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ABSTRACT: The knowledge of the properties and the applicability of
domain-restricted matrices has provided important advances in the description of
molecular electronic distributions. In this work, we perform a critical comparison between
two different methods: the domain-averaged Fermi hole (DAFH) approach and the
domain-restricted first-order reduced density matrix (DRRDM) one, focusing our study on
both physical and mathematical points of view. Our results permit to show that both
methods have a markedly different behavior at correlated wave function level: the DAFH
approach provides information related with electron cloud localization and populations
while the DRRDM is a true density matrix. To exemplify the theoretical discussion, we
present a numerical test example and a simple analytical model that show such features.
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1. Introduction

T he partitioning of electronic properties into
contributions that are assigned to atoms or

groups of atoms in a molecule has proven to be very
powerful to describe molecular structures of systems
with different kinds of bonding. The most exten-
sively studied case is the partitioning of the N molec-
ular electrons, known as population analysis [1–3].
To this end, two schemes attempting to perform this
task have mainly been developed. Within the first
scheme, the atoms are defined by means of one-
electron basis functions centered at each nucleus;
these methods constitute the techniques of partition-
ing in the Hilbert-space of atomic orbitals [1–5]. A
second type of methodology is based on the parti-
tioning of the three-dimensional physical space (3D),
where an atom is defined as a nucleus surrounded by
a surface. This surface can also be defined in different
ways, that is, the “fuzzy” atom approach [6–9] uses
atomic radii and “cutoff” parameters to partition
the whole 3D physical space into atomic domains,
while alternatively, the Bader’s atoms in molecules
(AIM) [10] and the electron localization function
(ELF) [11, 12] models use topological properties of
the electron distribution and the electron localization
function to define these domains, respectively. The
partitioning models implemented by means of the
mentioned methodologies have been extended and
applied to perform decompositions of other molecu-
lar properties usually expressed in terms of reduced
density matrices [13, 14]. Examples of these types
of studies are the decomposition of the number of
electrons [15–22] and the partitioning of the molecu-
lar energy into one- and two-center contributions to
describe quantitatively bonding energies and to pro-
vide a better insight of the interactions between the
molecular groups and/or moieties [22–27]. Similarly,
the partitioning of the squared-spin distribution 〈S2〉
[7, 28–32] gives rise to a wide and detailed chemical
information.

Another case of interest to describe and analyze
electronic structures is the partitioning of the elec-
tron density into meaningful chemical fragments.
We will refer here to the partitioning of this den-
sity carried out in the 3D physical space. Within this
scenario, we will analyze two previously reported
models, the domain-averaged Fermi hole (DAFH)
approach, which has been applied in the recent
past to a wide-type of compounds [33, 34] and the
domain-restricted first-order reduced density matri-
ces (DRRDM) one [35–38], which has been recently
developed, making special emphasis in the physical

and mathematical requirements that a true den-
sity matrix must fulfill. The DAFH model in its
correlated version, which requires the use of the
second-order (2-RDM), has been implemented by
some of us and reported in Ref. [39]. Neverthe-
less, to avoid the high computational cost of the
2-RDMs, Ponec and Cooper [34] have proposed a
model, which approaches correlated DAFH by a
symmetric DRRDM matrix, previously reported by
us [35]. The central aim of this work is to perform
a critical analysis of the differences between both
models in the description of the electron distribu-
tion of a molecular system and hence to clarify their
applicability.

The article is organized as follows. Section 2
is dedicated to summarize the decomposition of
a reduced density matrix within the symmetric
approach [35] to achieve the DRRDM and the deriva-
tion of the DAFH matrix for correlated wave func-
tions in closed-shell systems [39]. We also show
in this section that the so called pseudo-DAHF
(pDAHF) in Ref. [33] is nothing but our previous
published symmetric model approach for DRRDM.
Section 3 is devoted to a theoretical and practical
comparison and discussion of both the correlated
DAFH and the DRRDM models from the mathe-
matical and physical points of view, to show the
consequences of their different physical nature [35,
36]. To this end, two simple examples are presented,
which deal with the prominent essential differences
between both methods and attempt to clarify their
physical behavior. One of these examples shows
the onset of negative eigenvalues for the correlated
DAFH matrix even in simple systems [40] and the
other one, of quasi-analytical character based on the
valence bond (VB) method, compares the spatial
localization of the electron cloud in both treatments.
Finally, in the last section we report the concluding
remarks.

