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ABSTRACT

In arid ecosystems, evapotranspiration generally exceeds precipitation, preventing deep drainage and groundwater recharge. We
propose that vegetation changes associated with the establishment of pastoralist settlements (i.e. livestock stations) can disrupt
the ecological and hydrological linkages in arid groundwater-coupled ecosystems of the Monte desert (Argentina), allowing local
groundwater recharge and nitrate leaching to the aquifer, affecting groundwater quality. We tested this hypothesis by analysing
vegetation, land use indicators, water and nitrate dynamics in three pairs of livestock stations and relatively undisturbed control
woodlands. Livestock stations had lower vegetation and dead wood but higher dung covers than control woodlands, indicating
soil and vegetation changes associated to land use. Water and nitrate dynamics were also affected by land use. Soil nitrate and
water contents sampled down to the water table were higher, and soil chloride and salinity were lower in livestock stations,
indicating higher water percolation and N input/transport rates. Higher groundwater nitrate concentrations in livestock stations
indicate that these areas behave as foci of N and water export from ecosystems to the phreatic aquifer. Our study supports the idea
that vegetation in arid areas prevents downward surface–groundwater interactions, but it also indicates that human modifications
of vegetation disrupt this control, reducing soil water consumption and allowing vertical movement of water and solutes to the
aquifer, which can modify groundwater quality. Disruptions of ecological processes by livestock activities clearly affect the
hydrological links between surface and groundwater. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Arid and semi-arid areas host an important proportion of
the global human population, whose different economic
activities depend mainly on surface water availability
(FAO, 2011). Drylands are characterized by low and
patchy precipitation, always exceeded by potential
evapotranspiration (Noy-Meir, 1973; Loik et al., 2004;
Schwinning et al., 2004). Without permanent surface water
availability, shallow groundwater found in some areas of
the Monte Desert is a key resource for plants and people,
sustaining biological activity, primary productivity and
human development levels above those expected from
local precipitation alone (Contreras et al., 2011; Jobbágy
et al., 2011). Climate projections for the next 100 years in
the Monte Desert of Argentina suggest an increase in
rainfall and temperatures, mostly during summertime
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(Labraga and Villalba, 2009). Under this scenario,
groundwater may play an increasing role on the develop-
ment of local communities.

In desert ecosystems, where water availability is the
main limiting factor, direct evaporation and plant roots
often make an exhaustive use of rainfall inputs, preventing
deep percolation and local groundwater recharge. In
these systems, vegetation has large root systems that
exceed the canopy area and explore the unsaturated zone to
great depths, controlling soil water dynamics and recharge
(Noy-Meir, 1973; Wilcox et al., 2003; Newman et al.,
2006). Plant roots absorb water and nutrients from the
soil and exclude other ions such as chloride, which can be
used as a tracer of water dynamics (Allison et al., 1994;
Phillips, 1994). Leaching of large soil chloride stocks in
desert systems subject to disturbances indicates low water
uptake rates and the occurrence of deep drainage and
aquifer recharge (Jackson et al., 2000; Jobbágy and
Jackson, 2001; Scanlon et al., 2005). Successional changes
from a non-vegetated to a fully vegetated condition may
reduce groundwater recharge to a null level (Scanlon et al.,
2006), whereas replacement of native woodland with
pastures or crops has been shown to increase recharge
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rates (Santoni et al., 2010; Moore et al., 2012; Nosetto
et al., 2012).
Grazing and wood extraction in human settlements

can permanently reduce vegetation cover, altering their
structure and nutrient, and water cycles (Hobbs and
Huenneke, 1992; Asner et al., 2004; Reynolds et al., 2007).
Even under very low livestock and human population
densities, as found in most of the Monte desert, the periodic
concentration of animals close towater points and corrals, and
close to human settlements may concentrate nutrients
captured in a broad grazing range into highly disturbed foci.
The combination of vegetation degradation and nutrient
imports may couple increased deep water drainage with
horizontal nutrient imports and downward transport to
groundwater, modifying hydrological and biogeochemical
connections and altering water resource quality (Jackson
et al., 2009; Nosetto et al., 2012).
In the Central Monte desert (Argentina), Prosopis

