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This report describes the partitioning of the expectation value of the spin-squared operator < bS2 > cor-
responding to an N-electron system in the three-dimensional physical space, according to the Bader and
fuzzy atom approaches. Numerical determinations performed in selected open-shell systems at Hartree–
Fock and density functional theory levels confirm the reliability of the local spins obtained. A comparison
between these results and their counterpart ones arising from the partitioning in the Hilbert space is ana-
lyzed in detail.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

During the last decade there has been a considerable interest in
studying the partitioning of the expectation value of the spin-
squared operator < bS2 > corresponding to an N-electron system.
This interest comes from the ability of the local spins (the one-
and two-center components resulting from the partitioning of
the < bS2 > quantity) to describe useful structural properties. The
one-center local spins allow one to determine the spin state of
an atom or group of atoms in a determined molecule while the
two-center ones provide the description of magnetic interactions
between the atoms which compose the system. Coupling constants
can be calculated with the two-center local spins within the well-
known Heisenberg Hamiltonian model. In early works [1–3] Clark
and Davidson proposed to partition the value < bS2 > by means of
projection operators [4]; this technique and the results that pro-
duces have widely been analyzed and discussed in other reports
[5,6]. An alternative approach has been proposed to perform the
partitioning of the expectation value < bS2 > by means of a direct
procedure [7–9]. Within that approach the quantity < bS2 > is ex-
pressed as a function depending on the elements of the first- and
second-order reduced density matrices and those of the atomic
overlap matrix. In subsequent steps those matrix elements are
gathered according to the nature of the orbitals of the atomic basis
set utilized. Technically, this procedure is similar to the well-
known Mulliken-type population analysis where the partitioning
of a determined property is carried out in the Hilbert space of
the atomic basis set.

The main aim of this work is to complement this kind of studies
extending the mentioned direct partitioning of the < bS2 > quantity
ll rights reserved.
in the Hilbert space to the three-dimensional physical space which,
to our knowledge, has not yet been tackled. The analyses in the real
space have been regarded as more realistic. Hence, it is of theoret-
ical and practical interest to implement this kind of treatments and
to know the reliability of the local spins evaluated in the real space
to describe genuine chemical behaviors. Another reason to imple-
ment this study is to be able to compare results arising from both
types of spaces because, as is well known, the Hilbert-space anal-
yses are strongly dependent on the basis sets and they are not very
suitable when diffuse functions are used. Two different procedures
have been followed in this work for dividing the whole ordinary
physical space into spatial domains associated with atoms; that
corresponding to the Bader atoms-in-molecules (AIM) theory
[10] and the technique of fuzzy atoms [11]. To simplify the math-
ematical treatment, in the present work we have limited our study
to describe local spins in systems represented by one-determinant
wave functions. We have mainly focused on open-shell chemical
species at restricted open-shell Hartree–Fock (ROHF) level; a para-
digmatic system described at unrestricted density functional the-
ory level is also reported.

This Letter has been organized as follows. The second section
describes the derivation of formulas which allow one to evaluate
one- and two-center local spins in domains of the three-dimen-
sional real space at the ROHF level. The procedure has been applied
to the atomic regions of Bader AIM theory and to those defined in
the fuzzy atom approach within a unified treatment. The third sec-
tion reports the computational details and the results found for
some selected open-shell systems as well as their corresponding
discussion and comparison with those obtained from the analysis
in the Hilbert space. A basis-set dependence study in these results
is also included in this section. Finally, in the last section we sum-
marize the concluding remarks and future perspectives of this
work.

http://dx.doi.org/10.1016/j.cplett.2011.01.071
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2. The partitioning of < bS2 > in the three-dimensional space

The elements of the first- and second-order reduced density
matrices corresponding to an N-electron system described by a
determined wave function W will be denoted by 1Dir

jr and 2Dirkr0

jr lr
0 ,

respectively. In this notation i; j; k; l; . . . stand for the orbitals of
an orthonormal basis set and r and r0 are the spin coordinates
ðr;r0 ¼ a; bÞ. The relationship between those matrix elements
can be formulated as [12]

2Dirkr0

jr lr
0 ¼ 1

2
1Dir

jr
1Dkr0

lr
0 � 1

2
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lr
0
1Dkr0

jr þ
1
2

Cirkr0

jr lr
0 ð1Þ

where Cirkr0

jr lr
0 are the elements of the cumulant matrix of the second-

order reduced density matrix (its statistically irreducible part).
The expectation value of the spin-squared operator bS2,

< bS2 >¼< WjbS2jW >, corresponding to the state W, has been ex-
pressed as [8]
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X
i;j

ðPsÞijðP
sÞji �

X
i;j

Cij
ij þ

1
4

X
i;j

ðPsÞiiðP
sÞjj �

1
2

X
i;j

Cij
ji ð2Þ

where ðPsÞij are the elements of the spin density matrix,
ðPsÞij¼1Dia

ja�1Dib

jb , and Cik
jl ¼

P
r;r0C

irkr0

jr lr
0 .