2. Theoretical Background

In Ref. [35], we have reported a topological matrix
decomposition of the spin-free first-order reduced
matrix elements 1Di

j, corresponding to an N-electron
system described by a wave function � as

1Di
j =

∑
�

1Di
j(�) (1)

with

1Di
j(�) =

∑
σ

∑
k,l

(1
D

1
2
)iσ

kσ
Sk

l (�)
(1

D
1
2
)lσ

jσ , (2)
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where i, j, . . . are a set of orthonormal orbitals, σ is
the spin coordinate (α or β) and (1D

1
2 )iσ

kσ means the
elements of the positive square root matrix arising
from the first-order reduced density matrix. Sk

l (�) =
〈k|l〉� are the overlap integrals over Bader domains
� [10]. According to Bader’s theory, the whole real
space ∪�, is partitioned into the domains � holding
� ∩ �′ = ∅.

The elements 1Di
j(�) in Eq. (2) define a DRRDM

whose properties and foundations have been
described in Refs. 35, 37. This matrix possesses simi-
lar features to those of the ordinary reduced density
matrix; it is Hermitian and its trace is given by N�,
the number of electrons within the domain �. For
singlets and other spin symmetry states having null
spin projection, Sz = 0, the elements of the spin-free
first-order reduced density matrix associated with
the domain or region � can be calculated as [35]

1Di
j(�) =

∑
k,l

(1
D

1
2
)i

k Sk
l (�)

(1
D

1
2
)l

j (3)

so that the spin coordinate σ can be ignored.
The same scenario permits to introduce the struc-

ture of DAFH at the correlated wave function level
(correlated DAFH) �(�), in the topological decom-
position [39]. Regarding the spin-free structure of the
2D (2-RDM) matrix for any arbitrary type of wave
function, as [13, 41–45]

2Dik
jl = 1

2
1Di

j
1Dk

l − 1
4

1Di
l

1Dk
j + 1

2
�ik

jl , (4)

where �ik
jl stands for the matrix elements of the

2-RDM cumulant [41–45], the matrix elements for
�(�) read [39]

�i
j(�) =

∑
k,l

(
1
2

1D
i
l

1D
k
j − �ik

jl

)
Sk

l (�) (5)

It is worthwhile to note that this magnitude does
not refer to a particle density but to Fermi hole den-
sity coming from the fermion exclusion principle and
from the interaction between the electrons. The struc-
ture of Eq. (5) permits to split the � matrix into two
contributions [39]

�i
j(�) = �(e)i

j(�) + �(c)i
j(�), (6)

where

�(e)i
j(�) = 1

2

∑
kl

1D
i
l

1D
k
j Sk

l (�)

and

�(c)i
j(�) = −

∑
kl

�ik
jl Sk

l (�).

The first term on the r.h.s. in Eq. (6) describes
the exchange correlation while the last one repre-
sents the Coulomb correlation and both together
constitute the correlated DAFH matrix. It may be
noted that the exchange contribution �(e)i

j(�) is
always present for any wave function. However, for
a closed-shell wave function the irreducible many
body effects represented through the cumulant term
only appear in the case of correlated wave functions.
All the cumulant elements vanish for a closed-shell
Hartree–Fock wave function and hence both 1D(�)

and �(�) are coincident for this approach [35].

3. Comparison and Discussion of
�(�) and 1D(�) Models

Eqs. (3) and (5) express respectively the sym-
metric model for the domain-restricted first-order
density matrix 1D(�) and the DAFH matrix �(�),
associated with a physical domain �. Both matrices
have been proposed as tools for describing the elec-
tron distribution in a molecular system. The 1D(�)

matrix is a true density matrix, that is, it is hermitian,
positive semi-definite, bounded, has a finite trace
[13], and is representable [37], which assures that
there exists a wave function or a statistical ensem-
ble, though unknown, from which it derives. The
domains � define open systems, therefore, they may
be described necessarily within the grand-canonical
ensemble, and the necessary and sufficient condi-
tions for a closed-shell system 1D(�) indicate that its
eigenvalues, n�

