

values, corresponding to a combination of taxa/characters/lambda.

It is then possible that in some of the individual data sets the num-

ber of correct groups recovered was larger for equal weights,

although this clearly cannot be the norm.
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Empirically derived frequencies of homoplasy

The results shown in Figs 2–5 correspond to data
sets generated such that the probability of different
numbers of steps of homoplasy is determined by an
exponential distribution. The script used has also been
adapted to use the exact frequencies observed in a
most-parsimonious tree under equal weights for a
given empirical data set. For each of the 158 empirical
data sets, 10 simulated data sets with frequencies of
homoplasy matching the observed frequencies were

generated and analysed as before (for a total of 1580
simulated data sets). The data were evolved using a
random tree as model. The results are similar to those
already discussed, and shown in Figs 6–7. As in the
data sets generated with the exponential function, like-
lihood retrieves a high number of correct groups,
slightly outperforming implied weights in this regard
(0.89269 instead of 0.87910; Fig. 6d), but the differ-
ence in the proportion of incorrect groups is more dis-
advantageous for likelihood than in the simulated
data. For parsimony, the proportion of incorrect

Fig. 3. (a) Distances between model and inferred tree, for implied weights, plotted against Bayesian inference. (b) Retrieved and incorrect groups
for implied weights, plotted against Bayesian analysis. (c) Distances between model and inferred tree, for implied weights, plotted against maxi-
mum likelihood (ML). (d) Retrieved and incorrect groups for implied weights, plotted against ML. Data sets generated as for Fig. 2.
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groups decreases for empirically derived frequencies
(0.03593 in implied weights, 0.024531 in equal
weights) relative to the exponential function (0.05794
in implied weights, 0.03702 in equal weights), whereas
in likelihood this proportion remains almost the
same in frequencies derived empirically (0.10462) rela-
tive to the exponential function (0.10316); as a conse-
quence, the difference in proportions of incorrect
groups between likelihood and parsimony is more
pronounced for empirically derived frequencies of
homoplasy.

Convenience and “Philosophy”

The papers by Wright and Hillis (2014), O’Reilly
et al. (2016) and Puttick et al. (2017) are quite suc-
cinct, and their conclusions presented as if entirely
factual. Yet several important decisions in those stud-
ies are taken without any discussion or rationale,
even when those decisions are crucial to their conclu-
sions. The main decision is the choice of a model
like Lewis’s (2001); all those authors simply write as
if no possible alternatives existed. But possible

Fig. 4. (a) Robinson–Foulds (RF) distance to the model tree, for maximum likelihood (ML), Bayesian inference and implied weights (K12),
plotted against equal-weights parsimony. (b) Same, for symmetric distortion coefficient (DC). (c) Same, for proportion of wrong groups. (d)
Same, for retrieved (=correct) groups. Data sets generated as for Fig. 2.
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alternatives do exist, and the results favouring Baye-
sian methods need not hold unless one is willing to
accept (with Lewis, 2001) that all characters get
speeded up or slowed down on exactly the same
branches of the tree. If that requirement of simulta-
neous acceleration and deceleration is dropped, the
papers’ conclusions do not hold, as shown in the
previous section. The problem then becomes one of
how morphological characters are more likely to
evolve in the real world, a problem that neither

Wright and Hillis (2014), O’Reilly et al. (2016) nor
Puttick et al. (2017) address.
In addition to the choice of model, there also other

aspects in which those authors reach conclusions that
are far from obvious. The choice of K = 2, which
O’Reilly et al. (2016) use for analysing most of the
results under implied weights, is one of the most egre-
gious examples. O’Reilly et al. (2016) examined several
different values of K in their preliminary assessments;
they found that different values of K produce trees

Fig. 5. (a) Robinson–Foulds distance to the model tree, for implied weights, plotted against equal weights (EW), for different distributions of
homoplasy. (b) Same, for the symmetric distortion coefficient. (c) Same, for the retrieved (=correct) groups. (d) Same, for proportion of wrong
groups. Data sets generated as those of Fig. 2.
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Fig. 6. (a) Distances between model and inferred tree, for Bayesian inference. (b) Retrieved and incorrect groups for Bayesian analysis. (c) Dis-
tances between model and inferred tree, for maximum likelihood. (d) Retrieved and incorrect groups for maximum likelihood. (e) Distances
between model and inferred tree, for implied weights. (f) Retrieved and incorrect groups for implied weights. In all cases, values plotted against
equal weights (EW). Data sets generated so that numbers of taxa and characters, and homoplasy distributions, correspond exactly to each of the
158 empirical data sets (as explained in the text); no missing entries.
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with different distances to the model tree (their table
1, values plotted here in Fig. 8), and chose precisely
the value of K that makes implied weights perform the
worst—the only reason offered for that choice being
“convenience” (p. 2). As evident in Fig. 8, the values
of K that produced the closest results to the model tree
were K = 10 and K = 20; K = 2 instead performed
worst. O’Reilly et al. (2016) chose the worst K value
and criticized implied weights for performing poorly,

instead of reaching the almost self-evident conclusion:
do not use values of K that weight too strongly against
homoplasy, as had already been suggested long ago by
Goloboff (1995, pp. 99–100). The same authors, in
Puttick et al. (2017), subsequently use only K = 2, with
neither exploration of alternative concavities nor even
a hint that different values of concavity of the weight-
ing function may produce better values—that fact
being apparent only from their previous paper

Fig. 7. Distances between model and inferred tree, for implied weights, plotted against Bayesian inference. (b) Retrieved and incorrect groups
for implied weights, plotted against Bayesian analysis. (c) Distances between model and inferred tree, for implied weights, plotted against maxi-
mum likelihood. (d) Retrieved and incorrect groups for implied weights, plotted against maximum likelihood; note likelihood retrieves a slightly
larger number of correct groups (average 0.89530) than implied weights (0.88117), but a much larger number of incorrect groups. Data sets gen-
erated as those of Fig. 6.
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(O’Reilly et al., 2016), and not explained in the 2017
contribution.
Puttick et al. (2017) differs from O’Reilly et al.

(2016) in comparing phylogenetic methods on two
alternative topologies, one fully symmetrical, the other
fully pectinate (asymmetrical). They explored the two
topologies because one of the coauthors had earlier
found (Holton et al., 2014) that, on real data sets, dif-
ferent reconstruction methods may produce trees with
different degrees of balance, suggesting that at least
“some of the methods are biased with respect to tree
shape” (p. 436). The surprising finding of Puttick et al.
(2017) is that deeper nodes in asymmetric trees are
harder to reconstruct, for all phylogenetic methods—
whereas all nodes are reconstructed more accurately
for symmetrical trees. Puttick et al. (2017) conclude
that “the impact of tree topology is of particular con-
cern because empirical phylogenetic trees are invari-
ably asymmetric, and trees of fossil species are
infamous for their asymmetry” (p. 6). They never dis-
cuss, however, the true cause of the difference between
deep and shallow nodes in their asymmetric trees; as
all the methods examined by Puttick et al. (2017) are
time-reversible (i.e. transitions back and forth between
states equally costly or likely), their finding goes
directly against theory: the location of the root should
be immaterial. The real reason for the difference is evi-
dent only in their supplementary R script (available
online): the model trees in Puttick et al. (2017) are
ultrametric (i.e. perfectly clocklike). The successive
splits branching off terminals in their asymmetric trees