In the case of wave functions of Slater determinant type all the
matrix elements Cirkr0

jr lr
0 are zero (see Eq. (1)) and consequently their

sum Cik
jl also does. Hence, Eq. (2) is transformed into

< bS2 >¼ 1
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X
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or alternatively

< bS2 >¼ 1
2

X
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ðPsÞijðP
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1
4

X
i;j;k;l

ðPsÞijðP
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in which the Kronecker deltas dij; dkl, etc. have been introduced.
We will formulate the Kronecker deltas in a general way as

[13,14]

dij ¼< ijj >¼
X

A

Si
jðAÞ ð5Þ

in which < ijj > are the standard overlap integrals (where the inte-
gration is performed over the whole space) which are partitioned
according to the Si

jðAÞ quantities related with the atomic domains
of the centers A. These quantities can be formulated within the
scheme of the Bader AIM theory [10]

Si
jðAÞ ¼< ijj>A ð6Þ

where < ijj>A are the overlap integrals over the Bader atomic do-
main associated with the nucleus A. Alternatively, the quantities
Si

jðAÞ can also be formulated following the fuzzy atom approach
[11] in which

Si
jðAÞ ¼< ijwAðrÞjj > ð7Þ

where a non-negative continuous weight function wAðrÞ is intro-
duced for each nucleus A. The weight functions provide a measure
of the degree in which a determined point of the space r is consid-
ered to belong to atom A. The weights wAðrÞ fulfill the conditions

wAðrÞP 0 ð8Þ

andX
A

wAðrÞ ¼ 1 ð9Þ

The introduction of the Kronecker deltas in Eq. (4) according to Eq.
(5) allows one to express the < bS2 > quantity as a sum of one-center
< bS2>A and two-center terms < bS2>AB
< bS2 >¼
X

A
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X
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and
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Eqs. (11) and (12) constitute a unified treatment of the three-
dimensional partitionings of the expectation value < bS2 > given
by formula (3), which reproduces the AIM and fuzzy atom ap-
proaches formulating the Si

jðAÞ matrix elements by means of Eqs.
(6) and (7), respectively. They are counterpart of those reported in
Ref. [7] where the partitioning in the Hilbert space was proposed
and are valid for any one-determinant wave function. These formu-
las adopt their simplest expressions in the case of ROHF wave func-
tions described by a high-spin Slater determinant Sz ¼ S; if we use
the Hartree–Fock basis set all the elements ðPsÞij are zero except
the diagonal elements corresponding to the singly occupied (s
occ) orbitals whose value is the unity. Hence, those formulas are
transformed into
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Formulas (13) and (14) constitute the one-center and two-center
components of the partitioning of the < bS2 > quantity at the ROHF
level of theory in the three-dimensional space. In this Letter we
mainly regard this simplest case although some calculations at
unrestricted level have also been tackled.

3. Numerical determinations and discussion

We have gathered in Table 1 the numerical results of local spins
of one- and two-centers (the quantities < bS2>A and < bS2>AB,
respectively) for several systems in the ground state with doublet
and triplet spin symmetries (except the C2ð3Rþg Þ system which is an
excited state). These numerical calculations were performed at the
experimental equilibrium geometries [15–17] at the ROHF level
using the 6-31G basis sets. The overlap integrals Si

jðAÞ calculated
over the domains of the AIM theory were evaluated with the GAUS-

SIAN code [18] except for the C2 molecule in which those integrals
were calculated with the PSI 3.3 [19] and PROAIM [20] packages.
The integrals < ijwAðrÞjj > (see formula (7)) were obtained with a
modified version of the code cited in Ref. [21], which follows a
Becke integration scheme [22] based on the weight function
wAðrÞ proposed by this author. The atomic radii used for determin-
ing the wAðrÞ weights were those employed in previous works
[13,14,23].