flexuosa D.C. (Fabaceae, Mimosoideae, ‘algarrobo dulce’)
woodlands have provided valuable resources (i.e. fruits,
wood) to rural populations since pre-Hispanic times (Roig,
1993; Prieto, 2000; Chiavazza, 2002). Huarpe descendants
still live in the area and now practice subsistence livestock
production, using woodland resources and groundwater
(Ladio and Lozada, 2009; Inojosa et al., 2010). Because a
high proportion of Prosopis woodlands was cut down for
building railroads and vineyards in the 20th century (Rojas
et al., 2009), the remaining woodlands are now protected
by law. The rich Huarpe identity and cultural legacy of the
local inhabitants have been recognized by government
authorities, granting land rights to Huarpe communities
(Inojosa et al., 2010). A sustainable use of these woodlands
depends on a good understanding and sound management
of the interactions among human activities and the environ-
ment, including interactions among livestock stations,
nutrients and water cycles.
Local settlers, when establishing a livestock station in the

woodlands of the CentralMonte, generate a set of disturbances
in the environment (Villagra et al., 2009). In general, new
families settle near their elders’ home, if groundwater and
woodland resources are available. Hand-dug wells, houses
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Figure 1. Hypothetical mechanisms of water and nitrate fluxes for livestock s
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and corrals are built with forest products (Torres, 2008). In
these areas, relatively large numbers of free grazing livestock
(predominantly goats and cattle) concentrate overnight around
water wells and corrals during the entire year. As a result, clear
gradients of degradation develop across the landscape, with
reduced vegetation cover up to 2 km away from livestock
stations (Goirán et al., 2012). In addition, livestock deposit
large amounts of urine and dung in these stations, likely
causing a centripetal concentration of nutrients, as shown in
other rangelands (Tolsma et al., 1987; Smet andWard, 2006).
Nitrate leaching to the subsoil has been observed in scarcely
vegetated areas, which may reach the aquifer and jeopardize
water quality for human consumption, because of its negative
effects on human health (Aranibar et al., 2011; ATSDR, 2011).

We hypothesize that in livestock stations, the reductions
in vegetation cover and the deposition of urine and dung by
livestock favour downward water and nutrient transport in
the soil, increasing local recharge and nitrate leaching to
the aquifer (Figure 1). We evaluate this hypothesis by
comparing paired stands in relatively undisturbed (control
woodlands) and disturbed (livestock stations) interdune
valleys in the Central Monte desert in Argentina. We expect
livestock stations to have (i) lower vegetation cover,
(ii) higher soil moisture and nitrate contents, (iii) lower
vadose chloride and total salt stocks than control woodlands,
(iv) and higher groundwater nitrate concentrations than
control woodlands.
MATERIALS AND METHODS

Study site

The study sites are located in the Telteca Natural and Cultural
Reserve, inMendoza, Argentina (32�S, 67�–68�W;500–550m
of elevation). Biogeographically, the area corresponds to
the Central Monte and is characterized by a warm arid
climate, with mean annual precipitation of 156mm, mostly
concentrated in the austral summer (from October to March).
Absolute extreme temperatures vary from �10 �C in winter
to 48 �C in summer, with a long-term mean of 18�5 �C
(Alvarez et al., 2006).
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The area is located in an aeolian plain, which was formed
by fluvial and aeolian sediments that developed dune-
interdune systems of NNW–SSE orientation, with active
sand dunes partially stabilized by the vegetation. The region
hosts discontinuous valleys with elevation gradients of 10 to
30 m (Gomez et al., 2010). Livestock stations are established
in interdune valleys (Figures 1 and 2), where the water table
lies at depths of 6–15m. This shallow groundwater is used
by phreatophyte vegetation dominated by P.flexuosa trees
(5–10m tall), coexisting with small tree species, such as
Geoffroea decorticans, and shrub species, as Larrea
divaricata, Bulnesia retama, Atriplex lampa, and Suaeda
divaricata (Morello, 1958). Dune flanks are dominated by L.
divaricata, Tricomaria usillo, small individuals of P flexuosa
(lower than 4m) and the grassPanicum urvilleanum (Villagra
et al., 2004; Alvarez et al., 2006).
These woodlands have been used by human populations

for several centuries and are still used today by the local
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inhabitants. In the past, trees were exploited for building
railroads and vineyards without any management plan,
causing irreversible changes in some areas where trees
have been completely eliminated (Abraham et al., 2009;
Rojas et al., 2009). Difficult access on motorized vehicles
into the sand dune fields has prevented deforestation in
the study region, where old Prosopis individuals still
remain. Presently, the woodlands are protected by law,
and wood can only be extracted by the local population
for fuel and construction of the house, wells and corrals.
The Telteca reserve hosts approximately 34 family units
in an area of ~200 km2 (Bosch, 2008). Many settlements
are isolated from access roads, commercialization centres
and points of public drinking water supply and have
no access to electricity. Livestock, mainly goats and a
lower number of horses and cattle, feed on local
vegetation and rely on groundwater extracted from
hand-dug wells. Most of these wells are cased with
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wooden frames, and water is extracted by hand or with
animal-powered devices.