have decreasing lengths (1, 0.968, 0.936, decreasing by
0.032 every time), whereas the branch leading to the
group of the remaining taxa has a constant length
(0.032). The symmetric model trees that they used,
instead, have all their branches with exactly the same
length (0.2). Incredibly, Puttick et al. (2017) never dis-
cuss this difference between their two model trees, or
the crucial implication that ultrametricity on an asym-
metric tree forces a mixture of very long and very
short branches. Very long branches are difficult to
place for any phylogenetic method, moving around
with only minor differences in likelihood or parsi-
mony; this property has been known for decades (e.g.
Wheeler, 1990), and Goloboff and Pol (2005, pp. 153–
154) used very long branches to emulate the behaviour
of missing entries. Because the basalmost branch will
move around its location with minor differences in the
fit to the data (possibly even suffering long-branch
attraction from the almost equally long branch sub-
tending the next terminal split, separated by a short
intermediate branch), this will naturally decrease the
rate of correct recovery for the group of all taxa but
the first split in the tree. The difficulty Puttick et al.
(2017) found in recovering some nodes therefore has
nothing to do with asymmetry per se, but is instead
the result of the long branches that ultrametricity
forces on an asymmetric tree—the right conclusion
would then be that the hardest nodes to recover are
those around very long branches, not the deep ones.
Several authors have been sceptical about the “mor-
phological clock” (e.g. Beck and Lee, 2014; Puttick
et al., 2016), but even if a perfect morphological clock
really held in nature, that would still not mean that
asymmetric trees including fossils as the earliest splits
conform to the pattern simulated by Puttick et al.
(2017)—the clock assumes that change along time is a
constant, but the earliest splits fossilized millions of
years ago, not having had much time to evolve, thus
connecting to the tree by short branches. So, not only
is Puttick et al.’s (2017) difficulty in recovering some
groups the result of very long branches instead of tree
shape, it is also irrelevant for the situation they claim
it affects the most: fossil phylogenies.
Puttick et al. (2017) also consider very important

that “[a]s parsimony methods appear to be less effec-
tive than probabilistic approaches, it may be necessary
to alter data collection practices by moving away from
choosing a selection of characters that undergo few
changes, and moving towards scoring all possible char-
acters from the available taxa irrespective of their
expected homoplasy” (p. 8). The notion that cladists
select for their matrices only those characters thought
to have low homoplasy is an absurd caricature—as
any sample of cladistic analyses published in the last
decades immediately shows. Indeed, if standard cladis-
tic practice consisted of selecting only characters with

Fig. 8. Median values for Robinson–Foulds distances in O’Reilly
et al.’s (2016) study. Mk, Bayesian analysis; ew, equal weights; iwk2
to iwk200, implied weights with K = 2–200. See text for discussion.
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low homoplasy, then why would Goloboff (1993) have
bothered to propose a method to allow homoplastic
characters to be included in the matrix (and given less
influence as a result of the analysis, instead of an
assumption)? But there is even more irony in Puttick
et al.’s (2017) notion that homoplastic characters must
be included because “[u]nder the likelihood model,
branch length, informed by the number of character
changes, contributes to topology estimation” (p. 7).
Not only is branch length determined by highly vari-
able characters, but it is also determined by invariant
characters, which should be included (or assumed, as
in the “Mkv” variant of the Lewis, 2001; model) in
vast numbers. Including large numbers of invariant
characters leads (other things being equal5) to the
same trees being optimal under standard likelihood
models and parsimony (Tuffley and Steel, 1997). Tak-
ing to heart Puttick et al.’s (2017) recommendation
would thus always lead to most-parsimonious trees!
Puttick et al. (2017), in addition to their simulations,

also discuss four empirical cases. Their discussion of
these examples shows, more than the advantages of
the Bayesian approach, the depth of their prejudice
against parsimony methods. When Bayesian analysis
produces an unresolved tree (in the reanalysis of the
Kulindroplax and the seed–plant data sets), they take
this to be the correct result—for no reason other than
their conviction that previous conflicts in phylogenetic
hypotheses for these groups were “largely an artefact
of the false resolution of parsimony methods” (p. 6)
and that Bayesian analysis must be correct. When pre-
vious authors had postulated possible alternative con-
clusions on the position of some taxon (as in the case
of Nyasasaurus, in Nesbitt et al., 2013), Puttick et al.
(2017, p. 6) emphasized the agreement of the Bayesian
analysis with only one of the alternatives offered (that
of Nesbitt et al., 2013), so as to make their results in
apparent agreement with firmly established conclu-
sions. The selective presentation of Puttick et al.
(2017) is similar to the one used in Lee and Worthy’s
(2012) claim that model-based methods are superior
because they correctly place Archaeopteryx, whereas
equal-weights parsimony places it in an unusual posi-
tion. Spencer and Wilberg (2013, p. 666) and Xu and
Pol (2014, p. 325) noted that Lee and Worthy (2012)
conveniently avoided mentioning that model-based
analysis made the Tyrannosauroidea (a widely
accepted group) paraphyletic, or that implied weight-
ing simultaneously recovered a monophyletic

Tyrannosauroidea and placed Archaeopteryx in the
standard position.
Congreve and Lamsdell’s (2016) paper differs from

the three others examined here in presenting more
extensive discussions in addition to the simulations.
Their arguments, however, are less than compelling.
What they call “philosophical” discussion of implied
weighting has very little to do with philosophy, and
consists instead of repeating criticisms (already
addressed by Goloboff et al., 2008a, p. 760) based on
loose biological arguments, such as the notion that

One major flaw of implied weighting is that it assumes homo-

plastic characters have an equal likelihood of homoplasy

across the entire tree . . . Furthermore, directed homoplasy

(homoplasy due to adaptive convergence) can exhibit strong

phylogenetic signal, and there is always the risk that, by max-

imizing character fit, implied weighting could converge on an

erroneous topology through maximizing homoplasy. This

concern is, in our opinion, the most crucial. No study has

been performed to see whether implied weighting is actually

consistently minimizing homoplasy or maximizing fit in an ad

hoc manner to the extent of retrieving a well-resolved but

erroneous topology. (p. 451)

Indeed, implied weighting may be negatively affected
by characters that do not “have an equal likelihood of
homoplasy across the entire tree”, but Congreve and
Lamsdell (2016) do not mention that the same is
equally true of equal weighting. They do not mention,
either, that Goloboff et al. (2008a, p. 760) had already
noted that both equal and implied weighting are
equally affected by this problem, or that Goloboff
et al. (2009) implemented a method with weights that
vary on the tree and found it to be incompatible with
parsimony. Also, “directed homoplasy due to adaptive
convergence” (one presumes, in several characters at
the same time) may well mislead implied weighting,
but Congreve and Lamsdell do not explain why such
convergence would be any less detrimental to equal-
weights6 or model-based methods.
Congreve and Lamsdell (2016, p. 449) state that

implied weighting “utilizes a model (based on charac-
ter fitness, f) to successively downweight characters
that the model deems to be homopastic against every
possible generated topology”. The term “model” has
several meanings; implied weighting is certainly not a
“model” in the same sense as (say) a JC69 model: it is
not a model in the sense of being a statement about
how characters are thought to evolve. And implied
weighting does not downweight characters “succes-
sively”—it was, in fact, proposed as an alternative to
successive weighting (Farris, 1969). But perhaps the
most enigmatic of Congreve and Lamsdell’s (2016)

5

That is, leaving aside problems in summarizing the results of the

Monte Carlo Markov chain discussed by Goloboff and Pol (2005),

which Puttick et al. (2017) do not consider. It also leaves aside the

problem of different numbers of possible alternative states in the dif-

ferent characters, which can also cause differences.

6

Obviously, “adaptive convergence” may mislead implied weight-

ing, but not because the method will “maximize homoplasy”, as

Congreve and Lamsdell (2016) state.
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notions is that it is the “model” in implied weights
which “deems” a character to be homoplastic. What
“deems” a character to be homoplastic is not any
“model”, but instead a tree; for example, if current
notions of insect phylogeny are approximately correct,
then there is no “model” which could “deem” the evo-
lution of wings to lack homoplasy.
Congreve and Lamsdell (2016) also seriously

misrepresent Goloboff (1993, 1995) when they say (pp.
450–451), that “Goloboff (1993, 1995) suggested that
k values need to be tweaked for each data set so that
the model gives an appropriate response”. Goloboff
(1993, 1995) never talked about “tweaking” or “ap-
propiate responses”; he said instead that the proper
values of K remained to be investigated, and that
these might vary with numbers of taxa (Goloboff,
1993, p. 89, 1995, p. 100). Goloboff et al. (2008a)
provide some hints as to how this might be done, and
also stress the need to evaluate more than a single con-
cavity (so as to make results more conservative), given
that the hope of determining a unique, “optimal”
value of K is misguided.
Congreve and Lamsdell (2016) make additional criti-

