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a b s t r a c t

This work aims to demonstrate the applicability of dynamic optimization to improve the time-tempera-
ture schedule of a brewery mashing process, based on kinetic models available in the literature. The
mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This
is a fundamental step within the brewery activity since the composition of the mashing wort determines
the quality of the final product. The main reactions that take place in the mashing are the degradation of
starch, b-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates.
The manipulation of the temperature profile of the batch reactor is the main mechanism to control the
extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter
but also increases the concentration of undesirable species in the wort, the choice of an adequate tem-
perature profile is not obvious. Dynamic optimization studies with a complete mashing model demon-
strate that profiles of ‘‘temperature averages” of about 51 �C are preferred over typical industrial
mashings of 64 �C to optimize the operation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Mashing is a key step in the beer production process. During
mashing, the enzymatic degradation of the polysaccharides pres-
ent in the malt takes place. Fermentable carbohydrates are pro-
duced from the degradation of the polysaccharide starch. Such
carbohydrates are converted into alcohol in the fermentation step
of the beer manufacturing. Non-starch polysaccharides b-glucans
and arabinoxylans also degrade during mashing into smaller chain
carbohydrates.

The most important reaction in the mashing process is the
enzymatic hydrolysis of the gelatinized starch since it determines
the produced amount of fermentable carbohydrates and therefore
the alcoholic content of the final product. Therefore, a natural
objective of the mashing operation is to maximize the production
of such fermentable matter. However, non-fermentable carbohy-
drates as limit dextrins are produced in the starch hydrolysis
whose concentration in the mashing product affects the organolep-
tic properties of the beer. Therefore it is also necessary to keep the
concentration of such intermediates at adequate levels to ensure
product quality.

Moreover, high concentrations of non-starch polysaccharides as
b-glucans and arabinoxylans in the mashing product are known to
ll rights reserved.
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cause processing problems in breweries such as low extract yields,
poor filterability, hazes and gels formation. For this reason the
minimization of such compounds in the mashing product is re-
quired to prevent negative downstream impact.

Different enzymes catalyze all the involved reactions. Since
the activity of the different enzymes is highly dependent on
temperature, the manipulation of such variable is the main control
mechanism to reconcile the above described multiple, often
conflicting, objectives of the mashing process. As the temperature
rises, the reaction rates increase steeply but the enzymes are
denatured faster (Hardwick, 1995; Hough, 1990). Typically,
mashing is performed in a batch reactor and the imposed mashing
temperature profile is a succession of increasing temperature rests
designed to cover the activity temperature range of each enzyme.

Due to the importance of the brewer industry, the mashing pro-
cess has been extensively studied from a modeling point of view in
the last years. Kinetic models have been developed for the hydro-
lysis of starch and the degradation of b-glucans and arabinoxylans
(Brandam, Meyer, Proth, Strehaiano, & Pingaud, 2003; Kettunen,
Hamalainen, Stenholm, & Pietila, 1996; Koljonen, Hamalainen,
Sjoholm, & Pietila, 1995; Li, Lu, Gu, Shi, & Mao, 2004; Marc,
Engasser, Moll, & Flayeux, 1983). Moreover, studies on the effect
of the different mashing parameters (temperature program, mash
thickness, coarseness of grist and stirring) on the b-glucans and
arabinoxylans degradation have been carried out for control pur-
poses (Home, Pietila, & Sjoholm, 1993; Li, Yu, & Gu, 2005).

However, according to the authors’ knowledge, no dynamic
optimization studies with control purposes have been performed
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Nomenclature

ag activity of a-amylase in grist (U/L)
ag activity of a-amylase in liquid phase (U/L)
bg activity of b-amylase in grist (U/L)
b activity of b-amylase in liquid phase (U/L)
xstarch concentration of starch in liquid phase (g/L)
xdex concentration of dextrins in liquid phase (g/L)
xgl concentration of glucose in liquid phase (g/L)
xmal concentration of maltose in liquid phase (g/L)
xmlt concentration of maltotriose in liquid phase (g/L)
xldex concentration of limit dextrins in liquid phase (g/L)
Ag

dex arrhenius temperature dependence function for dext-
rins production from starch (L/min/g)

Ag
mlt arrhenius temperature dependence function for malto-

triose production from starch (L/min/g)
Bgl arrhenius temperature dependence function for glycose

production by b-amylase (L/min/g)
Bmal arrhenius temperature dependence function for maltose

production by b-amylase (L/min/g)
Bldex arrhenius temperature dependence function for limit

dextrins production by b-amylase (L/min/g)
ka arrhenius temperature dependence function for a-amy-

lase denaturation (min�1)

kb arrhenius temperature dependence function for b-amy-
lase denaturation (min�1)

bg activity of b-glucanase in grist (U/L)
bw activity of b-glucanase in liquid phase (U/L)
gg concentration of glucans in grist (g/L)
gw concentration of glucans in liquid phase (g/L)
sg concentration of insoluble glucans in grist (g/L)
kw arrhenius temperature dependence function for b-glu-

canase denaturation (min�1)
aw arrhenius temperature dependence function for b-glu-

cans degradation (L/U min)
xg activity of endo-xylanase in grist (U/L)
xw activity of endo-xylanase in liquid phase (U/L)
cg concentration of arabinoxylans in grist (g/L)
cw concentration of arabinoxylans in liquid phase (g/L)
sc

g concentration of insoluble arabinoxylans in grist (g/L)

kx
w arrhenius temperature dependence function for endo-

xylanase denaturation (min�1)
ac

w arrhenius temperature dependence function for arabin-
oxylans degradation (L/U min)
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so far for the complete reaction system of the mashing process
(hydrolysis of starch and degradation of b-glucans and arabinoxy-
lans). It is the objective of this contribution to integrate in a single
model the dynamics of the main mashing reactions and to perform
a dynamic optimization study aimed to identify optimal tempera-
ture programs to enhance the overall mashing operation.
2. Materials and methods