Experimental design

To assess the effects of livestock stations (i.e. nutrient
deposition and vegetation removal) on water and nutrient
dynamics, we compared soils and vegetation in three pairs
of livestock stations and relatively undisturbed ‘control’
woodlands (Figure 2). Livestock stations and paired control
woodland stands were in the same geomorphological
setting (interdune valleys), 1�5–2�0 km from each other
(Table I). All three paired sites were considered indepen-
dent replicates.

Field observations

Because there is no information about livestock densities and
their spatial distribution on our study sites, we evaluated the
differences in livestock and human activities through several
variables that are typically considered good indicators of land
use intensity. With higher livestock density, we expect higher
dung deposition and Prosopis pod consumption (Bertiller
et al., 2009), lower cover of biological soil crusts (Gómez
et al., 2012) and enhanced germination rates of Prosopis
seeds (Campos and Ojeda, 1997). Low abundance of
Prosopis pods may also indicate human activity, because
local inhabitants use them as a source of food (seed flour and
pod sugar) and forage (Inojosa et al., 2010). Similarly, low
abundance of dead wood on the ground may reflect its use for
fuel or construction (Alvarez and Villagra, 2009; Vázquez
et al., 2011). We visually estimated the cover/abundance of
domestic animal dung, biological soil crusts, woody debris
>5-cm diameter, and the density of Prosopis pods and
seedlings in 15 plots of 9m2 at each stand.We distributed five
plots every 20m, along three randomly located 100-m-long
transects. For each land cover indicator, we used the mean of
the 15 square plots of each site for statistical analysis.
We determined vegetation structure with the point-quadrat

method using three 30-m linear transects randomly distrib-
uted on each experimental site. We sampled 100 points per
Table I. Location of study sites in the T

Site Land use Location

1-La Primavera Livestock station 32�24045.100 (S), 67�54053�800

1-La Primavera Control
woodland

32�34047�800 (S), 67�56031�400

2-Las Delicias Livestock station 32�26022�600 (S), 67�57032�500

2-Las Delicias Control
woodland

32�25005�600 (S), 67�56054�600

3-Las Hormigas Livestock station 32�25026�400 (S), 68�01008�700

3-Las Hormigas Control
woodland

32�25043�200 (S), 68�01059�900

a Because there are no agricultural data for these areas, the number of animals
b Distance of wells to corrals is equal to the distance from soil sampling po

Copyright © 2013 John Wiley & Sons, Ltd.
transect, every 30 cm (Passera et al., 1983). In each point, we
registered the presence of bare soil, litter, trees, shrubs, forbs
and grasses and calculated the percentage cover of each soil
cover type in each transect. Final results were an average of
the three transects per each stand.

Soil sampling and chemical analyses

To characterize soil nutrient and water stocks and their
vertical distribution, we measured moisture, chloride and
nitrate contents, electric conductivity and pH along soil
profiles down to the water table. Chloride is often used as a
tracer of water transport, particularly in arid and semi-arid
systems, because it is highly mobile in water, its source is
mainly atmospheric and roots tend to exclude it during
water absorption (Allison et al., 1994; Phillips, 1994).
Therefore, chloride concentration and distribution in the
soil are indicators of water dynamics, including drainage and
evapotranspiration (Scanlon et al., 2006; Jobbágy et al.,
2011). Soil nitrate, which also has high mobility, is affected
by animal transport and deposition (horizontal transport
towards livestock stations) and vegetation activity (drainage
control and nitrogen absorption and retention).

We obtained soil samples from deep soil profiles in each
of the six experimental units, at intervals of 0�25m for the
first 0�5m and 0�5m down to the water table, which was
located at a depth of 8�3 to 9�6m. We collected soil samples
with a hand soil auger (10-cm diameter) and applied a PVC
casing to avoid borehole collapse. Soil subsamples were
weighed in the field (100 g) for later determination of
gravimetric soil moisture, after drying at 100 �C for 24 h.
Soil samples for chemical analysis were immediately
homogenized, stored in plastic bags, air dried in the field
and oven-dried at 60 �C for 24 h before chemical analyses.