cisms of implied weighting, but replying to all of those
is difficult, for in many cases it is hard to understand
what they really mean. For example, they say that
although implied weighting “has been demonstrated to
increase internal consistency within real data sets
(Goloboff et al., 2008a), this pattern is not in and of
itself a true test of the efficacy of the methodology
because the same could be said of any form of charac-
ter weighting” (p. 448) and that in the end “the argu-
ment rests on implied weighting being preferred
because it produces results consistent with itself” (p.
451). Goloboff et al. (2008a) never claimed that the
method should be preferred on the grounds that it
produces a result identical to itself, as Congreve and
Lamsdell (2016) incorrectly state; that would certainly
have been silly on the part of Goloboff et al. (2008a),
as no method could produce results “inconsistent with
itself”. Likewise, Goloboff et al. (2008a) never made
any reference to an “increase in internal consistency”.
If by “internal consistency” Congreve and Lamsdell
(2016) mean the increase in both jackknife frequencies
and measures of stability to addition of characters and
taxa (which is what Goloboff et al., 2008a; showed
implied weighting improves), then it is not true that
“the same could be said of any form of character
weighting”: Goloboff et al. (2008a) also showed that
randomly chosen weights worsen such aspects. And if
that is indeed what they mean by “internal consis-
tency”, then Congreve and Lamsdell (2016) contradict
themselves when they reject jackknife frequencies as
evidence, for they consider those same values relevant
when they (Congreve and Lamsdell, 2016, p. 451)
approvingly cite K€allersj€o et al.’s (1999) finding that

eliminating third positions decreases jackknife frequen-
cies, interpreting this as indication that homoplastic
characters should not be downweighted (an idea dis-
cussed in depth by Goloboff et al., 2008a, pp. 761–
762, 765–767).

Errors

Despite their extensive discussion of abstract princi-
ples, Congreve and Lamsdell (2016) think that the
only “true test of the utility of this method is to
compare how well implied weighting converges on a
known tree” (p. 448), which can only be done “using
simulated data, for which the tree topology is
known” (p. 450). But, interestingly, the simulations
that they perform still do not solve the problem auto-
matically—additional considerations are needed. The
dilemma in their simulations is that implied weight-
ing, compared to equal weights, recovers a larger
number of incorrect groups, but also a larger number
of correct groups—thus, one aspect of the results is
worsened, whereas another is improved. They then
“turn to statistical hypothesis testing” (p. 452), and
flatly state (as if this was an obvious imperative of
statistical theory) that the only important concern is
whether a method minimizes the number of incorrect
groups (which they analogize with errors of Type I).
They give absolutely no reason for their preference;
any serious method of inference must consider also
the degree to which correct groups are recovered by
the method, and it is well known that equal weights
does poorly in this regard, by virtue of being very
conservative.
It is also far from evident that the absolute number

of erroneous groups (as measured by Congreve and
Lamsdell, 2016) can be analogized with Type I errors.
A much better candidate for measuring Type I errors
is the proportion of incorrect groups, relative to the
number of groups inferred by the method in question.
That is, the probability of a group picked from the
(consensus of) optimal trees being correct, and this is
measured by the proportion (relative to the number of
nodes in the consensus), not by the absolute number.
More simply: a method that indicates 100 groups, only
three of which are wrong, seems generally preferable
to another method which indicates three groups, two
of which are wrong. With Congreve and Lamsdell’s
(2016) measure (absolute number of incorrect groups),
a complete bush is a “perfect” tree. They admit this
much themselves:

given how we have scored this data [sic], an analysis in which

the equal weights consensus was entirely a polytomy would

by definition be considered superior to an implied weights tree

with only one error. Such an example would not be a fair

treatment of the accuracy of implied weights (p. 457)

16 Pablo A. Goloboff et al. / Cladistics 0 (2017) 1–31



Given that problem, they compare the slopes for the
difference in numbers of correct groups between equal
and implied weights (their fig. 5, graphs on the left),
with the slopes for the difference in numbers of incor-
rect groups (their fig. 5, graphs on the right), in both
cases as a function of the number of polytomies. Con-
greve and Lamsdell (2016) find that “the slope of the
regression line for the incorrect vs unknown plot was
substantially steeper than the correct vs unknown
plots”. They conclude from this (p. 457) that “using
implied weights to resolve polytomies found in equal
weighted analyses. . . shows a far stronger trend
towards incorrectly resolving data rather than cor-
rectly resolving data” and that “implied weights simply
‘picks’ a solution to these conflicts seemingly at ran-
dom, and more often than not it tends to be incor-
rect.” That conclusion hardly follows from the mere
fact that one of the regression lines has a steeper slope:
line positions are determined by both slope and inter-
cept. Our Fig. 9 (redrawn from Congreve and Lams-
dell’s fig. 5, superimposing the lines for correct and
incorrect groups in the same graph, with different col-
ours) shows that, even if the line for the difference in
correct groups is steeper, for all practical purposes (i.e.
the maximum possible differences in correct/incorrect
nodes, bounded by the numbers of taxa) the difference
in number of incorrect groups (black line) is always
going to be less than or equal to the difference in
number of correct groups (lighter line). Congreve and
Lamsdell’s (2016) comparison is just poor statistics.
As already discussed, rather than the absolute num-

bers of wrong groups, it seems more reasonable to
consider proportions of wrong groups. The proportion
of incorrect groups, however, is higher in implied

weights (unless tree-collapsing is taken into account;
see next section); the number of correct groups
retrieved is also higher. The problem then becomes
one of how to trade-off the additional correct groups,
relative to the larger proportion of incorrect groups.
In this case, comparing differences in slopes (and inter-
cepts!) is complicated by the fact that the number of
groups supported by each method and data set (used
to rescale one of the two variables but not the other)
can be different.
A different approach to the problem must look at

the proportion of groups present in one method but
not the other that are also correct (i.e. present in the
model tree). Congreve and Lamsdell (2016) write as if
only implied weights could find some groups not pre-
sent under equal weights; as a matter of fact, equal
weights may also produce consensus trees (or well sup-
ported groups) that are not found under implied
weights. What truly matters here is whether a group
that is present in implied weights is more likely to be
correct than wrong, and vice versa. If a group that is
present in implied but not equal weights is more likely
to be correct than wrong, then it is preferable to add
those groups to the results of equal weights. This
probability is simply calculated as the number of
groups present under implied but not equal weights
that are correct, divided by the number of groups pre-
sent under implied but not equal weights. As long as
this probability is above 0.5, then adding the group to
the results of equal weight is preferable to not adding
it. When comparing two methods, the proportion of
groups present in one but not the other being correct
may be above 0.5 for both methods, given that either
method may produce trees with polytomies. Consider
the case of model tree (A(BC)(DE)), method 1 produc-
ing the tree (A(BC)DE) and method 2 producing
(ABC(DE)). The proportion of groups in method 1
but not method 2 that are correct is 1.0 (only one
group, BC, which is correct), and the proportion of
groups in method 2 but not method 1 that are correct
is also 1.0 (only one group, DE, which is correct). A
full comparison of these values is included in the Sup-
plementary Material; for each combination of taxa,
characters and homoplasy distributions, a total of 100
data sets was simulated, for a total of 3600 simulated
data sets.
Figure 10a shows the results of such a comparison

between equal and implied weights. For the majority
of cases, the groups found by implied weighting and
not equal weights are more likely to be correct than
wrong (mean 0.66257, in data sets with no missing
entries), whereas the groups found by equal weights
are more likely to be wrong than correct (0.48179). In
98.89% of cases implied weights had some groups not
present in equal weights (an average number of
7.18155 groups), whereas in 41.89% of cases equal

Fig. 9. Example showing that consideration of slopes of regression
lines for correct and incorrect groups (relative to unresolved groups)
in implied groups is insufficient to establish a proper comparison;
consideration of intercepts is also required. Redrawn from Congreve
and Lamsdell (fig. 5). See text for discussion.
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weights had some groups not present in implied
weights (an average number of 2.58630 groups).
The comparison between Bayesian analysis and

equal weights (Fig. 10b) produces the hypothetical sit-
uation described above, where the unique groups
found by both methods have good chances of being
correct. Bayesian analysis had groups not found by
equal weights in 99.11% of cases (an average number
of 6.35743 groups), whereas equal weights had them in
100% (average of 2.52778 groups). The proportion of
groups found by equal weights and not Bayesian anal-
ysis that are correct is 0.68972, and the proportion of
groups found by Bayesian analysis and not equal
weights that are correct is 0.78944. Thus, the best
result would come—according to this comparison—
from combining the groups (if combinable) of Baye-
sian analysis and equal weights; either of these two
methods alone is likely to miss some supported
groups.
Maximum-likelihood produced groups (Fig. 10c) not

present in equal weights in 100% of the cases (an aver-
age of 12.94611 groups), and equal weights produced

groups not present in maximum likelihood in 86.17%
of cases (an average of 3.75057 groups). Of the groups
in maximum likelihood but not equal weights, the pro-
portion of correct groups is 0.48057. Of the groups in
equal weights but not maximum likelihood, the pro-
portion of correct groups is 0.66211. Then, any group
present in equal weights but not maximum likelihood
should be included in the result, whereas a group pre-
sent in maximum likelihood but not equal weights
should not. The combination of both results (maxi-
mum likelihood and equal weights) should thus yield
exactly the equal weights tree.
This approach to the problem solves the dilemma

posed by Congreve and Lamsdell (2016), of how to
consider the differences in errors without unduly
favouring methods that produce completely unresolved
trees. Their conclusions regarding the relative merits of
equal and implied weights is due, more than to the
model used in the simulations, to a poor analysis of
the trees resulting from their simulations. Contrary to
Congreve and Lamsdell (2016), implied weights does
not select solutions to character conflict at random.