Columns 3 and 5 in Table 1 describe the results arising from the
partitioning of the quantity < bS2 > in the three-dimensional space
by means of the AIM and fuzzy atom approaches, respectively.
Moreover, in order to provide a suitable comparison between these
results and those obtained from other procedures, we have also
included (in column 7) the results arising from a partitioning per-
formed in the Hilbert space defined by the atomic orbitals reported
in Ref. [8], which are Mulliken-type population analysis results. In
all the cases (see columns 4, 6 and 8) we report expectation values



Table 1
Local spins of one- and two-centers (< bS2>A and < bS2>AB) arising from ROHF single determinant wave functions and their corresponding < bS2>c

A ¼< bSz>Að< bSz>A þ 1Þ results
using 6-31G basis sets.

System Atom
[Bond]

AIM Fuzzy Hilbert space

< bS2>A < bS2>c
A < bS2>A < bS2>c

A < bS2>A < bS2>c
A

½< bS2>AB� ½< bS2>AB� ½< bS2>AB�

NOð2PÞ N 0.386 0.488 0.379 0.482 0.419 0.513

O 0.060 0.161 0.063 0.165 0.048 0.142
[NO] [0.152] – [0.154] – [0.142] –

CHð2PÞ C 0.709 0.723 0.702 0.718 0.750 0.750

H 0.001 0.014 0.001 0.016 0.000 0.000
[CH] [0.020] – [0.024] – [0.000] –

CH3ð2A002Þ C 0.628 0.667 0.594 0.643 0.750 0.750

H 0.001 0.014 0.001 0.019 0.000 0.000
[CH] [0.019] – [0.025] – [0.000] –
[HH] [0.001] – [0.001] – [0.000] –

H2NOð2B1Þ N 0.040 0.129 0.039 0.127 0.033 0.116

O 0.435 0.526 0.421 0.515 0.468 0.551
H 0.000 0.002 0.000 0.006 0.000 0.000
[NO] [0.132] – [0.128] – [0.124] –
[NH] [0.001] – [0.002] – [0.000] –
[OH] [0.002] – [0.006] – [0.000] –
[HH] [0.000] – [0.000] – [0.000] –

O2ð3R�g Þ O 0.500 0.750 0.500 0.750 0.500 0.750

[OO] [0.500] – [0.500] – [0.500] –

CH2ð3B1Þ C 1.737 1.800 1.680 1.756 1.944 1.958

H 0.002 0.035 0.004 0.044 0.000 0.007
[CH] [0.063] – [0.076] – [0.014] –
[HH] [0.002] – [0.004] – [0.000] –

C2ð3Rþg Þ C 0.500 0.749 0.500 0.750 0.500 0.750

[CC] [0.499] – [0.500] – [0.500] –

HBBHð3R�g Þ B 0.280 0.514 0.478 0.727 0.500 0.750

H 0.006 0.056 0.000 0.011 0.000 0.000
X 0.011 0.078
[BB] [0.280] – [0.478] – [0.500] –
[BH] [0.040] – [0.011] – [0.000] –
[B� � �H] [0.040] – [0.011] – [0.000] –
[HH] [0.006] – [0.000] – [0.000] –
[BX] [0.054]
[B� � �X] [0.054]
[XX] [0.011]
[XH] [0.008]
[X� � �H] [0.008]
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of the canonical spin-squared population < bS2>c
A ¼< bSz>A

ð< bSz>A þ 1Þ corresponding to each atomic center A which are ref-
erence values [24]. Those < bSz>A values have been calculated, in
the cases of partitioning in the three-dimensional space, as

< bSz>A ¼
1
2

X
i

X
j

ðPsÞijS
j
iðAÞ ð15Þ

which arises from the partitioning of the trace of the spin density
matrix according to the procedure described in the previous section.