Chloride concentration, pH and electric conductivity were
measured on soil extracts (25 g of soil and 50ml of deionized
water) using a solid state ion-selective electrode (Denver
Instrument UP-25), a pH electrode (Denver Instrument
UP-25) and a conductimeter (HACH, Sension5), respective-
ly. Soil extracts were shaken mechanically during 30min,
filtered and frozen until analysis. Total salt content of soil
elteca reserve and their characteristics.

Groundwater
depth (m)

Corrals
(n)

Animals
(n) a

Distance of wells
to corral (m) b

(W) 9�6 2 80 goats 31�0
80 cattle

(W) 8�3 —

(W) 8�3 3 90 goats 24�6
70 cattle

(W) 9�5 —

(W) 9�5 3 150 goats 28�6
30 cattle

(W) 9�5 —

was visually estimated during field studies, indicating approximate values.
int to perimeter of the nearest corral.

Ecohydrol. 7, 600–611 (2014)
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extracts was estimated using a conversion factor of
0�491 ppmms cm�1, which assumes that all solutes are NaCl
(Bresler et al., 1982). Chloride concentrations and soil
salinity (gm�3 of soil) were calculated using a bulk density
value of 1�47 g cm�3, previously obtained for interdune
valleys of the Telteca reserve (Guevara et al., 2010). Nitrate
concentrationwas determined in soil extracts of 5 g of soil and
25ml of extracting solution, composed of 2�5 g of CuSO45
H2O, 0�15 g of Ag2SO4 and 0�62 g of BO3H3 in 1000ml of
deionizedwater. Soil extractswere shaken during 1 h,filtered,
adjusted to pH 7with sodiumhydroxide (1%) and frozen until
analysis. Nitrate concentrations were determined by spectro-
photometry (HACH DR 2800) with the cadmium reduction
method. We also determined nitrate concentration, electric
conductivity and pH in groundwater samples with the same
methods as in the soil extracts. Groundwater samples were
obtained from the bottom of each soil profile, refrigerated in
the field and immediately analysed in the laboratory after
return from the field.
Table II. Vegetation structure and surface soil characterization in
control woodlands and livestock stations, expressed in percent
cover, except in Prosopis seedlings and pods, which are expressed

as number per plot.

Variable/indicators
Livestock
Station

Control
Woodland p

Forbs–grasses a 0�33 (1�0) 22�44 (15�91) 0�0023
Shrubs a 1�56 (3�13) 33�89 (9�8) <0�0001
Trees a 19�78 (19�7) 31�67 (17�56) 0�1754
Total vegetation a 21�67 (22�27) 88�00 (19�86) <0�0001
Bare soil a 62�22 (16�4) 20�11 (13�52) 0�0001
Litter a 2�22 (3�67) 47�44 (21�21) <0�0001
Dung b 12�27 (2�18) 4�12 (0�71) <0�0001
Soil wood b 1�11 (0�25) 10�23 (1�56) <0�0001
Biological Soil crusts b 0�24 (0�22) 2�00 (1�44) 0�214
Prosopis pods b 0�38 (0�18) 12�51 (4�8) 0�0169
Prosopis seedlings b 1�56 (0�57) 0�73 (0�2) 0�1870

Data represent mean values �1 standard error of the mean between
brackets.
a Data obtained with the point-quadrat method for vegetation struc-
ture. p-values are significance levels obtained with Kruskal–Wallis test.
Significant test statistics a= 0�05 are highlighted in bold.
b Data obtained with the square plot method for indicators of livestock and
human activity. p-values are significance levels by fixed factor obtained
with generalized linear mixed model.
Data analysis

Differences in vegetation structure (grass–forbs, shrubs and
trees), bare soil and litter among livestock station and
woodland sites were analysed using Kruskal–Wallis test
with non-parametric comparisons, because of the high
heterogeneity of variances (Zar, 1984). Indicators of livestock
and human activity (dung, woody debris, soil crusts,
seedlings and pods) were analysed using generalized linear
mixed model (GLMM) fit by the Laplace approximation,
considering land use (livestock stations vs control wood-
lands) as a fixed factor and site (1, 2 and 3) as a random factor.
The indicators had Poisson distributions.
We also used GLMM to analyse soil variables, considering