Fig. 10. (a) Proportions of groups found in by equal-weights parsimony but not implied weights (white), and groups found by implied weights
but not equal-weights parsimony (black) that are correct. (b) Same, for equal-weights parsimony (black) and Bayesian analysis (white); the set of
values on the right side of the graph corresponds to data sets with 25% of missing entries, as described in the text. (c) Same, for equal-weights
parsimony (white) and maximum likelihood (black). (d) Proportions of groups found in by equal-weights parsimony but not implied weights
(white), groups found by implied weights but not equal-weights parsimony (black), proportion of groups found by extended implied weighting
but not equal-weights parsimony (dark grey), proportion of groups found by equal-weights parsimony and not extended implied weighting (light
grey) that are correct, for data sets with 25% missing entries (as described in the text). See text for additional discussion.
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The present comparisons show that a group found by
implied but not equal weights is more likely to be cor-
rect than wrong, and a group found by equal but not
implied weights is (slightly) more likely to be wrong
than correct. Therefore, the best final conclusion from
considering both the tree produced by implied weights
and the tree produced by equal weights is exactly the
same as . . . the implied weights tree.

Collapsing poorly supported groups

The documentation of TNT states that “it is very
important that you evaluate group support when
doing implied weighting. Because exact ties are very
unlikely, this criterion may produce overresolved trees
if poorly supported groups are not collapsed.” How-
ever, neither O’Reilly et al. (2016) nor Congreve and
Lamsdell (2016) considered the effect of tree-collap-
sing. In the case of Bayesian analysis, the tree pro-
duced should already lack poorly supported groups.
RAxML produces a single optimal tree, without
attempting to find multiple equally likely trees (groups
with no or poor support can be eliminated only by
considering their bootstrap frequencies). Note that
these differences do not actually correspond to differ-
ences implicit in the optimality criteria themselves, but
instead simply to the specific way in which these pro-
grams have been designed. For that reason, no explicit
comparison is provided here between model-based and
parsimony methods for poorly supported groups elimi-
nated; only the parsimony methods (equal and implied
weighting) are properly compared in this regard.
The elimination of weakly supported groups to

reduce the number of incorrect groups retrieved could
be done either by calculating Bremer supports (abso-
lute, Bremer, 1994; relative, Farris et al., 1996; or a
combination of both, Goloboff, 2014b, p. 278), or
resampling (bootstrapping, Felsenstein, 1985; or parsi-
mony jackknifing, Farris et al., 1996). Puttick et al.
(2017) offered a strange reason to avoid bootstrapping
in morphological data sets: “phenotypic data does not
meet the assumption that phylogenetic signal is dis-
tributed randomly among characters” (p. 2). As a
result, their study used “parsimony methods which
recover resolved trees” (p. 2), effectively not giving
likelihood or parsimony the chance of improving the
RF distance to model tree by eliminating poorly sup-
ported groups. The same point was made by Brown
et al. (2017). The idea that the bootstrap requires that
“phylogenetic signal” is uniformly distributed among
characters would make the bootstrap incompatible
with standard analysis of DNA sequence data: multi-
ple evolutionary rates are premised on the notion that
such “signal” is not equally strong in all characters.
And Felsenstein himself considered that both

morphological data and multiple rates are compatible
with the bootstrap: “If we could consider successive
characters as independently drawn, having a mix of
rates of evolution, or a mix of body regions, would
not endanger the bootstrap” (Felsenstein, 2004, p.
344). Felsenstein (2004) was discussing the statistical
interpretation of the bootstrap, and even fewer
assumptions are needed when resampling is used only
as a means to eliminate weakly supported groups (Far-
ris et al., 1996, p. 109; Farris, 2002, p. 352). When the
standard bootstrap is used to eliminate weakly sup-
ported groups, the problems created by characters with
different weights can be avoided with modifications
proposed by Goloboff et al. (2003). And, finally, even
if Puttick et al. (2017) were right in the argument
against bootstrapping morphological data sets, they
might as well have used Bremer supports to eliminate
weakly supported groups.
In this section, poorly supported groups are elimi-

nated by TBR-collapsing, accepting rearrangements
with an absolute score difference equivalent to a step
(or a step in a character with no homoplasy, for
implied weighting) and a relative fit difference (Golob-
off and Farris, 2001) of 0.25 to 0.50. When collapsing
poorly supported groups, a lower proportion of incor-
rect groups is found (Fig. 11a,b), both for equal
weights and implied weights, although the decrease in
the proportion of incorrect groups is more significant
for implied weights. This happens regardless of missing
entries. Unsurprisingly, the number of correct groups
retrieved (Fig. 11c) also decreases; obviously, some
inferred groups are correct, but supported only
weakly. The trade-off between avoiding incorrect
groups and missing correct ones will necessarily come
as the method is made more or less restrictive. Because
collapsing improves some aspect of the results (not
finding incorrect groups) and worsens another (finding
fewer correct groups), the overall effect of collapsing
on the closeness to the model tree is minimal for most
measures of tree distance (Fig. 11d).
Figure 11 compares the results with and without col-

lapsing for the same method of inference. Comparing
the results for equal and implied weighting (Fig. 12a,
b), it is seen more clearly that the proportion of incor-
rect groups for implied weighting approaches the pro-
portion for equal weighting, as poorly supported
groups are collapsed. Of course, if the goal was only
to eliminate incorrect groups from the inferred tree,
then collapsing even more stringently (Fig. 12c) will
accomplish this goal—but this would have the undesir-
able side effect of retrieving fewer correct groups
(Fig. 12d).
Collapsing poorly supported groups may improve

results considerably, in terms of reducing the incorrect
groups retrieved. For example, in Congreve and Lams-
dell’s (2016) own 100 data sets, the probability of a
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group found by one method and not the other to be
correct is below 0.5, for both implied (K = 12) and
equal weights. This is in part because their data sets
have only 22 taxa (our simulations for the previous
section considered 50 to 70 taxa). But if poorly sup-
ported groups are collapsed for Congreve and

Lamsdell’s (2016) data sets (for both methods, with an
absolute score difference of one step, or one step in a
homoplasy-free character, and a relative fit difference
of 0.25), the probability of a group found by equal but
not implied weights (which occur in 58% of the data
sets, with an average number of 2.94828 groups) being

Fig. 11. (a) Proportion of wrong groups found by collapsing poorly supported groups, plotted against the proportion of wrong groups found by
not collapsing them, for both equal-weights parsimony (black) and implied weights (white), for data sets with no missing entries. (b) Same as (a)
for data sets with 25% of missing entries. (c) Retrieved (=correct) groups found by collapsing poorly supported groups, plotted against the
retrieved groups found by not collapsing them, for equal-weights parsimony (black) and implied weights, in data sets with no missing entries. (d)
Distance to the model tree when collapsing poorly supported groups, plotted against the distance when not collapsing them, for both equal-
weights parsimony (black) and implied weights (white), for data sets with no missing entries.
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correct is 0.37671, whereas the probability of a group
found by implied but not equal weights (which occur
in 83% of the data sets, with an average number of
3.60241 groups) being correct is 0.64679. Thus, consid-
eration of Congreve and Lamsdell’s (2016) own matri-
ces, when poorly supported groups are collapsed and
the proper comparison of errors is done, is clearly in
favour of implied weights.