In this section, the mashing model used in this work, which
considers the starch, glucans and arabinoxylans degradation, is
presented, together with an overview on dynamic optimization
strategies and tools.

2.1. Mashing model

The schematic representation of the main reactions that take
place in the mashing process is shown in Fig. 1, namely the hydro-
lysis of starch and the enzymatic degradation of b-glucans and ara-
binoxylans. In the following the kinetic model of each reaction is
described and the full model presented in the Appendix section
of the paper.

2.1.1. Starch hydrolysis
The adopted model for the hydrolysis of the starch is the one

proposed in Koljonen et al. (1995). These authors developed the
starch hydrolysis model using Finnish barley varities as Kymppi,
Ingrid and Kustaa. According to this model, solid starch grains un-
dergo a transition into a gelatinized state, which is hydrolyzed by
the action of dissolved a-amylase. The hydrolysis products are
maltotriose and dextrins. Dextrins are converted into sugars
(glucose, maltose) and ‘‘limit dextrins” by the action of dissolved
b-amylase. Limit dextrins are considered not to be further hydroly-
sable. The enzymes, a-amylase and b-amylase, undergo tempera-
ture deactivation. Saccharose and fructose are not included in the
model since their concentration in wort is insignificant. The kinet-
ics of the described process together with data and definitions are
provided in Appendix A.
2.1.2. Glucan hydrolysis
The model used for the hydrolysis of b-glucans was developed

by Kettunen et al. (1996) from the same Finnish barley varities
used by Koljonen et al. (1995) in the starch hydrolysis modeling.
During mashing b-glucans are extracted from the grist to the liquid
phase. This process is favored by temperature. Dissolved b-glucans
are converted into shorter b-oligosaccharides by the action of b-
glucanases, which suffer temperature deactivation. The corre-
sponding equations and data are presented in Appendix B.

2.1.3. Arabinoxylans degradation
The model for the degradation of arabinoxylans was taken from

Li et al. (2004). These authors utilized different commercial malts
in the model development: Harrington from Canada, Kendall and
Schooner from Australia and KA4B from China. The arabinoxylans
present in the grist dissolve and undergo a degradation into oli-
go-b-xylosides by the action of the endo-xylanase enzyme. Tem-
perature favors the solubilization of the arabinoxylans as well as
the denaturalization of the endo-xylanase. Equations and data
are provided in Appendix C.

2.2. Overview on dynamic optimization

The problem considered in this contribution can be stated as
follows (Biegler, 2007):

min
zðtÞ;uðtÞ;p

uðzðtÞ;uðtÞ;pÞ ðaÞ

s:t:
dzðtÞ

dt
¼ fðzðtÞ; yðtÞ;uðtÞ;pÞ; zðt0Þ ¼ z0 ðbÞ

gðzðtÞ; yðtÞ;uðtÞ;pÞ ¼ 0 ðcÞ
gf ðzðtÞÞ ¼ 0 ðdÞ
uL 6 uðtÞ 6 uU

yL 6 yðtÞ 6 yU ðeÞ
zL 6 zðtÞ 6 zU

ð1Þ

The optimization variables in problem (1) are the differential state
variables z(t), the algebraic variables y(t), and the control variables,
u(t), all functions of the scalar time parameter t e [t0, tf], along with



Fig. 1. Schematic representation of mashing enzymatic reactions.
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the time independent parameters p. The objective is to optimize
some performance index (1a), which is a function of the involved
variables, subject to the differential algebraic system of equations
(DAE) (1b–d) and to appropriate constraints on the variables (1e).

There exist a number of approaches to address problem (1),
which can be broadly classified in sequential and simultaneous
strategies.

In the sequential approach, also known as control vector param-
eterization, the control variables are represented as piecewise poly-
nomials and optimization is performed with respect to the
polynomial coefficients. The optimization parameters are driven
by a Nonlinear Programming solver (NLP) while the DAE system
is solved in each iteration within an inner loop. Sequential strate-
gies are relatively easy to implement but the solution of the DAE
system in each iteration use to be computationally expensive for
large scale models.

In the simultaneous approach, also referred as direct transcrip-
tion, both the state and the control profiles are discretized in time
through collocation of finite elements. Such an approach leads to a
large scale NLP problem which requires efficient solution algo-
rithms. The simultaneous approach is usually faster than the
sequential counterpart and present more flexibility in handling
path inequality constraints and dealing with unstable and ill-con-
ditioned problems. A comprehensive description of the dynamic
optimization theory is beyond the scope of this contribution. The
interested reader is referred for example to Biegler (2007) and ref-
erences therein.