land use with two levels (livestock stations vs control
woodlands) and soil depth as fixed factors, and site as a
random factor with three levels. We conducted the GLMM
analyses using the ‘lmer’ function of the ‘lme4’ package
(Bates and Maechler, 2009) with R statistical software
(R Development Core Team, 2009). We ran models with and
without the interaction (models 2 and 1, respectively)
between land use and soil depth. In the analysis, we only
considered samples of the vadose zone, excluding those from
the saturated zone, to avoid the influence of groundwater. We
selected the best model using Akaike’s information criterion
(dAIC> 2). We estimated significance of fixed factors with
Markov Chain Monte Carlo simulations (n=100000), using
the ‘pvals.fnc’ function of the ‘languageR’ package for
R (Baayen, 2008), which estimates p-values for GLMM
parameters, considering p< 0�05 as significant. Moisture,
chloride, nitrate and salinity were log-transformation to
approximate normality.
Soil water content (% dry weight), chloride concentration

(gm�3), nitrate concentration (gm�3), pH and salinity
(gm�3) were plotted with depth. We also constructed curves
of cumulative chloride and nitrate (gm�2) versus cumulative
water (m3m�2) for each soil profile, using a bulk density of
1�47 g cm�3 (Guevara et al., 2010). Different cumulative
chloride : water slopes indicate concentration shifts and
Copyright © 2013 John Wiley & Sons, Ltd.
therefore changes in the drainage regimes (Phillips, 1994;
Santoni et al., 2010).
RESULTS

Land use intensity indicators and vegetation structure

Livestock stations had higher bare soil and dung cover,
lower plant litter and dead wood cover, and Prosopis pod
density than their neighbouring control woodlands. Control
woodlands had higher covers of all vegetation groups
(grasses, shrubs and trees) than livestock stations, although
differences in tree cover were not significant (Table II).
Livestock stations were very poor in grass and forb species,
with their vegetation being characterized by the presence of
a few large P. flexuosa trees. In control woodlands, the tree
layer was dominated by P. flexuosa as well but also
included individuals of Geoffroea decorticans. The most
frequent shrub species were Capparis atamisquea, Lycium
tenuispinosum and Suaeda divaricata. The grass layer was
characterized mainly by Trichloris crinita, with a lower
cover of Bouteloua aristidoides, Aristida mendocina and
Setaria leucophila.

Soil water and solutes

Compared with control woodlands, livestock stations had
higher soil moisture, nitrate concentrations and lower
chloride in the unsaturated zone (Figure 3).

Soil water content in the unsaturated zone was higher in
livestock stations than in control woodlands, showing a
sharp increase in both cases when the water table was
approached. Moisture differences were greatest between
3�25 and 6�75-m depth (Figure 3(a–c)). The effects of land
use and soil depth showed significant differences (Markov
Chain Monte Carlo simulations) in model 1 (Table III).
Ecohydrol. 7, 600–611 (2014)
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Figure 3. Vertical distribution of moisture content (a–c), chloride concentration per cubit metre of soil (d–f) and nitrate-N concentration per cubit metre
of soil (g–i) in control woodlands (filled circles) and livestock stations (open circles). Each symbol represents a single measurement. The horizontal solid

and dotted lines indicate the water table level for control woodlands and livestock stations, respectively.
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Chloride concentrations had contrasting vertical distribu-
tions in livestock stations and control woodlands, with higher
stocks and increasing concentrations with soil depth in the
latter. Chloride accumulation increased dramatically below 4,
2 and 1m depth in control woodlands at sites 1, 2 and 3,
respectively (Figure 3(d–f)). Model 2 had a lower AIC value
than model 1 and showed a significant interaction (Table III).
Nitrate concentrations were higher in livestock stations

than in control woodlands, with the exception of site 1.
Maximum nitrate contents were found at 5�75 and 8�25m of
depth in livestock stations at sites 2 and 3, respectively
(Figure 3(g–i)).We observed increasing nitrate concentrations
Copyright © 2013 John Wiley & Sons, Ltd.
with soil depth in livestock stations and the opposite trend
in control woodlands, which is also indicated by the
significance of the interaction between land use and soil
depth (Table III).

Soil pH indicated alkaline conditions at all sites, which
varied markedly with soil depth but not with land use
(Figure 4(a–c)). The model without interaction between
fixed factors had lower AIC values. Markov Chain Monte
Carlo simulations only showed a marginal significance for
land use effect (Table III).

Soil salinity values were slightly higher in control
woodlands than in livestock stations and increased with
Ecohydrol. 7, 600–611 (2014)



Table III. Results for all soil variables from linear mixed effect models, including Akaike’s information criterion (AIC) index and
Markov Chain Monte Carlo (MCMC) p-values.