Missing entries

Of the four studies discussed in this paper, only
Wright and Hillis (2014) included missing entries in
their simulations, and they did not consider implied
weights. Although Congreve and Lamsdell (2016) were
of the opinion that the only “true test” for a method
is “using simulated data, for which the tree topology is

Fig. 12. (a) Proportion of wrong groups for equal and implied weighting, when trees are (white dots) or are not collapsed (black dots), for data
sets with no missing entries. (b) Same as for (a) for data sets with 25% of missing entries. (c) Same as (a), when groups are collapsed with vary-
ing relative fit differences (RFD). (d) Proportion of retrieved groups for equal and implied weighting, when groups are collapsed with varying
relative fit differences.
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known” (p. 450), and their own simulated data sets
had no missing entries, they still criticized the treat-
ment of missing entries proposed by Goloboff (2014a)
and implemented in TNT, from what they consider to
be first principles.
Goloboff (2014a), noting that missing entries will

usually increase the weight of characters (as some
homoplasy may then be unobserved), proposed a
method to extrapolate the homoplasy detected among
observed entries to missing entries. The contribution
of Goloboff (2014a) is not the proposal that missing
entries may conceal homoplasy,7 but instead proposing
a practical way in which such influence can be logi-
cally considered. A requirement—Goloboff (2014a,
p. 265) was explicit about this—is that missing entries
do not lower weights by themselves, and that in the
absence of homoplasy all characters are equally influ-
ential, regardless of missing entries. To accomplish
this, the weight of the characters with more missing
entries must decrease more rapidly with homoplasy;
this can be done by using weighting functions of dif-
ferent strengths for the different characters, with
strength depending on proportion of missing entries
(rescaled so that the cost of the first step of homoplasy
is the same for all characters). The weight in a charac-
ter with numerous missing entries may well be higher
than for a character with none; this depends on the
differences in homoplasy, and to the degree to which
the user extrapolates observed homoplasy to missing
entries (which can be only a small fraction).
Congreve and Lamsdell (2016) confuse this, thinking

either that missing entries per se lower character
weights or that characters with missing entries can get
weights of zero. They state (p. 458) that “assuming
homoplasy in missing data under implied weighting
effectively results in characters that exhibit missing
data being unfairly discounted during the analysis and,
by extension, dismisses the signal which such charac-
ters have been shown to impart”, but provide no

example. Congreve and Lamsdell (2016) incorrectly
describe the method to consider missing entries as if it
could lead to ignore characters, and as if it could fail
to identify groups that are in truth defined by synapo-
morphies in homoplastic characters with missing
entries. Their comments (p. 451) on reversible charac-
ters go along the same lines, stating that implied
weights may fail to recognize groups defined by rever-
sals. But the numerical results of Goloboff’s (2014a)
method are simply not those which Congreve and
Lamsdell (2016) conjecture: in implied weights (ex-
tended or otherwise), no character is ever “dis-
counted”; no matter how low its weight, the additional
homoplasy in a character supporting a possible group
in the tree will always increase the score contribution
of that character, and a tree lacking that group could
be preferred if and only if there is another character
(or several) with higher weights supporting an alterna-
tive grouping. Thinking otherwise, as Congreve and
Lamsdell (2016) do, reflects only a lack of understand-
ing of how parsimony works as an optimality criterion
to select trees.
Congreve and Lamsdell (2016) are also mistaken on

the treatment of inapplicable characters, which they
think pose a fatal threat to the method. They note that
“treating inapplicables as missing data . . . is the pre-
ferred protocol” (p. 458) and therefore the method of
Goloboff (2014a) is “wholly inappropriate to use with
inapplicable characters as it will result in assuming
homoplasy where no homoplasy can exist, in turn
penalizing characters through downweighting simply
because they are inapplicable for some taxa.” This
would indeed be a serious flaw of the method, only if
it were true that one is forced to treat inapplicable
characters and missing entries in the same way. Golob-
off (2014a, pp. 265–266) showed that the concavity
ratios for two characters should be proportional to the
ratios between observed entries, and also made it clear
(p. 268) that the concavities can be manually adjusted
by the user. All the user has to do is not count inappli-
cables as missing entries and set the concavities manu-
ally. On top of that, versions of TNT implementing
extended implied weights include the option to code
inapplicable states differently (as an asterisk), so that
those characters are properly weighted automatically.8

Congreve and Lamsdell’s (2016) criticism of
extended implied weighting is not only based on
misunderstanding the method. Their idea that taking
into account missing entries will produce worse trees is
also rejected by what they consider the best means to
settle preference for phylogenetic methods:

7

Goloboff (2014a) attributed this notion to “conversation with

colleagues”. In fact, the earliest version of Piwe (written in late, 1991

and early, 1992, available at http://www.lillo.org.ar/phylogeny/),

before publication of Goloboff (1993), attempted to correct for the

fact that missing entries were likely to have some unobserved homo-

plasy. If Goloboff’s memory serves, Kevin Nixon (who was at that

time in Goloboff’s supervising committee) was one of the colleagues

who insisted that missing entries could create problems for standard

implied weighting. That early attempt of Goloboff to take into

account missing entries, however, did have the undesirable property

(which Congreve and Lamsdell erroneously attribute to the method

of Goloboff, 2014a) of downweighting even nonhomoplastic charac-

ters characters in direct proportion to the number of missing entries.

Therefore, that original formula was never published, and subse-

quently changed to the simpler one in Goloboff (1993), which makes

no attempt to consider missing entries. This historical digression

serves to show that the issue of missing entries and unobserved

homoplasy had already been considered by cladists long ago.

8

In fact, the 1992 version of Piwe referred to in the previous foot-

note also made this distinction between inapplicable and unobserved

entries (with the set command, explained in the documentation), thus

making Congreve and Lamsdell’s (2016) criticism doubly invalid.
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simulations. For this, missing entries in 25% of the
matrix cells were simulated, and the results of equal,
standard and extended implied weights were compared
(Fig. 13). The missing entries were simulated by ran-
domly choosing half the characters in the matrix, and
for each chosen character replacing the state in half
the taxa by a missing entry (the sets of taxa chosen
randomly for each character). In the presence of miss-
ing entries, standard implied weights continues outper-
forming equal weights, both in terms of closeness to
the model tree (Fig. 13a) and number of correct
groups retrieved (Fig. 13b, white dots). It does more
poorly in the proportion of groups that are incorrect
(Fig. 13b, grey and black dots), but it continues pro-
ducing groups not found for equal weights that are
more likely to be correct than incorrect (Fig. 10d) for
13 of 18 combinations of taxa/characters/lambda (av-
erage probability of being correct 0.54454), when equal
weights produces groups not found by implied weight-
ing that are more likely to be correct in only 6 of 18
combinations (average probability of being correct
0.48766). When the homoplasy in the observed entries
is extrapolated to the missing entries (assuming that
missing entries will have 0.75 as much homoplasy as
the observed entries), these statistics are slightly
improved (Fig. 13c,d); the comparison with implied
weighting (Fig. 13e,f) shows this more clearly, with the
tree inferred by extended implied weighting generally
closer to the model tree, as well as a trend to recover
more correct and fewer incorrect groups. Extended
implied weighting produces groups not found by equal
weights (Fig. 10d) that are now even more likely to be
correct than incorrect (in 16 of 18 combinations, with
an average probability of being correct of 0.56707).
Given that extended implied weighting misses fewer
correct groups, equal weighting produces groups not
found by extended implied weighting with a somewhat
smaller average probability of being correct, 0.45878
(now above 0.5 in only 3 of 18 combinations). Thus,
the average difference in probability of being correct
for a group not found by the other method, of
0.05689 between standard implied weights and equal
weights, is almost doubled (0.10829) when missing
entries are taken into account with extended implied
weights.