For the purposes of this study, the dynamic optimization exper-
iments were performed with two different tools within the
sequential approach.

One of the explored tools was the gProms platform (gProms
User gPROMS User Guide, 2004), which provides a friendly inter-
face to write dynamic models and linkage with efficient large scale
deterministic NLP solvers. In particular, the platform makes use of
a Sequential Quadratic Programming (SQP) solver and automatic
differentiation routines. gProms implements a backward difference
formula for the integration of the dynamic system of equations. It
should be noted that the solutions obtained by gProms are local in
nature since the SQP algorithm is a local NLP solver. In other words,
the obtained solutions will depend on the starting point of the
optimization and, therefore, will be not necessarily global.

Dynamic optimization studies were also performed using a glo-
bal optimization tool, namely a stochastic NLP solver based on the
Particle Swarm Optimization (PSO) strategy. The PSO is a stochastic
algorithm that tries to imitate the gregarious behavior of the
movement of some biological species, such as birds and fishes
(Eberhart & Kennedy, 1995; Pan, Wang, & Liu, 2006). As well as
the genetic algorithm, the PSO explores the space solution of the
problem through the systematic evolution of a population of solu-
tions (states) randomly generated, however the PSO presents a
simpler evolutionary structure and it uses a smaller number of
control parameters, what results in an efficient, robust and easy
implementation algorithm. In this work, PSO algorithm was imple-
mented in Fortran 90 language. The mashing model was integrated
by fifth-order Runge–Kutta method through rkqs subroutine
(Press, Teukolsky, Vetterling, & Flannery, 1992).

It should be stressed at this point that the validity of any com-
putational study highly depends on the quality of the underlying
model. The three adopted models were validated in laboratory
and industrial scale mashing operations. The parameters of the ki-
netic equations were calculated with typical parameter identifica-
tion techniques from sets of experimental data of mashings of
specific industrial malts. Additionally, the models are phenomeno-
logical ones, with good extrapolation properties.

There exist alternative models other than those used in the
present contribution to represent specific aspects of the mashing
process (Brandam et al., 2003; Marc et al., 1983). For a specific
application, the most appropriate model that describes the partic-
ular operations, as well as the specific types of malt, should be
adopted. However, the applicability of dynamic optimization as a
general framework to design control strategies for the mashing
process remains valid.
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3. Experimental

This section presents in the first place, results obtained by sim-
ulation of isothermal mashings to qualitatively assess the effect of
temperature on the process. Then, the results of the dynamic opti-
mization experiments considering the minimization of starch, limit
dextrins, glucan and arabinoxylan concentrations are presented
and discussed. Finally, results from additional experiments includ-
ing the minimization of the batch time and with end point con-
straints on glucan and arabinoxylan concentrations are also
presented.

3.1. Simulation studies

In order to qualitatively unravel the behavior of the different
reactions taking place in the mashing process as a function of
Fig. 2. Final concentrations of starch, dextrins and maltotriose and fin

Fig. 3. Final concentrations of fermenta
temperature, isothermal mashings of fixed duration time
(115 min) were simulated for temperatures between 42 and
82 �C (315 and 355 K). For each simulation, the final concentration
of each compound in the mashing product is reported in Figs. 2–5.

From Fig. 2 it can be observed that the final concentration of
starch is minimal for the 67 �C (340 K) mashing, coinciding with
the minimal temperature at which all the starch is gelatinized. At
temperatures higher than 63 �C (336 K), starch concentration de-
creases linearly due to the starch gelatinization behavior also be
linear, that is, it can be seen from Fig. 2 that the starch gelatiniza-
tion is the limiting step until 63 �C. The largest concentration of
maltotriose also occur at the 67 �C mashing although the final
activity of a-amylase is significantly reduced at this temperature.
In this case, maltotriose concentration is limited by the gelatinized
starch concentration and not by the low a-amylase activity. At
temperatures higher than 63 �C, the a-amylase activity decreases
al activities of a-amylase and b-amylase for isothermal mashings.

ble sugars for isothermal mashings.



Fig. 4. Final concentrations of glucanes and final activity of b-glucanase for isothermal mashings.

Fig. 5. Final concentrations of arabinoxylans and final activity of endo-xylanase for isothermal mashings.
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but there is more available starch, supporting the maltotriose pro-
duction. Dextrins undergo complete decomposition in glucose,
maltose and limit dextrins at 67 �C even when the final activity
of b-amylase is also small.

In Fig. 3 the final concentrations of the fermentable sugars mal-
totriose, glucose, maltose and limit dextrins are reported together
with the summation of the individual concentrations (fermenta-
bles). It can be observed that a maximum amount of fermentable
sugar is also reached in the mashing at 67 �C, confirming the rele-
vance of the starch gelatinization step.