Soil variable Models AIC

MCMC p a

Land use Soil depth Land use * soil depth

Chloride 1 274�3 0�0000 0�0000 —
2 244�6 0�1400 0�0000 0�0000

Soil moisture 1 38�96 0�0037 0�0074 —
2 45�28 0�5381 0�2837 0�2449

Nitrate 1 217�1 0�0000 0�2974 —
2 209�0 0�8772 0�0004 0�0002

pH 1 195�6 0�0562 0�4806 —
2 201�6 0�3096 0�6086 0�9827

Salinity 1 164�8 0�0025 0�0000 —
2 164�7 0�6403 0�0000 0�0119

a MCMC p-values, considering land use and soil depth as fixed factors (model 1 =without interaction, model 2 =with interaction). p< 0�05 were
considered significant and are highlighted in bold.
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Figure 4. Vertical distribution of soil pH (a–c) and salt content per metre cubic of soil (d–f) in control woodlands (filled circles) and livestock stations
(open circles). Each symbol represents a single measurement. The horizontal solid and dotted lines indicate the water table level for control woodlands

and livestock stations, respectively.
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soil depth in both land uses. At site 1, deep soils of the
control woodland had greater values than in the paired
livestock station. Sites 2 and 3 showed different variations
with depth for both land uses (Figure 4(d–f)). Model 1 for
soil salinity showed a significant effect of land use and soil
depth. Model 2 had a significant interaction between fixed
factors, indicating a different response of salinity with soil
depth for the two land uses. AIC values were similar for the
two models analysed (Table III).
Copyright © 2013 John Wiley & Sons, Ltd.
Cumulative chloride concentration down to the water
table ranged from 1560 to 5240 gm�2 in control woodlands
and from 270 to 760 gm�2 in livestock stations, indicating
strong net losses in the latter. In control woodlands, the slope
of the curve changed at two depths: near the surface, where
chloride accumulation begins, and above the saturated zone,
where chloride accumulation does not increase further with
depth. Cumulative nitrate concentrations at the maximum
sampling depth varied from 16 to 60 gm�2 for control
Ecohydrol. 7, 600–611 (2014)



Table IV. Results of generalized linear mixed model for soil
variables from models (1 =without, 2 =with interactions),

including variance of the random effects ‘site’, standard deviation
(SD) and percentage of the variance explained by ‘site’ for each

response variable (%).

Variable Models Variance SD %

Chloride 1 0�499 0�706 38�12
2 0�412 0�642 37�45

Soil moisture 1 0�012 0�112 15�98
2 0�0125 0�112 16�05

Nitrates 1 0�2854 0�534 43�09
2 0�2873 0�536 46�39

pH 1 0�1144 0�338 24�54
2 0�114 0�338 24�32
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woodlands and from55 to 150 gm�2 for livestock stations. At
site 1, cumulative nitrate concentrations for both land uses
were similar, whereas at sites 2 and 3, these values were
higher in livestock stations (Figure 5).
We found considerable variations among the different

sites analysed for most variables, with the random factor
explaining from 16�0% to 46�3% of the total variability for
different response variables (Table IV). Groundwater
measurements of nitrate concentrations were higher in the
three livestock stations than in their paired control
woodlands, salinity showed variations among the different
sites analysed and pH had similar values at paired sites,
except for site 2’ (Table V).
Salinity 1 0�179 0�424 41�97
2 0�180 0�424 43�53

a The data of model with lower Akaike’s information criterion index are
highlighted in bold.
DISCUSSION

Land use indicators support our assumption of high-use
intensity near livestock station. These results may be
caused by the combined effects of grazing and logging,
which are difficult to separate in our study site (Villagra
et al., 2009). Livestock (mainly goats) consume vegetation
and disturb the soil through trampling, leading to increased
bare soil and dung deposition, and reduced litter and pod
abundance. In addition, local settlers remove and use wood
and pods for different purposes, maintaining lower
densities near livestock stations. Acting as the centres of
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animal concentration, pastoralist settlements and watering
points have been shown to strongly modify nutrient cycles
in other areas (Tolsma et al., 1987; Bisigato and Bertiller,
1997; Bisigato et al., 2005). Grazing may also promote
establishment of woody seedlings (Asner et al., 2004) by
consumption and posterior deposition of hard seeds. Our
results suggest that this effect is unimportant in our study
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Table V. Groundwater characteristics, including nitrate
concentration, electric conductivity and pH.