Discussion

The controversy between proponents of parsimony
and model-based methods has been standing at least
since the early 80s (with Farris and Felsenstein as the
main defendants of each position at the time). It is
clear that, today, model-based inference is more ubiq-
uitous than parsimony. A clear symptom is that, in
the almost 3 years since Bayesian methods were first

compared against parsimony for morphological data
(Wright and Hillis 2014), and as papers based on sim-
ulations for morphological data continued appearing,
no response was offered—and within 2 months of the
first comparison proclaiming Bayesian methods to per-
form better than maximum likelihood (Puttick et al.,
2017), there is already a reply to that paper (Brown
et al., 2017)! But although Brown et al. (2017) are
laudably open-minded regarding the relative merits of
parsimony vs. model-based methods, they cover just a
few aspects of Puttick et al. (2017)—only the claims
on maximum likelihood—with no comments on the
use of models of DNA evolution for the simulation
and analysis of morphological data.
Despite the widespread belief that model-based

methods are superior, the existing literature still pro-
vides no obvious scientific reasons for such clear-cut
preference. A brief summary of the current state of
affairs is provided below. Although this summary
reflects our views on the subject, it provides no new
arguments and borrows heavily from many published
discussions. The views from both sides of the dispute
are far from monolithic (often using different
approaches and arguments to justify the same methods
or conclusions), so we feel that the summary below
reflects the attitude and rationales that lead many cla-
dists to consider parsimony as a method of analysis
justifiable under a wide set of circumstances (regardless
of how they choose to articulate those rationales when
pressed for justification).

Back to square one

Simulations have been used in the past both to pro-
duce results in favour of parsimony (Siddall, 1998; Pol
and Siddall, 2001; Kolaczkowski and Thornton, 2004,
2009) or against (Huelsenbeck, 1995; Yang, 1996;
Swofford et al., 2001). The results presented in this
paper clearly show that, in terms of closeness to the
model tree (and when rates of evolution are not
assumed to uniformly increase or decrease for all char-
acters along tree branches), the trees produced by
equal-weights parsimony are preferable to the trees
produced by maximum likelihood, and the trees pro-
duced by Bayesian analysis are about as good as those
found by equal-weights parsimony. For differences in
homoplasy in the different characters corresponding to
real data sets, the use of implied weights produces
trees that are closer to the model tree than any of the
alternative methods, and although implied weights
increases the proportion of incorrect groups relative to
equal weights, the additional groups produced are
more likely to be correct than wrong.
The very fact that the relative merits of alternative

phylogenetic methods for simulations under the pre-
sent model are so different from those under models
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Fig. 13. (a) Distance to model tree, for equal and standard implied weights, for data sets with 25% of missing entries. (b) Retrieved and incor-
rect groups, for equal and standard implied weights, for data sets with 25% of missing entries. (c, d) Same as (a, b), comparing equal and
extended implied weights (MK12). (e, f) Same as (a, b), comparing standard and extended implied weighting.
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like the one used by Wright and Hillis (2014), O’Reilly
et al. (2016) and Puttick et al. (2017), is enough to
highlight the influence of the model used to evolve the
data—hardly a surprising result. The model used here
is much less restrictive than the models derived from
ideas on evolution of DNA sequences normally used
by proponents of likelihood. In the case of DNA
sequences, the models may or may not be accurate in
every detail, but at least well-established theories make
those models plausible; however, no such justification
can be invoked in the case of morphology. The prime
reason for preferring likelihood methods—the statisti-
cal inconsistency of parsimony under certain condi-
tions—does not necessarily apply to morphology with
the same force. The inconsistency of parsimony results
from parallel independent derivations of the same state
in nonsister branches, and although this may occur
when only four states are the possible conditions that
characters can take, it is less likely to occur by chance
in morphology, where the number of states a character
can have is potentially very large (Farris, 1983, pp.
14–15; Bergsten, 2005, p. 165). This is not to say that
parsimony will always produce consistent results for
morphological data sets, only that incorrect results are
unlikely to result from long-branch attraction. In the
case of sequences, for data sets of one or a few genes,
parsimony does sometimes produce some questionable
groups that are absent from model-based analyses
(although it is unclear whether this is the norm;
according to Rindal and Brower (2011) it is not); it
seems more likely that this results more from the gen-
eral way in which rates of change are seen as corre-
lated along a given branch of the tree, than because of
the finer details of the model (GTR matrix, exact val-
ues of the gamma distribution or proportion of invari-
ants, etc.). And even so, in most cases, the only reason
to consider those groups preferred by parsimony as
questionable is that they conflict with widely accepted
morphological synapomorphies, which—however
informal—is a parsimony argument: the reason why
the bearers of those apomorphic conditions are
thought to form a monophyletic group is that separat-
ing them would require independent derivations (Far-
ris, 1983). If those cases are to be seen as a
justification for likelihood-based analyses of DNA
sequences, then the congruence used to justify the pref-
erence for likelihood is—somewhat paradoxically—
with parsimony for morphology.
Thus, proposals proclaiming the superiority of meth-

ods based on models of DNA evolution for analyzing
morphological characters lack serious justification—
there is no justification other than the fact those mod-
els are so commonly used for DNA. All of the
assumptions that more or less reasonably can be made
for DNA (e.g. all characters increasing or decreasing
their probabilities of change at the same branches in

concert, fixed substitution rates, base frequencies at
equilibirum resulting from the substitution rates, selec-
tive regimes constant through time, a maximum of
four states) are certainly inapplicable in the case of
morphology. Evidently, preferring the results of one
method over those of the others amounts to a state-
ment that evolution for that kind of character is more
likely to proceed in one or the other manner. In
appropriate contexts simulations may well provide
important insights on the behaviour of methods that
cannot easily be analysed formally, but using them
as a way to validate methods is a more delicate
question—validation cannot occur unless the model
used to evolve the data is itself validated indepen-
dently. Farris (1983) noted that the empirical conse-
quences of simulations would necessarily be quite
limited, precisely for this reason.
Although they generated their data sets with models

specifically chosen to make Bayesian methods perform
better than parsimony, Wright and Hillis (2014),
O’Reilly et al. (2016) and Puttick et al. (2017) asserted,
with typical grandiloquence, that Bayesian methods
are superior to parsimony in general. That superiority,
however, vanishes when data are generated under dif-
ferent models, because simulations alone cannot lead
to preference for one method over another unless there
is empirical evidence in favour of the model used to
run the simulations. In that sense, the results presented
here take us back to square one: despite claims by
Wright and Hillis (2014), O’Reilly et al. (2016) and
Puttick et al. (2017), there is still no empirical evidence
that application of probabilistic methods of phyloge-
netic inference to morphological data is advantageous.

General statistical principles?

Instead of predicating model-based methods on how
evolution may actually proceed, a different approach
is to defend them by invoking general statistical prin-
ciples. It is interesting that one of the criticisms of
parsimony often involves rejecting any justification
that is not strictly framed in probabilistic terms—but
considering that methods can be justified only with
statistical principles is itself a “philosophical” position.
Farris’s (1983) argument that ad hoc hypotheses (=ho-
moplasies) must be minimized because they serve only
to dispose of contradicting evidence appeals to the
specifics of phylogenetic inference and common sense,
rather than to a particular philosopher. In this sense,
both parsimony and model-based methods are justified
by recourse to first principles, despite likelihoodists
and Bayesians pretending otherwise (Goloboff, 2003,
p. 93). But even if the point of view that only explic-
itly statistical principles can guide the selection of
methods is accepted, the choice continues being far
from clear.
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Although consistency used to be considered a funda-
mental property by likelihoodists (e.g. Felsenstein,
1978, 1981; Swofford et al., 1996), it now figures less
prominently among defences of model-based methods
(with Sanderson and Kim, 2000; probably having
marked the turning point). The diminished emphasis
on consistency is both because the infinite quantities of
data on which consistency is premised will never be
available in practice, and because consistency is guar-
anteed only when the data actually evolve under cer-
tain conditions (see Steel, 2011), conditions which
must be incorporated into the model used to estimate
the phylogeny for consistency to occur. Thus, other
considerations besides consistency must come into play
as well: “although statistical consistency is desirable, it
should not override all other considerations—for
example, a powerful method that is consistent in most
regions of parameter space would generally be pre-
ferred over a statistically consistent method that
requires huge amounts of data to converge” (Steel,
2011, p. 105). It is ironic that, whereas the lack of con-
sistency was in the past supposed to be the main argu-
ment to abandon parsimony, the development of
many new models is now made with no concern what-
soever for whether the model results in statistically
consistent estimations (e.g. Klopfstein et al., 2015;
Wright et al., 2016; Pyron, 2017). And (with the excep-
tion of Yang, 2006, p. 176) no Bayesian has expressed
any concern in print with examples showing that the
standard form of Bayesian analysis (i.e. summarizing
the results of the Monte Carlo Markov chain using
the frequency of groups from the sample of trees) can
easily lead to concluding trees different from the
model tree (Goloboff and Pol, 2005); Bayesians have
cited this argument (e.g. Brandley et al., 2006; Velasco,
2008; Wright and Hillis, 2014) only in passing, men-
tioning no details, and without offering any counterar-
gument—thus showing little concern for inconsistency,
when suspected to occur in Bayesian analysis. Like-
wise, the finding of Goloboff (2003) that calculation of
likelihoods integrating branch lengths (as estimated in
Bayesian phylogenetic programs) may lead to inconsis-
tency (Goloboff, 2003, p. 97) has received no
attempted refutation from Bayesians or likelihoodists.
But if consistency wasn’t so important after all, why
was it that parsimony had to be abandoned in the first
place? Is there any reason, other than esprit de corps,
to explain why, in many journals, it became almost
impossible to publish a paper using parsimony as the
only method?
Another common theme is that parsimony amounts

to overparameterization, in that it “estimates” the
branch lengths for every character separately (e.g.
Huelsenbeck et al., 2008; following Tuffley and Steel,
1997), or that it “estimates” the individual ancestral
conditions for every character at every node (following