i must lie within the real interval [0, 2],
that is, 0 ≤ n�

i ≤ 2 [37]. The �(�) matrix is not pos-
itive semi-definite in the general case, which is also
confirmed at local level of description [46]. There-
fore, negative eigenvalues (populations) as well as
populations greater than 2, which do not fulfill
the Pauli principle, can appear for the correlated
DAFH formulation and consequently this quantity
is not physically acceptable as an electron density.
Only for the closed shell Hartree–Fock approxima-
tion both 1D(�) and �(�) are coincident and hence
the DAFH proposal is equivalent to our symmetric
approach, because then the density cumulant terms
of 2D vanish as indicated in the previous section.

In a recent article, a “one-electron approxima-
tion to DAFH” has been proposed to approximate
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TABLE I
Negative eigenvalues and domain electronic populations in the domain-averaged correlated holes formalism for
H2O system in the SDCI treatment.

Domain N� N+
� Eigenvalue Degeneracy 〈i |i 〉H 〈i |i 〉′H 〈i |i 〉O

H 0.526 0.582 −0.014 1 0.122 0.014 0.864
−0.018 2 0.010 0.050 0.940

0.004 0.004 0.992

�(�) matrices for correlated state functions; such
approach has been denominated pseudo-DAFH [33].
To clarify the quality of this approximation, let us
show first that the pseudo-DAFH is nothing but the
model we called symmetric approach to 1D(�) in
Ref. [35], defined by Eq. (3). Following the authors
in Ref. [33], we will focus our attention on closed-
shell wave functions. For that goal, we consider the
elements of the positive square root matrix arising
from the spin-free first-order reduced density matrix
(1-RDM), (1D

1
2 )i

j and the overlap S(�)i
j = 〈i|j〉� in Eq.

(3) in the natural basis set in which 1Di
j = niδ

j
i , where

ni and δi
j stand for the natural occupation numbers

and the Kronecker delta, respectively. Therefore, the
simple replacement of this form into Eq. (3) yields

the symmetric form Gi
j(�) = n

1
2
i Si

j(�) n
1
2
j of Ref.

[33] [cf. Eq. (2.9)], which is our symmetric 1D(�)

model of Ref. [35]. The essential differences dis-
cussed earlier make �(�) and 1D(�) matrices to be
different entities; the former matrix is a Fermi corre-
lation hole density matrix, which possesses positive
and negative eigenvalues, whereas the latter one
has only zero and positive eigenvalues and is repre-
sentable.As a consequence of the earlier explanation,
�(�) may lead to inconsistencies arising from wrong
assumptions of mathematical and physical nature.
Therefore, it is important to state the limitations and
consequences of its application. It is worthwhile to
note that neither the symmetric approach 1D(�) nor
the �(�) one have a common basis of eigenvectors
for all the � domains in the system, that is, the corre-
sponding matrices are not diagonal in the same basis
set [35, 39]. Therefore, calculating quantum chemical
descriptors depending on the eigenvalues and eigen-
vectors of two domains may be considered as an
approximation [47]. Nevertheless, this situation may
be overcome within the 1D(�) models by use of the
isopycnic approach to the domain-restricted decom-
position of the first-order reduced density matrix in
which all domains share a common eigenvector basis
set [36].

Let us now present two examples of practical
nature, which permit to exemplify the properties
related above and turn out to be illustrative to under-
stand the physical consequences of the use of �(�)

analysis in comparison with the use of the formalism
of the domain-restricted reduced density matrices.
At first, we propose a simple but enlightening exam-
ple in which we calculate �(�) matrix for H2O
molecule at the single–double configuration interac-
tion level of approximation with the PSI 3.2 package
[48], in the 6-31G basis set at the equilibrium geom-
etry [49], to show the onset of negative eigenvalues
of these matrices as a consequence of its non positiv-
ity. Table I shows the results of the diagonalization
of �(�) [Eq. (5)] for the H atomic domain. Only the
most important negative eigenvalues are shown. The
most negative (about ∼−0.02) is doubly degener-
ate in population. The term 〈i|i〉� associated with a
given domain � for the i-th orbital entering in the
normalization condition