Land use Site
Nitrate
(mg l�1)

Electric
conductivity
(ms cm�2) pH

Livestock station 1 23�0 3�43 7�69
Control woodland 1 0�2 6�07 7�83
Livestock station 2 8�6 7�34 7�52
Control woodland 2 4�9 3�58 9�03
Livestock station 3 38�7 4�03 8�66
Control woodland 3 0�4 4�32 8�17
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area (Table II). Perhaps the high intensity of livestock and
human activities in the station prevents the successful
establishment of Prosopis seedlings in the area.
Our results indicate a significant change in vegetation

structure and composition with the establishment of
livestock stations, as described for other arid areas (Asner
et al., 2004; Reynolds et al., 2007). The lower vegetation
strata (shrubs and grasses) were the most affected ones,
whereas tree cover showed lower contrasts, possibly as a
result of increasing tree size compensating for reduced
density in livestock stations. Noticeably, large individuals
of P. flexuosa are still present in stations, likely preserved
by settlers as a source of shade and fruits for humans and
livestock (Alvarez and Villagra, 2009). Because large trees
are the most remarkable feature of vegetation in the area,
common remote sensing indices and perception of local
inhabitants may suggest a low effect of livestock stations
on vegetation. However, total plant cover was lower in
livestock stations, highlighting the importance of shrubs
and grasses on the structure and composition of the woodland
(Table II). At the Telteca Reserve sites, vegetation changes
were also detected by soil-adjusted total vegetation index,
showing gradients of landscape degradation, which decrease
gradually with increasing distances to the pastoralist
settlements (Goirán et al., 2012). As a result, vegetation
changes by livestock alter the belowground structure of plants
(Milchunas and Lauenroth, 1993). In arid areas, woody
species tend to be more deeply rooted than grasses and
herbaceous plants (Bucci et al., 2009; Villagra et al., 2011).
Vegetation shifts, such as a decrease in shrub and grass cover
in livestock stations, may change vertical and horizontal root
distributions and consequently modify the absorption of soil
resources (Jackson et al., 2000; Moore et al., 2010).
The establishment of livestock stations affected biogeo-

chemical and hydrological transport between the ecosystem
and groundwater. The lower chloride, and higher moisture
and nitrate contents in soils from livestock stations support
our hypothesis that water and solute transport from the
surface to the phreatic aquifer is facilitated in these areas,
which function as foci of local deep drainage, nitrate leaching
and groundwater pollution. Chloride concentration in soils,
which is inversely proportional to the downward water flux
(Scanlon, 1991; Phillips, 1994), indicated higher water
percolation rates in livestock stations, similar to those
reported for bare lowlands in a nearby active dune field
(Jobbágy et al., 2011). In control woodlands, chloride profiles
Copyright © 2013 John Wiley & Sons, Ltd.
(Figure 3) indicate that progressive evaporation and water
extraction by plant roots are likely consuming all precipitation
inputs, preventing recharge (Allison et al., 1994; Phillips,
1994). In agreement with chloride concentrations, livestock
stations showed the expected pattern of slightly lower soil
salinities, probably given by solute transport to groundwater.
Salts accumulated in the soils may also be transported to the
aquifer with increasing local recharge and probably decrease
groundwater quality.

The differences in water dynamics found between both land
uses are likely caused by differences in plant biomass both
aboveground and belowground. In woodlands, plant root
systems can exhaustively absorb soil resources (water and
nutrients) with their horizontally extended root system
(Breshears and Barnes, 1999; Bucci et al., 2011; Villagra
et al., 2011). Under the sparse vegetation of livestock stations,
rainfall inputs have a better chance to escape root uptake and
percolate to deep soil layers (deep drainage) (Seyfried et al.,
2005). Changes fromnativewoodlands to pastures in semi-arid
rangelands of southern Texas also modified water dynamics,
decreasing chloride concentrations in the soil profile. Aquifer
recharge was estimated to increase in root-plowed areas by
about 2�6mmyear�1 (Moore et al., 2012), but the effects of
these changes in groundwater quality were not considered.