From the above observations it can be concluded that mashings
operated at temperatures close to 67 �C favor the production of fer-
mentable matter which is a desirable objective of the beer produc-
tion process.
In Fig. 4 the behavior of b-glucans is shown for the studied
isothermal mashings. The dissolution of b-glucans from the grist
is favored with temperature. Low concentrations of dissolved
b-glucans are observed at low temperatures (<48 �C, 321 K) when
final b-glucanase activity is large and b-glucans are degraded in a
large extent to b-oligosaccharides. At higher temperatures b-glu-
canase activity significantly decreases and quickly become inactive
with the consequent increase of b-glucans concentration in the
liquid phase.

A similar behavior is observed for the arabinoxylans in Fig. 5.
The dissolution of arabinoxylans from the grist increases with tem-
perature while its degradation into small oligo-b-xylosides occur at
temperatures lower than 62 �C when endo-xylanase still shows
significant activity.



Table 2
Dynamic optimization results using gProms.
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From the above it results that in order to keep b-glucans and
arabinoxylans at low concentrations in the final product it is con-
venient to operate the mashing at low temperatures, say less than
47 �C. This result is in conflict with the high temperatures required
to optimize the hydrolysis of the starch, showing the multiple
objective nature of the mashing control problem.

In the following section dynamic optimization studies are per-
formed to investigate the effect of the temperature profile on the
conflicting performance objectives of the mashing process.

3.2. Dynamic optimization studies

In order to analyze the performance of the mashing regarding
the imposed temperature profile, several dynamic optimization
studies have been carried out.

For comparison with current industrial practices, a typical ‘‘heu-
ristic mashing” is considered as benchmark. Heuristic mashings are
typically driven by four rests temperature profiles of similar dura-
tion (Koljonen et al., 1995). The adopted realization is detailed in
Table 1 and the corresponding simulation profiles shown in Fig. 6.

In the following the major assumptions considered in the dy-
namic optimization studies are summarized.

In all the cases the total mashing duration was fixed in 115 min.
The number of isothermal rests were also imposed. Experiences
with three, four and five rests were performed. The adopted opti-
mization variables were the temperatures and durations of each
rest. Rest duration was constrained to be greater or equal than
10 min to avoid unreasonably short rests.
Table 1
Dynamic optimization results.

T (�C) Duration (min)

Heuristic mashing
Rest 1 50.00 30.00
Rest 2 63.00 35.00
Rest 3 72.00 35.00
Rest 4 80.00 15.00
Average temperature (�C) 64.56
Objective function 3.49
Fermentable sugar concentration (g/L) 93.71

Fig. 6. Temperature and concentrations of starch, limit dextrins, dex
As optimization function to be minimized it was adopted the
summation of the concentration of all present polysaccharides
(starch, dextrins, b-glucans and arabinoxylans). Such performance
index naturally reconciles the different objectives of the mashing
process: the maximization of the final concentration of ferment-
able sugars due to the degradation of gelatinized starch and the
minimization of the final concentration of dissolved b-glucans
and arabinoxylans in the mashing.

Therefore, the dynamic optimization problem for the mashing
process can be stated as:

min
F ¼ cw þ gw þ xstarch þ xdext

s:t:
dy
dt
¼ f ðt; yðtÞ;uðtÞ;pÞ; yðt0Þ ¼ y0

pL 6 p 6 pU

ð2Þ

where y is the state variables array and p is the parameter array
with the rest temperatures and duration.

An average, defined as the summation of the rest temperature
times the rest duration divided by the total mashing time
(115 min), is also reported to provide an insight on the tempera-
ture level of each experience.
trins and fermentable sugar profiles for the heuristic mashing.

Optimization 1 Optimization 2 Optimization 3

T (�C) Duration
(min)

T (�C) Duration
(min)

T (�C) Duration
(min)

Rest 1 45.02 78.18 44.32 58.64 44.79 72.95
Rest 2 59.86 16.10 50.69 23.65 56.28 11.92
Rest 3 71.37 20.72 61.33 12.71 61.42 10.00
Rest 4 – – 71.53 19.99 71.15 13.38
Rest 5 – – – – 73.38 6.74
Average temperature (�C) 51.84 52.24 52.17
Objective function 2.01 2.00 1.96
Fermentable sugar

concentration (g/L)
95.65 94.80 94.43

CPU time (s)a 8.01 10.8 9.11

a Pentium 945 (1 GB ram).
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Results for the three optimizations using gProms are summa-
rized in Table 2 (Optimizations 1, 2 and 3). The profiles of the main
variables are shown in Figs. 7–9.

From comparison of the ‘‘Heuristic” (Table 1) and ‘‘Optimized”
cases using gProms (Table 2) it can be observed that the objective
function significantly improves in the optimized cases. A decrease
in the final polysaccharides concentration of about 42% is achieved
by optimizing the temperature profile. Moreover, an increase in the
concentration of fermentable sugars of about 1.3% is also observed.

This rough comparison suggests that the manipulation of the
temperature profile effectively helps in the production of fermen-
tables from starch and on the control of the non-starch polysaccha-
rides concentration in the mashing product.

The main difference between the heuristic profile and the corre-
sponding ‘‘four-step” optimized (Optimization 2) is the duration of
Fig. 7. Temperature and concentrations of starch, limit dextrins, dextrins and fer

Fig. 8. Temperature and concentrations of starch, limit dextrins, dextrins and fe
the first ‘‘low temperature” rest. The first rest of the heuristic
mashing covers about 26% of the whole mashing time, while for
the optimized four-step mashing it lasts about 50% of the batch.
In fact, an interesting feature of all the optimized profiles obtained
with gProms is that the first rest is large in comparison with the
others, taking between 50% and 68% of the whole mashing time.