∑
�〈i|i〉� = 1 permits to

estimate the degree of delocalization of the orbital
over each domain [50, 51]. Therefore, the orbitals are
slightly delocalized over the actual H domain and
the other H′ atom in the system and practically local-
ized over the O atom. In the standard procedure of
the correlated DAFH matrix analysis these negative
eigenvalues (populations) are neglected [33, 34, 39]
to perform the isopycnic orbital localization transfor-
mation [50] and hence to associate the eigenvectors
to atoms and bonds. In case the negative popula-
tions become important, that is, their modulus are
appreciable, it may lead to unphysical results. Also,
the domain population is very different considering
the negative eigenvalues (N� = 0.527) or neglect-
ing them (N+

� = 0.582), as shown in Table I. These
difficulties are completely avoided within the frame-
work of 1D(�) theory, as it can properly support an
isopycnic transformation because all its eigenvalues
are positive [35]. Therefore, it is clear that neglecting
such eigenvalues of �(�) matrices produces a differ-
ent density and hence its integration over a domain
does not keep the right population. These results
may not be considered as unexpected, because as
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indicated earlier, �(�) issue form correlated wave
functions are not true particle densities. Other exam-
ple has been reported in advance for N2 molecule in
Ref. [40].

In the second example, a quasi-analytic VB model
for a two-electron system is implemented to show
in a graphic way the physical localization of the
electron cloud. For that goal, we use a simple model
[52], which has recently been subject of interest
in studies of population analysis [53]. This model
allows us to complement this critical discussion by
analyzing the behavior of both densities in terms
of the spatial localization of the electron cloud. We
will consider a two-electron homonuclear diatomic
molecular system, which has been used by the
authors of Ref. [34, 54] to properly compare the
behavior of both devices. The system VB wave
function is expressed by,

�VB(1, 2) = cos(ω)�cov(1, 2) + sin(ω)�ion(1, 2), (7)

where the wave functions �cov and �ion stand for the
covalent and ionic contributions respectively, and
the trigonometric functions cos(ω) and sin(ω) are
the VB expansion coefficients of each contribution,
which read,

�cov(1, 2) = 1√
2
[a(1)b(2) + b(1)a(2)]�;

�ion(1, 2) = 1√
2
[a(1)a(2) + b(1)b(2)]� (8)

where a and b are orthogonal atomic orbitals local-
ized on the atoms A and B respectively, and � is
the spin function for the two electrons with oppo-
site spin. The spin-free second-order reduced den-
sity matrix 2D (2-RDM) within this model in the
coordinate representation is [13]

2D(1, 2|1′, 2′) = cos2(ω)2Dcov(1, 2|1′, 2′)
+ sin2(ω) 2Dion(1, 2|1′, 2′) + sin(2ω) 2Dmix(1, 2|1′, 2′)

(9)

where 2Dcov, 2Dion and 2Dmix become defined by

2Dcov(1, 2|1′, 2′) = 1
2
[a(1)a(1′)b(2)b(2′)

+ b(1)b(1′)a(2)a(2′) + 2a(1)b(1′)b(2)a(2′)]
2Dion(1, 2|1′, 2′) = 1

2
[a(1)a(1′)a(2)a(2′)

+ b(1)b(1′)b(2)b(2′) + 2a(1)b(1′)a(2)b(2′)]
2Dmix(1, 2|1′, 2′) = 1

2
[a(1)a(1′)b(2)a(2′)

+ b(1)b(1′)a(2)b(2′)
+ a(1)b(1′)b(2)b(2′) + a(1)b(1′)b(2)a(2′)] (10)

Each orbital is centered at one of the nuclei denoted
by A and B, which are defined by atomic domains
�A and �B, respectively. To preserve the analytic
character of the model, a Mulliken-like scheme of
partitioning [1, 2], that is, identifying the atomic
domains with the atomic orbital associated to each
nucleus is used restricting the summation of the basis
functions at each atom (one per atom in this case).
Therefore, assuming the hypotheses,
∫

�A

a(x)a(x)dx ≈ 1
∫

�A

b(x)b(x)dx ≈ 0∫
�A

a(x)b(x)dx ≈ 0 (11)

the overlap matrix of domain A (here in after we will
use atom A for our goals) is