Felsenstein, 1978; and Goldman, 1990; contra Goloboff,
2003, pp. 99–101); the alternative is that parsimony can
be viewed as a simpler model, in that it is justifiable
when probabilities of change for a given character are
the same across all tree branches (e.g. Yang, 1996;
Goloboff, 2003). That discussion centres solely on
whether the models assumed for the inference of phy-
logeny have many parameters (thus “fitting elephants”;
Steel, 2005; borrowing von Neumann’s famous quote),
while dedicating very little attention to the problem of
how morphology might actually evolve. Steel (2005, p.
308) claims that separate rates for different characters
are not to be expected because it is difficult to imagine
biochemical mechanisms that would act separately on
different characters, but the argument is not too com-
pelling. Evolution is a biological, not a biochemical, phe-
nomenon: when differences in biology, ecology or
behaviour are brought into the picture, there can be
plenty of biological reasons to expect such differences,
even for DNA sequences, but more obviously so for
morphology. As shown by the difference in perfor-
mance between parsimony and model-based methods in
this and other simulations, how morphological charac-
ters actually evolve does make a difference, and so the
problem is not just one of the properties of the infer-
ence, but of realism as well.
When it comes to realism, likelihoodists and Baye-

sians admit that “all models are wrong” (another
catchphrase, this one by statistician George Box), in
the sense that models are not expected to faithfully
describe every detail of evolution. In the case of DNA,
standard models of sequence evolution do not consider
indels (let alone more complex transformations such as
gene rearrangements!); thus, it is far from obvious
how to decide which is preferable: a more accurate
description of substitions excluding indels, or a more
simplistic analysis of substitutions and indels together
(as in Poy, Wheeler et al., 2015). That likelihoodists
may have the hopes that substitutions alone (when
gaps in appropriate alignments are considered as miss-
ing data) will suffice to guarantee consistency (Trusz-
kowski and Goldman, 2016) is besides the point,
especially when considering that, in practice, different
programs for sequence alignment produce very differ-
ent results, and that phylogeneticists are indeed inter-
ested in understanding the evolution of sequences, not
just substitutions. Even for substitutions alone, decid-
ing whether current models provide a sufficient
approximation to reality is very difficult to evaluate.
As with discussions of the problems with either too
many or too few parameters, there is the also the sub-
liminal idea that, just as a side effect of mentioning
these problems, the methods preferred by likelihoodists
and Bayesians will automatically be the right answer
to this balance. Nonetheless, as attested by the history
of phenetics, just expressing concern with some general
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statistical principle does not automatically provide
methods fulfilling that principle.
In the end, regardless of how well they articulate

their reasons for being sceptical towards model-based
methods, the general attitude of cladists is that, based
on the necessarily low quantities of data used in phylo-
genetic analyses,9 any hopes of estimating with any pre-
cision something as complex as a phylogeny (and all its
concomitant parameters) are only wishful thinking. If
anything, the significant differences in results of differ-
ent model-based programs for the same data (usually
in the order of the difference between parsimony and
model-based methods), or by the analysis of different
genes with model-based methods,10 clearly point to sta-
tistical phylogenetic inference—in practice—being far
from perfectly accurate. Ironically, although parsimony
is often criticized for overparameterization, the clear
trend in model-based inference is towards increasingly
complex models, touted as being more realistic. Note
that this “realism” is not exactly the same one that pro-
ponents of parsimony expect: not making unrealistic
assumptions (Farris, 1983, 2008). The “realism” sought
by proponents of model-based methods, instead,
assumes that the parameters for ever more specific
details can be estimated (e.g. Klopfstein et al., 2015;
Wright et al., 2016; Pyron, 2017). The great fanfare
with which the ever-increasing precision and level of
detail of model-based methods are announced is, obvi-
ously, a good selling point, but some taxonomists pre-
fer applying a method that refrains from attributing
specific probabilities to phylogenies—not because infer-
ence can be established with certainty (as proponents
of parsimony are sometimes caricaturized), but because
uncertainty occurs at such a basic level. It is hard to
argue with Yang’s (2006) charitable characterization of
parsimony, that “perhaps one should be content to
consider parsimony as a heuristic method of tree recon-
struction that often works well under simple condi-
tions, rather than seeking a rigorous statistical
justification for it”, but most cladists would also add
that exactly the same reasoning applies to maximum-
likelihood and Bayesian analysis. Contrary to what is

stated by some statistical phylogeneticists (e.g. Felsen-
stein, 1987, p. 208, 2001, pp. 466–467), this position
does not result from adopting abstract, bizarre philo-
sophical positions, but rather, from common sense con-
siderations of what is known and unknown about the
process of evolution.
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Appendix 1

List of empirical data sets used for this study. Data sets 1–70 are
from Goloboff et al. (2008a). For each data set, the numbers of
characters and then taxa are indicated first, followed by the source.
The taxonomic groups are indicated only for unpublished matrices.
The data sets themselves are included as Supplementary Material (in
the case of unpublished matrices, with taxon names randomized).

1. agonum, 138 x 150: Carabid beetles, genus Agonum. Liebherr
& Schmidt., 2004. Dtsch. Entomol. Z. 51, 151–206. 2. amerem, 64 x
56: American Eumeninae (Vespidae). Unpublished (J. Carpenter). 3.
amphi, 156 x 85: Anuran amphibians. Unpublished (a version of the
matrix in A. Haas., 2003. Cladistics 19, 2389; J. Faivovich, pers.
comm.). 4. anyph, 200 x 93: Anyphaenid spiders. Ram�ırez, M. et al.,
2004. Zootaxa 668, 18. 5. apoidea, 139 x 54: Bees and sphecid wasps
(Apoidea). Melo, G., 1999. Sci. Pap. Nat. Hist. Mus. Univ. Kansas
14, 155. 6. araneo, 302 x 83: Araneoid spiders. Agnarsson, I., 2003.
Inv. Syst. 17, 719–734. 7. astr, 36 x 103: Astragalus legumes. Camp,