Another difference between the heuristic and the optimized
four rests profile (Table 2, Optimization 2) is that the average tem-
perature level for each rest is lower in the optimized mashing.
Moreover, all the optimized mashings are driven at a significantly
lower temperature average than the heuristic mashing. This is the
result of the fact that the temperature levels in the optimized cases
are lower than in the heuristic case and also due to the fact that the
first ‘‘low temperature rest” dominates the optimized mashings as
described above.
mentable sugar profiles for the three rest mashing optimized with gProms.

rmentable sugar profiles for the four rest mashing optimized with gProms.



Fig. 9. Temperature and concentrations of starch, limit dextrins, dextrins and fermentable sugar profiles for the five rest mashing optimized with gProms.

Table 3
Dynamic optimization results using PSO.

Optimization 4 Optimization 5 Optimization 6

T (�C) Duration
(min)

T (�C) Duration
(min)

T (�C) Duration
(min)

Rest 1 47.37 34.91 41.83 20.14 42.85 28.82
Rest 2 44.10 33.03 44.54 31.29 45.20 20.73
Rest 3 62.83 47.05 46.97 34.48 46.62 19.31
Rest 4 – – 63.63 29.09 49.48 16.63
Rest 5 – – – – 63.57 29.39
Temperature average (�C) 51.43 49.24 49.54
Objective function 4.56 1.39 1.39
Fermentable sugar

concentration (g/L)
92.55 97.17 95.78

CPU time (s)a 201.56 145.61 184.73

a Pentium 4 CPU 3 GHz (488 MB ram).
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From Table 2 it can be also observed that the objective function
improves with the number of isothermal rests, and therefore with
their level and duration. However, the differences between the
absolute values of the objective function for the three studies is
negligible.

Results for the three optimizations using the PSO algorithm are
summarized in Table 3 (Optimizations 4, 5 and 6). The profiles of
the main variables are shown in Figs. 10–12.

The results for the optimized cases with the PSO algorithm
show a large improvement in both objective function and concen-
tration of fermentable matter for the four and five rests experi-
ments. In average (Optimizations 5 and 6) a decrease of about
60% is achieved in the total polysaccharides concentration and an
increase of 2.95% in the corresponding to fermentable sugars.
Again it is confirmed that the adequate manipulation of the tem-
perature profile positively impacts the performance of the mashing
process.

It can be also observed that optimized mashings 5 and 6 are dri-
ven at a significant lower average temperature than in the heuristic
case. Such low temperature average is the result of the fact that
while all rests have similar durations, the first rests are conducted
at rather low temperatures and only the last rest shows a relatively
high temperature level. In other words, there is a significant differ-
ence (18.36 �C) between the average temperature level of the first
rests (45 �C) and the temperature level of the last rest (63.5 �C) in
those optimized cases.

For the three rests experience however, the PSO strategy con-
verges to a rather poor solution since better controls are known
to exist (e.g. the heuristic case of Table 1 and Optimization 1 of
Table 2). This result is attributed to the fact that the fitness land-
scape corresponding to the three rests control probably present
very narrow valleys which are hard to identify with the adopted
parameters for the PSO strategy. Since the tuning of the parameters
of stochastic algorithms is quite problem dependant, better results
are expected with an ad hoc parameterization for the three rests
case. Such analysis is beyond the scope of the present study, which
intends to show the general performance of state of the art
dynamic optimization approaches on the mashing process.

In the following some general conclusions are summarized.
From inspection of the average temperature in all analyzed

cases (Tables 1–3) it is observed that the process is carried out at
an average temperature always between 48 �C and 67 �C. Such re-
sult is in agreement with the observations withdrawn from the iso-
thermal simulations of Section 2, where it was shown that such
intermediate temperatures reconcile some of the conflicting objec-
tives of the mashing process.

It can be also noticed that, in order to optimize the performance
of the mashing process, the batch should be operated at rather low
‘‘temperature averages” (close to the 48 �C bound). A representa-
tive figure for such parameter in all the optimized cases (Tables
2 and 3) is 51 �C, while the corresponding to the heuristic case is
64.41 �C.

Low temperature averages were achieved in the experiences of
Table 2 with a long first low temperature rest followed by rather
short high temperature rests, while in the experiences of Table 3
such low averages were achieved by similar duration low and
moderate temperature rests.

The global solutions obtained using the PSO technique (Table 3)
outperforms those using the local solver (Table 2) as expected. It
can be concluded from those experiences that the average temper-
ature is closer in all cases to the lower bound of 48 �C in the PSO
optimizations (50 �C) than those obtained with the gProms optimi-
zations (51.93 �C).

Regarding computation effort, it can be concluded from the CPU
time reported in Tables 2 and 3 that the gProms implementation is



Fig. 11. Temperature and concentrations of starch, limit dextrins, dextrins and fermentable sugar profiles for the four rest mashing optimized with PSO algorithm.