S�A =
(

1 0
0 0

)

1D(�) is directly calculated by application of Eq.
(3) for domain A. �(�) matrix [Eqs. (5)], may be eval-
uated by performing a partial trace over one variable,
making 2 = 2′ in Eqs. (9) and then integrating over
the volume defined by �A [39], that is, the basin
defining the atom within AIM theory context [10].
Then, it is obtained

1D(�A) =



1
2
(1 + | cos(2ω)|) cos(ω) sin(ω)

cos(ω) sin(ω)
1
2
(1 − | cos(2ω)|)




and

�(�A) =

 cos2(ω)

1
2

sin(2ω)

1
2

sin(2ω) sin2(ω)


 ,

respectively. From the above expressions, we cal-
culate the density maps for �(�A) and 1D(�A),
which are shown in Figures 1 and 2, respectively.
The horizonal axis indicates the linear space coordi-
nate. Atom A, with an associated atomic function
a(x), is placed on the right at the value 5.0 (arbi-
trary units), while atom B, with an associated atomic
function b(x), is placed on the left of the figure at
−5.0. The atomic functions used for the calculations
are 1s Slater-type with unit exponent. The vertical
axis represents the parameter ω defining the cova-
lent and ionic mixing coefficients contributions of
the VB wave function in Eq. (7). The zero or refer-
ence value of the map is placed just over the plane in
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which the figures are shown: white and grey colors
indicate positive values while black color indicates
zero value, respectively. It may be observed that the
behavior of both densities is markedly different. The
�(�) density at domain �A (Fig. 1) shows that at ω =
0 (pure covalent structure) the DAFH density is com-
pletely localized on atom A, while at intermediate
values in which both ionic and covalent structures
contribute to the wave function, the ionic component
begin to increase up to ω = π

4 (Hartree–Fock state) in
which this density at both atoms becomes identical.
Finally, at ω = π

2 (pure ionic structure) the domain-
averaged Fermi hole density completely migrates to
the other (complementary) domain, which defines
atom B. This description is in agreement with the
concept of the correlation hole so that it remains
localized at domain A in the covalent case and is com-
pletely transferred to the complementary domain B
in the ionic limit. This result has also been noted
in Ref. [54]. The 1D(�A) behavior is drastically dif-
ferent from the previous one, that is, the density
remains localized over the domain �A at all values
of ω and it only shows a small charge transference
to the complementary physical space defined by �B

domain at the Hartree–Fock state. This fact is due
to the behavior of the eigenvalues and eigenvectors.
For both densities the eigenvalues remain fixed and
equal to 0 and 1, that is, they keep ω independent;
the changes are only reflected on the eigenvectors

FIGURE 1. Density map for the domain
averaged-correlated hole �(�A) in the Valence Bond
model.

FIGURE 2. Density map for the domain-restricted
first-order reduced density matrix 1D(�A) in the Valence
Bond model.

that remain localized on the center A for all val-
ues of the mixing coefficients for 1D(�A), while for
�(�A) the eigenvector is localized at center A for
the covalent case and is transferred to center B for
the ionic limit. Therefore, in spite of �(�) density
is positive definite in this particular example (cf., its
matrix form), it shows a different behavior than the
domain-restricted density matrix.

4. Concluding Remarks

The critical comparison between the DAFHs
issued from correlated wave functions and DRRDM
formulations from both mathematical and physi-
cal points of view permits to clarify the differences
between these two schemes of description. The for-
mer one describes a Fermi correlation hole density,
that is, it is not a strict electron density because it is
not positive semi-definite, while the later one is a true
density [37]. The examples in the previous section
show both numerically and quasi-analytically, the
nonpositivity of �(�) by calculation of the eigen-
values of each matrix as well as the nonlocalized
DAFH density picture in comparison with the local-
ized one for 1D(�A) within the simple VB model.
Therefore, in general, because of those reasons, the
DAFH model cannot be considered as a rigorous
method for describing electron density in studies
of molecular structure, except for the Hartree–Fock

6 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 00, NO. 0



COMPARISION OF FERMI HOLE AND REDUCED DENSITY MATRICES

approach in which the DAFH density coincides with
a true-localized particle density.
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