Domestic animals seem to mediate the increased nitrate
concentrations in soil profiles that we found in livestock
stations (Figure 3). Biomass consumption in nearby
woodlands, and transport and deposition of its associated
nutrients as dung and urine in livestock settlements could
change the vertical and horizontal distribution of nutrients
at different scales (Tolsma et al., 1987; Rossi, 2004). The
observed variability of nitrate contents with depth in the
different profiles may be related to spatial variability in
vegetation (e.g. the presence of a tree near the profile),
vegetation history (livestock station age and use), livestock
behaviour (e.g. there might be preferential resting areas at
different distances from each soil profile) and previous
precipitation events at the different sites (Walvoord et al.,
2003; Jackson et al., 2004). Nitrates accumulated in the
soils of livestock stations are not completely absorbed by
the scarce vegetation and may be leached to deep soils
during intense rainfall events, forming underground
nitrate reservoirs, as shown in other deserts of the world
(Walvoord et al., 2003; Austin, 2011). These nitrate
reservoirs can reach groundwater with successive deep
drainage events, affecting groundwater quality, as shown in
the wells of our study sites and in other wells of the area
(Aranibar et al., 2011). If there are no mechanisms for the
surrounding vegetation to recapture groundwater nitrates,
this nitrate movement may represent net nitrogen losses
from the ecosystem. However, groundwater flow, with
estimated velocities from 0�1 to 0�25m per day (Gomez
et al., 2010; Aranibar et al., 2011), may transport this
nitrate to neighbouring woodlands, where phreatophyte
vegetation could absorb it and return it to the surface
environment. Further studies are needed to determine the
final fate of groundwater nitrate.

The curves of cumulative chloride versus water content
(Figure 5) showed slope changes under both land uses. In
Ecohydrol. 7, 600–611 (2014)
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control woodlands, maximum slope was approximately an
order of magnitude higher than in livestock stations,
whereas the same curves for nitrate versus water content
showed an opposite pattern, with slopes being less than
half of those found in livestock stations at two study sites.
These contrasts suggest higher water drainage fluxes with
higher nitrate contents along the soil profile of livestock
stations. The combined effect of higher nitrate content in
soil water and faster downward water fluxes suggests even
faster nitrate transport rates beneath livestock stations
compared with woodlands. A rough estimate of this
increased transport can be achieved by comparing soil at
intermediate depths (4�25–4�75m) where little effects of
both root uptake and capillary rise can be expected. The
nitrate-N : chloride ratio is a good indicator of the nitrate
transport difference increase and approached 20, 50 and
1100-fold increases at sites 1, 2 and 3, respectively. The
extremely high value of site 3 suggests that nitrate flux in the
control woodland is virtually nil. Accompanying this trend,
groundwater nitrate concentrations in the three livestock
stations were higher than in their paired control woodlands
(Table V). None of the groundwater samples exceeded the
recommended local drinking water standards (45mg l�1;
Código Alimentario Argentino, 2007), but two of them
exceeded those accepted in the USA (10mg l�1; Environ-
mental Protection Agency, United States, 2009). In the
region, domestic wells for human and animal use are often
found a few metres from corrals or livestock gathering areas.
Traditional, subsistence livestock production is the main

economic activity in this challenging environment (Torres,
2008; Guevara et al., 2009). Because government author-
ities are granting land rights and providing some basic
services (e.g. drinking water supply in access roads and
installation of solar panels in settlements) to Huarpe
communities, density of livestock stations in the reserve and
surrounding areas may increase in the near future. Therefore,
management programs are crucial to maintain or improve
forests and groundwater quality (Alvarez et al., 2006). For
example, new livestock stations should consider these
observations to locate wells in upstream and directions from
corrals, to avoid groundwater pollution with nitrate. In
addition, the practice of leaving adultP.flexuosa trees standing
in livestock stations should be encouraged, to provide shade
and fruits for domestic animals and reduce nitrate leaching.
Other arid and semi-arid systems may be similarly

vulnerable to land use changes. Although vegetation removal
has been shown to increase groundwater recharge in arid
areas (Moore et al., 2012), nitrate, salt and surface
contaminants may also be transported to the aquifer,
decreasing groundwater quality. Our and previous studies
(Jobbágy et al., 2011) show that vegetation activity prevents
the downward movement of water and solutes, protecting
groundwater from surface pollution.
CONCLUSION

This research reinforces the idea of a strong vegetation
control over water and nitrogen cycles in arid lands and
shows how human activities, even in low density grazing
Copyright © 2013 John Wiley & Sons, Ltd.
systems, can disrupt the interactions among vegetation,
water and nutrients in the soil–plant–groundwater system.
Disruptions of ecological processes by livestock activities
clearly affect the hydrological links between surface and
groundwater. The removal of vegetation by humans and
domestic animals in livestock stations allows deeper water
percolation, which transports nitrate deposited as dung and
urine, an increasing groundwater nitrate concentration.
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