Fig. 10. Temperature and concentrations of starch, limit dextrins, dextrins and fermentable sugar profiles for the three rest mashing optimized with PSO algorithm.
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more efficient than the PSO algorithm. This is a direct consequence
of the use of gradient information along the search, but at the ex-
pense of a high probability of getting trapped in local optima. The
PSO implementation on the other hand, present a lower perfor-
mance regarding computation time due to the parallel exploration
of the search space, but shows better convergence properties to
global solutions as discussed above.

3.3. Additional experiments

In the previous section several experiments were presented in
order to show how dynamic optimization studies could be used
to improve the control of the mashing process. The adopted crite-
rion was to minimize the final concentration of the polysaccha-
rides present in the wort after a given batch time by applying
several temperature rests of increasing values. The motivation of
such an approach was to resemble typical industrial practice as re-
ported in the literature and also to make easy a comparison be-
tween the obtained results and those previously published.

However, it should be noted that depending on the specific sys-
tem, other process performance measures and quality constraints
might be relevant. In fact, the selection of an objective function
to evaluate process performance is to some extent subjective since
most process systems are in general of ‘‘multiple objective” nature.

In this section, additional experiments are reported in order to
study other possible requirements for the mashing process. Specif-
ically, end point constraints for glucans and arabinoxilans are con-
sidered in Section 3.3.1 and the minimization of the batch time as
an alternative process performance index is addressed in Section
3.3.2.



Fig. 12. Temperature and concentrations of starch, limit dextrins, dextrins and fermentable sugar profiles for the five rest mashing optimized with PSO algorithm.
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3.3.1. End point constraints
The presence of b-glucans and arabinoxilans in the wort has

been reported to be detrimental for downstream operations (Home
et al., 1993; Sadosky & Horsley, 2002). Concerning the arabinoxi-
lans final concentration, Li et al. (2005) pointed out the minimal
possible concentration of the arabinoxilans in the wort the better
for downstream process performance. However, there is still some
debate on the subject since for some beers there may be a prefer-
able ‘‘non-minimal” concentration of such compounds in the final
wort provided non-occurrence of problems in lautering and
filtration.

The inclusion of additional constraints is straightforward within
the proposed dynamic optimization framework. If convenient lev-
els on final concentrations of b-glucans and arabinoxilans can be
identified, they can be easily included within the formulation as
end point constraints in problem (2).
Fig. 13. Objective function value v
A series of experiences were conducted in order to minimize the
final concentration of polysaccharides in the wort but imposing
end point constraints on the final concentrations of the different
non-starch polysaccharides. In all cases a four-step temperature
profile was adopted. In the following figures the final concentra-
tion of polysaccharides and the average temperature of the mash-
ing (first and secondary Y-axes, respectively) are plotted against the
imposed end point constraint.

In a first set of experiences the final concentration of b-glucans
was imposed in specific values and the concentration of arabinox-
ilans was set free to evolve without constraints. The results are
shown in Fig. 13 where the objective function value is plotted as
a function of the imposed end point constraint with particular val-
ues between 0.15 and 0.48 g/lt (square dot). It can be observed that
the optimum objective function corresponds to an intermediate le-
vel of b-glucans concentration (about 0.26 g/lt). Smaller and larger
s. final glucan concentration.
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values for b-glucans final concentrations other than this intermedi-
ate level can be achieved only at the expense of increased objective
function values. For comparison purposes, it is also shown in
Fig. 13 the situation of the heuristic mashing which is far from
the optimal operation point.

The temperature average for each experience is also indicated in
Fig. 13 (diamond dot). The temperature average shows an
increasing trend with the value of the end point constraint. This
behavior suggests that in order to achieve large final concentra-
tions of b-glucans in the wort, relatively high temperature rests
should be favored. This is in agreement with the fact that ‘‘low
average temperature mashings” are required to minimize the total
polysaccharides concentration as concluded in the previous
section.

A similar behavior can be appreciated from the second set of
experiences where the final concentration of arabinoxilans was
Fig. 14. Objective function value vs. fi

Fig. 15. Objective function value vs. final g
constrained to certain values between 0.9 and 1.4 g/lt and the cor-
responding to b-glucans allowed evolving without restrictions
(Fig. 14). Again the optimal value of the objective function (square
dots) corresponds to an intermediate level of arabinoxilans con-
centration (about 1.15 g/lt). As for b-glucans, other specifications
than this intermediate value on the arabinoxilans can be achieved
only at the expense of a worse objective function value. The tem-
perature average of the mashing profiles (diamond dots) also
shows a similar trend than in the pervious case. In order to achieve
larger concentrations of arabinoxilans in the wort higher tempera-
ture average profiles should be adopted.

Finally, a third set of experiences was conducted imposing an
end point constraint on the sum of the final concentrations of b-
glucans and arabinoxilans. The results for a range between 1.1
and 2.4 g/lt are shown in Fig. 15. As in the previous experiences,
the optimal value corresponds to an intermediate figure (about
nal arabinoxilans concentration.

lucans + arabinoxilans concentration.