A survey of the results reported in Table 1 shows that the two
partitionings performed in the three-dimensional space present
similar values of the one-center quantities < bS2>A, although the
AIM approach leads to slightly higher values than the fuzzy atom
procedure, except in the HBBHð3R�g Þmolecule. Likewise, in the sys-
tems studied the one-center values obtained from the partitioning
in the Hilbert space turn out to be a little bit higher than those
found in the three-dimensional spaces at least in the centers where
the presence of unpaired electrons is expected (see e.g. the values
for the oxygen atom < bS2>O, in the H2NOð2B1Þ system). Moreover,
the results show that in all the situations the values found for the
one-center quantities < bS2>A are lower than their corresponding
canonical ones < bS2>c

A which agrees with our previous results
[8]. These differences < bS2>c
A� < bS2>A have been interpreted as

the diminishing of the spin excess on the active centers due to spin
delocalization among the whole molecule [8,24]. In relation with
the two-center quantities < bS2>AB the three partitionings lead to
very similar values, although a greater diffusion of the spin cloud
can be detected in the three-dimensional space partitionings.
Again, the system HBBHð3R�g Þ presents a peculiar behavior regard-
ing the low value found for the < bS2>BB quantity in the AIM proce-
dure when compared with its counterpart values found in the
fuzzy and Hilbert space partitionings. The anomalous values found
for the local spins < bS2>A and < bS2>AB in the HBBHð3R�g Þ system in
the AIM approach must be interpreted in terms of non-nuclear
attractors or pseudoatoms which are local maxima of electron den-
sity out of nuclear positions [10,25–27]. In fact, we have detected
in our calculations the presence of two non-nuclear attractors sym-
metrically situated between the two boron atoms, which have
been denoted as X in Table 1. The existence of these non-nuclear
attractors increases the diffusion of the spin populations leading
to lower values for the quantities < bS2>B and < bS2>BB. As can be
seen in the Table, the fuzzy atom approach in which these devices
do not appear produces values of < bS2>B and < bS2>BB closer to
those found in the Hilbert space partitioning.



Table 3
Local spin results for the fragment Mn2O2 within the compound Mn2O2ðNH3Þ8 arising
from wave functions at DFT level (UB3LYP functional) with basis set 3-21G.

State Atom
[Bond]

Fuzzy Hilbert space

< bS2>A < bS2>c
A < bS2>A < bS2>c

A

½< bS2>AB� ½< bS2>AB�

Sz ¼ 0 Mn 5.492 5.707 6.079 5.831

< bS2 >¼ 4:965 O 0.008 0.000 0.012 0.000

[MnO] [0.034] – [0.034] –
[MnMn] [�3.739] – [�3.947] –
[OO] [0.001] – [0.002] –

Sz ¼ 5 Mn 5.603 5.814 7.576 8.314

< bS2 >¼ 30:075 O 0.004 0.012 0.006 0.013

[MnO] [0.055] – [0.001] –
[MnMn] [3.879] – [6.388] –
[OO] [0.006] – [0.007] –
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The basis-set dependence of the local spin values obtained from
this methodology has been studied in the NO molecule. We have
chosen that system because the incomplete localization of its un-
paired electron is well established in the genuine chemical knowl-
edge of this molecule [1,24]. The results, calculated with several
basis sets at the experimental geometry, have been gathered in
Table 2. As can be seen in that Table the shortest basis set, that
STO-3G, produces the most dispersed values. It leads to lower
< bS2>N values than the other sets while the < bS2>O values are
higher in that mentioned set. Likewise, the two-center values
< bS2>NO are also higher. For the rest of the basis sets, again local
spin values arising from both three-dimensional space partition-
ings are very close. As expected, the major differences between
the numerical values from the different basis sets are found in
the Hilbert space partitioning which agrees with the behavior ob-
served in the classic population analyses performed over other
quantities as the electronic density, the energy, etc. These results
also show that the use of extended basis sets as the 6-31+G (d)
does not change significantly the values of local spins in the
three-dimensional space partitionings.

In Table 3 we report results of local spins for the fragment
Mn2O2 within the coordination complex Mn2O2ðNH3Þ8, which is a
prototype of multicenter transition metal molecule in which anti-
ferromagnetic coupling is of interest. To avoid too high computa-
tional expenses we have limited the description of this system to
the fuzzy and Hilbert space schemes. In this molecule the calcula-
tions have been made at the level of density functional theory
(DFT) by means of the UB3LYP functional with the 3-21G basis
set, using the above mentioned codes. We describe two states of
this molecule; the antiferromagnetically coupled (broken-symme-
try) state with Sz ¼ 0ð< bS2 >¼ 4:965Þ, which corresponds to 5 a d
electrons on one Mn atom and 5 b d electrons on the other one,
and the high spin or ferromagnetically coupled state with 5 a d
electrons localized on each Mn atom ðSz ¼ 5;< bS2 >¼ 30:075Þ.
Table 2
Results of local spins of one- and two-centers (< bS2>A and < bS2>AB) arising from ROHF sing
in the NO molecule, using several basis sets.