P., in Platnick, N., 1989. Cladistics 5, 145–161. 8. ausmat, 96 x 72:
Thynnine wasps (Tiphiidae). Kimsey, L., 2000. J. Hymen. Res. 9,
18–28. 9. bats, 250 x 75: Bats. Unpublished (modified from Giannini
& Simmons, 2005. Cladistics 21, 411–437; N. Giannini, pers.
comm.). 10. bemby, 163 x 53: Carabids (genus Bembidion et al.).
Maddison, D.R., 1993. Bull. Mus. Comp. Zool. 153, 143–299. 11.
bertetal, 59 x 54: Tinamou species. Bertelli et al., 2002. Syst. Biol.
51, 959–979. 12. bivalvia, 183 x 76: Bivalves (Mollusca). Giribet &
Wheeler., 2002. Invert. Biol. 121, 271–324. 13. bomb, 44 x 50: Bees
(genus Bombus). Williams, P., 1994. Syst. Entomol. 19, 327–344. 14.
bracon, 89 x 126: Braconid wasps. (D. Quicke, pers. comm.). 15.
brochu, 164 x 62: Gavialids (Crocodilia). C. Brochu., 1997. Syst.
Biol. 46, 479–522. 16. bryo, 43 x 56: Polytrichales (Bryophita). J.
Hyvonen et al., 2004. Mol. Phyl. Evol. 31, 915–928. 17. camilo, 110
x 50: Scorpions (genus Bothriurus). Unpublished (Camilo Mattoni,
Ph.D. Thesis). 18. caronieto, 110 x 64: Mayflies. Unpublished (C.
Nieto, Ph.D. Thesis). 19. centip, 222 x 80: Centipedes. Edgecombe &
Giribet., 2004. J. Zool. Syst. Evol. Res. 42, 89–134. 20. cephalo, 101
x 78: Cephalopods. Lindgren et al., 2004. Cladistics 20, 454–486. 21.
cocos, 268 x 53: Crocodyles. A version from Pol & Apesteguia.,
2005. Am. Mus. Novit., 3490, 1–38. 22. corydo, 83 x 68: Corydo-
radine fishes. Britto, M., 2003. Proc. Acad. Nat. Sci. Philadelphia
153, 119154. 23. cristian2, 128 x 64: Liolaemus lizards. Unpublished
(C. Abdala, Ph.D. Thesis). 24. crust, 352 x 68: Crustaceans and
other arthropods. Giribet et al., 2005. Crustacean Issues 16, 307–52.
25. das, 60 x 85: Dasybasis (Tabanidae). Unpublished (Gonz�alez
et al.). 26. dinos, 276 x 50: Prosauropods. Unpublished (D. Pol,
Ph.D. Thesis). 27. diony, 381 x 145: Dionychan spiders. Unpublished
(M. Ram�ırez). 28. dro, 217 x 159: Drosophilid flies. Grimaldi, 1990.
Bull. Am. Mus. Nat. Hist. 197, 1–139. 29. embia, 186 x 157:
Embiopterans. Unpublished (C. Szumik). 30. entelo, 247 x 55: Entel-
ogyne spiders. Griswold et al., 2005. Proc. Calif. Acad. Sci. 4th Ser.
56, Suppl. II:1–324. 31. erigo, 176 x 82: Erigonid spiders. Miller, J.,
Hormiga, G., 2004. Cladistics 20, 385–442. 32. ethe, 51 x 58: Iguanid
lizards. Etheridge & de Queiroz., 1988. Stanford University Press.
33. fannia, 157 x 83: Muscoid flies (genus Fannia). Unpublished (C.
Dom�ınguez, Ph.D. Thesis). 34. firefly, 100 x 96: Branham, M.A.,
Wenzel, J.W, 2003. Cladistics 19, 1–22. 35. gig_nw, 71 x 66: Genus
Gidantodax (Simuliidae, Diptera). Pinto Sanchez et al., 2005. Insect
Syst. Evol. 36, 219–240. 36. gui_m, 76 x 55: Tingid heteropterans.
Guilbert, E., 2001. Zool. Scr. 30, 313–324. 37. holmorph, 176 x 85:
Holometabolous insects. Whiting, M. et al., 1997. Syst. Biol. 46, 1–
68. 38. hymen, 169 x 77: Hymenopteran families. Ronquist, F. et al.,
1999. Zool. Scr. 28, 13–50. 39. kearney, 162 x 80: Amphisbaenians.
Kearney, M., 2003. Herpet. Monogr. 17, 1–74. 40. liebherr, 206 x
170: Platynine carabids. Liebherr & Zimmerman., 1998. Syst. Ento-
mol. 23, 137–172. 41. lobo3, 45 x 76: Liolaemus lizards. Unpublished
(F. Lobo). 42. lorica, 215 x 128: Loricariid fishes. Armbruster, J.,
2004. Zool. J. Linn. Soc. 141, 1–80. 43. ltbees, 131 x 83: Long-
tongued bees. RoigAlsina, A., Michener, C.D., 1993. Univ. Kansas
Sci. Bull. 55, 123–162. 44. lucena, 119 x 66 Characid fishes, unpub-
lished (Carlos A.S. Lucena, Ph.D. Thesis). 45. lucho3, 139 x 83: Tri-
chomycterus fishes and related genera. Unpublished (Luis Fernandez,
pers. comm.). 46. lycos, 147 x 98: Ctenid spiders and relatives.
Unpublished (an earlier version of Silva–D�avila, D., 2003. Bull. Am.
Mus. Nat. Hist. 274, 1–86). 47. mammals, 319 x 90: Tetrapods. Ruta
et al., 2003. Biol. Rev. 78, 251–345. 48. marcos2, 370 x 91: Characid
fishes. Unpublished (M. Mirande). 49. mischo, 60 x 73: Mischocyt-
tarus wasps. Unpublished (O. Silveira, Ph.D. Thesis). 50. mitt, 159 x
78: Chrysomelid beetles. From Platnick, N., 1989, Cladistics 5, 145–
161. 51. molina, 123 x 73: Leptohyphid mayflies. Unpublished (Moli-
neri, Ph.D. Thesis, an earlier version of Molineri, C., 2006. Syst.
Entomol. 31, 711). 52. morph, 252 x 117: Hexapod orders. Wheeler,
W. et al., 2001. Cladistics 17, 113–169. 53. nixseed, 103 x 49: Seed
plants. Nixon et al., 1994. Ann. Mo. Bot. Gard. 81, 484–533. 54.
norell, 222 x 56: Troodontid dinosaurs. Xu & Norell., 2004. Nature
431, 838–841. 55. nsfmorph, 31 x 51: Polistes wasps. Unpublished
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(Pickett et al.). 56. odonata, 132 x 121: Dragonflies. An enlarged ver-
sion of Rehn, A., 2003. Syst. Entomol. 57. parambly, 132 x 92:
Paramblynotus wasps. Liu, Z. et al. in press, Bull. Am. Mus. Nat.
Hist. 58. pilo, 149 x 113: Pilophorine hemipterans: Schuh, R., 1991.
Cladistics 7, 157–189. 59. po, 95 x 68: Polistine wasps: Arevalo, E.
et al., 2004. BioMed Central Evol. Biol. 4, 8. 60. prendi, 115 x 71:
Scorpion genera: Unpublished (L. Prendini, with duplicates
removed). 61. pulawski, 74 x 135: Species of Tachysphex (Sphecidae).
Unpublished (W. Pulawski, with duplicates removed). 62. realdata,
124 x 90: Vespid wasps. Unpublished (Carpenter et al.). 63. ropa, 95
x 106: Ropalidia wasps. Unpublished (Kojima and Carpenter). 64.
sch, 75 x 76: Phylinae bugs (Hemiptera). Schuh, R., 1984. Bull. Am.
Mus. Nat. Hist. 177, 1–476. 65. tab_m, 96 x 65: Tabanids (Diptera).
Unpublished (Coscar�on and Miranda–Esquivel.). 66. tenu, 262 x 56:
Tenuipalpid mites. QuirozGonzales (Ph.D. Thesis), in Platnick, N.,
1989. Cladistics 5, 145–161. 67. tetrao, 219 x 58: Tetraodontiform
fishes. Santini & Tyler, 1999. Am. Zool. 39, 10. 68. total, 104 x 84:
Nemesiid spiders. Goloboff, P., 1995. Bull. Am. Mus. Nat. Hist.
224, 1–189. 69. virg7, 93 x 75: Lizards (muscles). Unpublished (V.
Abdala). 70. west, 73 x 66: Legumes. Crisp & Weston, 1987. Adv.
Legume Syst., Part 3, R. Bot. Gard. Kew, table 4. 71. Agnolin_2011,
368 x 88: Agnolin, F.L., Novas, F.E., 2011. An. Acad. Bras. Cienc.
83, 117–162. 72. Agnolin_2012, 423 x 103: Agnolin, F.L., Powell,
J.E., Novas, F.E., Kundr�at, M., 2012. Cretac. Res. 1–24. 73.
Andres_2013, 154 x 109: Andres, B.B., Myers, T.S., 2013. Earth
Environ. Sci. Trans. R. Soc. Edinb. 103, 383–398. 74. Apal-
detti_2011, 361 x 54: Apaldetti, C., 2011. PLoS One. 6, 1–19. 75.
Arbo_2009, 48 x 99: Arbo, M., Espert, S., 2009. Taxon 58, 457–467.
76. Averianov_2010, 353 x 62: Averianov, A.O., Krasnolutskii, S.A.,
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