Fig. 16. Batch time vs. final concentration of fermentable material.
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1.4 g/lt). Other end point concentration values than this optimal le-
vel are detrimental for the adopted objective function. There is also
a clear correlation between the mashing temperature average and
the imposed end point constraint: as in the previous cases, larger
concentrations of the sum of b-glucans and arabinoxilans require
higher average temperate profiles.

The behavior observed clearly shows the multiple objective nat-
ure of the problem under study where one objective can be im-
proved only at the expense of the others.

3.3.2. Minimization of the batch time
While the final concentration of the fermentable polysaccha-

rides is indeed a sound objective for the mashing process, another
typical performance index for batch processes is the batch time to
be minimized. In order to demonstrate the tradeoff between both
objectives, additional experiments were conducted by minimizing
the batch time for specific final concentrations of fermentable
material in the wort. A four-step temperature profile was adopted
in all cases.

The results are reported in Fig. 16 where the optimum mashing
time is plotted against the imposed final concentration of ferment-
able polysaccharides (square dot). The corresponding average tem-
perature is also plotted as a secondary Y-axe (diamond dot).

As expected, the lower the final concentration of fermentable
material imposed, the larger the minimum batch time required
to accomplish the constraint. The relation presents a rather linear
trend in the studied range (1.2–2.3 g/lt). Regarding the tempera-
ture profile, in accordance with the results presented in Section
3.2, low average temperature profiles favor low final concentration
of fermentable polysaccharides in the wort.

In this case, it can be also observed the typical behavior of mul-
tiple objective systems where one objective can be improved only
at the expense of the others.

4. Conclusions and future work

In this contribution the mashing process was addressed from a
dynamic optimization approach. Since high temperatures favor
starch decomposition (and therefore fermentable sugars produc-
tion) but also contribute to the concentration in wort of b-glucans
and arabinoxylans (which degrades the quality of the mashing
product), the selection of an adequate temperature profile to drive
the batch is not obvious.

Global and local algorithms were used to minimize the objec-
tive function. Results obtained with both algorithms showed an
improvement in the objective function and in the concentration
of fermentable sugars; however, the global algorithm presented a
better performance compared to the local one for the four and five
rest mashings.

For comparison purposes, a ‘‘temperature average” was defined
as the summation of the temperature times the duration of each
rest divided by the total mashing time. A major conclusion from
the dynamic optimization experiences conducted in this study is
that, in order to minimize the overall concentration of polysaccha-
rides (a significant objective function), ‘‘low temperature average”
profiles of about 51 �C should be preferred over typical industrial
‘‘heuristic” profiles of about 64� C to run the mashing process.

In order to extend the scope of the dynamic optimization ap-
proach, additional studies by imposing end point constraints on
b-glucans and arabinoxylans concentrations were conducted. Such
studies showed that in order to achieve a specific level on a certain
concentration, the overall objective necessarily worsens with re-
spect the unconstrained case.

Finally, an additional set of experiences, which considered an
alternative performance index, namely the minimization of the
batch time, was carried out. A clear tradeoff between this objective
function and the previously adopted was observed, which demon-
strates the multiple objective nature of the mashing process.

As future work additional control strategies might be explored.
For example, the adoption of heat stable enzymes can contribute to
perform tighter control of the operation. It has been reported
(Kettunen et al., 1996) that heat stable b-glucanase is currently
used in breweries to avoid problems caused by b-glucans. A sys-
tematic dynamic optimization study, which includes heat stable
enzymes might motivate future contribution on the subject.
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Appendix A. Starch hydrolysis (Koljonen et al., 1995)

dag

dt
¼ �Ha

M
Vg
ðag � aÞ ð3Þ

da
dt
¼ Ha

M
Vg
ðag � aÞ � kaa ð4Þ



Table A2
Simulation data for starch hydrolysis.

V Volume of liquid phase 30 m3

Vg Volume of wet malt 4395.2 m3

M Initial weight of malt 6700 kg
x0

starch Initial concentration of starch in liquid phase 95.7 g/L

x0
dex Initial concentration of dextrins in liquid phase 21.7 g/L

x0
gl Initial concentration of glucose in liquid phase 3.6 g/L

x0
mal Initial concentration of maltose in liquid phase 8.9 g/L

x0
mlt Initial concentration of maltotriose in liquid phase 1.3 g/L

x0
ldex Initial concentration of limit dextrins in liquid phase 0 g/L

a0 Initial activity of a-amylase 4.37E5 U/L
b0 Initial activity of b-amylase 1.05E6 U/L

Table B1
Model parameters for glucan hydrolysis.

Hb Dissolution coefficient of b-glucanase 2.28 E4 U/L
Kw0 Pre-exponential factor 5.30 E43 min�1