Basis set Atom
[Bond]

AIM

< bS2>A < bS2>c
A

½< bS2>AB�

STO-3G N 0.324 0.436
O 0.088 0.201
[NO] [0.169] –

3-21G N 0.371 0.476
O 0.066 0.170
[NO] [0.156] –

6-31G N 0.386 0.488
O 0.060 0.161
[NO] [0.151] –

D95V N 0.382 0.484
O 0.062 0.164
[NO] [0.153] –

cc-pVDZ N 0.376 0.480
O 0.064 0.167
[NO] [0.155] –

6-31G (d) N 0.380 0.482
O 0.062 0.165
[NO] [0.154] –

D95V (d) N 0.378 0.481
O 0.063 0.166
[NO] [0.154] –

6-31+G (d) N 0.381 0.484
O 0.062 0.164
[NO] [0.153] –
For all the calculations the used geometry was that optimized with
the high spin state within the D2h symmetry. The numerical values
reported in that Table indicate that the state Sz ¼ 0 presents a sim-
ilar behavior to that found in the simpler molecules described in
Table 1, i.e. the values < bS2>Mn and < bS2>MnMn are a little lower
(in absolute value) in the fuzzy atom procedure. This behavior is
confirmed in the values found in high spin state, particularly for
the < bS2>MnMn quantity, which is considerably higher in the Hilbert
space treatment. In both broken-symmetry and high spin states,
the canonical values are closer to their corresponding < bS2>Mn in
the fuzzy atom approach which may be interpreted as a better esti-
mation of the spin localization in that approach than in the Hilbert
space treatment. It can also be pointed out that both Hilbert space
and fuzzy atom approaches identify through the sign of the
< bS2>MnMn quantity the broken-symmetry state. The comparison
between the results found for both states shows higher values
le determinant wave functions and their corresponding < bS2>c
A ¼< bSz>Að< bSz>A þ 1Þ

Fuzzy Hilbert space

< bS2>A < bS2>c
A < bS2>A < bS2>c

A

½< bS2>AB� ½< bS2>AB�

0.327 0.439 0.342 0.452
0.087 0.200 0.079 0.189
[0.168] – [0.164] –

0.365 0.471 0.395 0.494
0.068 0.174 0.057 0.156
[0.158] – [0.149] –

0.379 0.482 0.419 0.513
0.063 0.165 0.048 0.142
[0.154] – [0.142] –

0.375 0.479 0.418 0.513
0.064 0.168 0.048 0.143
[0.155] – [0.142] –

0.372 0.477 0.411 0.507
0.065 0.169 0.051 0.147
[0.156] – [0.144] –

0.377 0.480 0.416 0.511
0.064 0.167 0.049 0.144
[0.154] – [0.143] –

0.377 0.480 0.420 0.514
0.064 0.167 0.047 0.141
[0.155] – [0.141] –

0.380 0.481 0.427 0.520
0.063 0.166 0.045 0.138
[0.154] – [0.139] –
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for the high spin state which is reasonable in a chemical point of
view. It may also be noted high delocalization of spin density to-
wards the NH3 ligands mainly in that Sz ¼ 5 state.

4. Concluding remarks and perspectives

In this report we have proposed the evaluation of local spins by
means of partitionings in the three-dimensional space of the
expectation value < bS2 > corresponding to an N-electron system
described by a single determinant wave function. Two approaches
have been utilized, that derived from the use of spatial domains of
the AIM theory and that arisen from the fuzzy atom method. Both
procedures have been formulated within a unique mathematical
framework, which turns out to be very useful for computational
purposes. The results show the reliability of the three-dimensional
partitioning for detecting local spins in good agreement with the
genuine chemical knowledge and with the partitioning in the Hil-
bert space. No significant differences have been found in the re-
sults obtained from the two three-dimensional partitionings
although the presence of non-nuclear attractors in the AIM theory
hampers the interpretation of results in this method. The study on
the basis-set dependence performed in the NO molecule reveals a
slight lower dependence of the results arising from the three-
dimensional space compared with those from the Hilbert space,
at least for medium size basis sets. The next challenge is to go be-
yond the single determinant case, extending these treatments in
the real space to a general wave function. This task is currently
being carried out in our laboratories.
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