Ek
w Activation energy 277,700 J/mol

Hg Dissolution coefficients of b-glucanes 3.56 E5 L/g/min
Aw0 Pre-exponential factor 2.71 E3 L/U/min
Sg Parameter of insoluble b-glucanes

concentration function
8.21 E2 g/L/K

Sg0 Parameter of insoluble b-glucanes
concentration function

32.3 g/L
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dbg

dt
¼ �Hb

M
V
ðbg � bÞ ð5Þ

db
dt
¼ Hb

M
V
ðbg � bÞ � kbb ð6Þ

dxstarch

dt
¼ �aðxstarch � uÞð0:964Ag

mlt þ Ag
dexÞ ð7Þ

dxdex

dt
¼ aðxstarch � uÞAg

dex � bxdex 0:9Bgl þ 0:947
Bmal

Km þ xdex
þ Bldex

� �

ð8Þ

dxgl

dt
¼ Bglbxdex ð9Þ

dxmal

dt
¼ Bmalbxdex

Km þ xdex
ð10Þ

dxmlt

dt
¼ Ag

mltaðxstarch � uÞ ð11Þ

dxldex

dt
¼ Bldexbxldex ð12Þ

u ¼

xstarchð0Þ T < Tu

T
Tu�Tg

þ T
Tg�Tu

� �
Tu � T � Tg

0 T > Tg

8>>><
>>>:

ð13Þ

Ag
dex ¼ A0;g

dex exp
Ea

RT

� �
ð14Þ

Ag
mlt ¼ A0;g

mlt exp
Ea

RT

� �
ð15Þ

Bgl ¼ B0
gl exp

Eb

RT

 !
ð16Þ

Bmal ¼ B0
mal exp

Eb

RT

 !
ð17Þ

Bldex ¼ B0
ldex exp

Eb

RT

 !
ð18Þ

ka ¼ k0
a exp

Ea
d

RT

� �
ð19Þ

kb ¼ k0
b exp

Eb
d

RT

 !
ð20Þ
Table A1
Model parameters for starch hydrolysis.

Ha Dissolution coefficient of a-amylase 9.72E5 L/g/min
Hb Dissolution coefficient of b-amylase 7.57E5 L/g/min

A0g
dex Pre-exponential factor 3.77E10 L/min/g

A0g
mlt Pre-exponential factor 6.42E9 L/min/g

B0
gl Pre-exponential factor 1.62E40 L/min/g

B0
mal Pre-exponential factor 1.05E42 L/min2/g

B0
ldex Pre-exponential coefficient 1.09E41 L/min/g

k0
a Pre-exponential coefficient 3.86E34 min�1

k0
b Pre-exponential coefficient 9.46E67 min�1

Ea Activation energy 1.03E5 J/mol
Eb Activation energy 2.93E5 J/mol
Ea

d Activation energy 2.377E5 J/mol

Eb
d Activation energy 4.439E5 J/mol

Tu Un-gelatinezed temperature 315.4 K
Tg Gelatinezed temperature 336.5 K
Km Michelis Menten constant 2.8 g/L
Appendix B. Glucan hydrolysis (Kettunen et al., 1996)

dbg

dt
¼ �Hb

M
Vg
ðbg � bwÞ ð21Þ

dbw

dt
¼ �Hb

M
Vw
ðbg � bwÞ � kwbw ð22Þ

kw ¼ Kw0 exp
Ek

w

RT

 !
ð23Þ

dgg

dt
¼ �Hg

M
Vg
ðgg � sgÞ ð24Þ

dgw

dt
¼ Hg

M
Vw
ðgg � sgÞ � awbwgw ð25Þ

sg ¼ �SgT þ Sg0 ð26Þ
aw ¼ Aw0 ð27Þ
Table B2
Simulation data for glucan hydrolysis.

bg(0) Initial activity of b-glucanase in grist 220 U/L
bw(0) Initial activity of b-glucanase in liquid phase 0 U/L
gg(0) Initial activity of b-glucanes in grist 7.04 g/L
gw(0) Initial activity of b-glucanes in liquid phase 0 g/L

Table C1
Model parameters for arabinoxylans degradation.

Hx Dissolution coefficient of endo-xylanase 2.01 E2 L/g/min
Kx

w0 Pre-exponential factor 2.98 E42 min�1

Ex
w Activation energy 277,400 J/mol

Hc Dissolution coefficients of arabinoxylans 1.21 E5 L/g/min
Ac

w0 Pre-exponential factor 9.12 E7 L/U/min
Sc

g Parameter of insoluble arabinoxylans
concentration function

3.86 E2 g/L/K

Sc
g0 Parameter of insoluble arabinoxylans

concentration function
65.2 g/L



Table C2
Simulation data for arabinoxylans degradation.

xg(0) Initial activity of endo-xylanase in grist 119,240 U/L
xw(0) Initial activity of endo-xylanase in liquid phase 0 U/L
cg(0) Initial activity of arabinoxylans in grist 68.4 g/L
cw(0) Initial activity of arabinoxylans in liquid phase 0 g/L
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Appendix C. Arabinoxylans degradation (Li et al., 2004)

dxg

dt
¼ �Hx

M
Vg
ðxg � xwÞ ð28Þ

dxw

dt
¼ Hx

M
Vw
ðxg � xwÞ � kx

wxw ð29Þ

kx
w ¼ Kx

w0 exp
Ex

w

RT

� �
ð30Þ

dcg

dt
¼ �Hc

M
Vg
ðcg � sc

gÞ ð31Þ

dcw

dt
¼ Hc

M
Vw
ðgg � sc

gÞ � ac
wxwcw ð32Þ

sc
g ¼ �Sc

gT þ Sc
g0 ð33Þ

ac
w ¼ Ac

w0 ð34Þ

See Tables A1, A2, B1, B2, C1, C2.
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