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The field of optical nanoantennas has recently experienced an extensive growth in research
activities, owing to the fascinating possibility of confining electromagnetic radiation to sub-
wavelength spatial domains via surface plasmon polaritons. As a result of nanoconfinements,
the local electromagnetic field can be significantly enhanced, leading to a number of extraor-
dinary effects. The potential of these devices is spectacular; applications range from plasmonic
waveguides and nano-interconnects for ultrafast communications, to solar-cells energy-efficient
guiding, biosensors, amplification of molecular responses, increased Raman scattering, and
medical cancer treatments, among others.

An antenna is a part of a system designed to transmit or receive electromagnetic waves. This
device is able to convert the radiation energy of the propagating wave into localized energy, and
vice versa. The same energy conversion mechanism also occurs in metallic nanostructures at
the optical range: the electromagnetic radiation can be resonantly coupled to the free electrons
of noble metals, resulting in intense concentrations of energy at the surface of the nanostructure,
in a localized way. This resonant phenomenon is known in the literature as surface plasmon
resonance. Thus, a metallic nanostructure might operate like an optical antenna.

Following this concept, the simplest optical antenna is a metallic sphere of radius much
smaller than the incident wavelength, tuned in its plasmon frequency. One of the first devices
based on these ideas was proposed by Bailey and Fletcher, who patented an electromagnetic
wave converter (1973), and possibly Lin and colleagues were the first to report in 1996 resonant
light absorption by a fabricated subnanostructure and high frequency rectification in the visible
range.1 Since then, thanks to the great advances in manufacturing systems with controlled
nanoscale details, interest in these resonant devices has increased significantly. In recent years,
the study and design of optical antennas has aroused a special interest in the scientific community.
Unlike low-frequency antennas (radio and microwave), optical antennas need a specific design
for each application. However, in most cases the basic physics underlying the device operation
is the same: localized plasmon oscillations at the base of the antenna, which are transmitted
through collective oscillations of the free electrons in the metallic nanostructure.

In general, an optical antenna interacts with the transmitter or the receiver only for a pre-
designed set of frequencies, i.e., in a discrete way like a quantum system, significantly enhancing
the signal between the transmitter and the receiver. One of the simplest designs for these devices
is formed by two interacting particles (dimer) and core-shell systems are probably the most
promising dimers. These nanoparticles can be tuned by changing the geometry, such as the
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thickness of the metal coating or the core, or by breaking its symmetry. More complex systems
have also shown its effectiveness as nanoantennas: tips or tip arrays, metallic chains, or systems
comprising both of them.2 All these configurations can be regarded as metamaterials or materials
with average properties, which might exhibit magnetic behavior in the optical range or a negative
refractive index, among other interesting properties. To illustrate the nanoantenna properties at
resonance, in Fig. 1 we show the near field intensity and the far field pattern for a structure
comprising six silver nanowire chains illuminated by an evanescent wave, at resonance. The
direction of the main lobe in the far field pattern is that of the −3 diffraction order, and this
direction can be controlled by appropriately choosing the geometrical parameters of the structure,
such as the period and the inclination angle of each chain with respect to the periodicity direction.
The maximum transmitted intensity in this compound array is an order of magnitude larger than
that of a single chain with the same parameters, and also the directivity of the pattern is increased.
Therefore, the periodic addition of chains to the structure not only improves the transmittance
but also increases its directivity. The near field configuration evidences an enhancement even
in the vicinity of the furthest cylinders of each chain.

Like radio frequency antennas, optical antennas are generally designed employing metallic
structures. The main difference between them is that metals are excellent conductors at low fre-
quencies while in the optical range the metallic losses are important, and surface plasmon prop-
agation is attenuated significantly. This effect is noticeable in the power propagation in metallic
chains as well as in flat interfaces, where the propagation length reaches several wavelengths.3,4

One of today’s major technological challenges is the fabrication and characterization of
these nanostructures with dimensions of several tens of nanometers, which can confine and

Fig. 1 Near field intensity and far field pattern for a nanoantenna made of an array of six finite
chains of metallic wires distributed periodically. The system is illuminated by an evanescent wave
generated by total internal reflection in the plane interface at y = 0. In this example, the impinging
wavelength is λ = 400 nm (p polarization, magnetic field parallel to the wires), which corresponds
to the plasmon resonance of a single chain (inset). The inset shows an enlargement of the zone
near one chain, which comprises five wires. The array is tilted 45 ◦ with respect to the periodicity
direction. The far field pattern shows that the direction of maximum reflection can be pre-designed
at will by appropriately choosing the geometrical parameters of the structure.
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guide electromagnetic fields in sizes of the order of a tenth of a wavelength, i.e., well below
the classical diffraction limit. The design of optical antennas is a recently developed area of
research. These devices are far from being those well-known telescopic antennas (such as those
of old cars and portable radios), directional or omni-directional microantennas like those of
mobile phones or GPS systems, with which we are familiar. Optical antennas bring a conceptual
jump.

In order to characterize these photonic structures, a number of theoretical and experimental
approaches are currently being developed. Just as electronic circuits can be tuned by radio
frequency antennas, these “photonic circuits” could be used to tune optical antennas in a wide
range of the visible spectrum.5,6

On the other hand, different configurations of optical antennas are being experimentally
explored and characterized. Among the considered models there are the dipole-type antenna
(with its morphological variants) and the bowtie type [a scheme of this type of antenna is shown
in Fig. 2(a)].7 There are more complex ones such as the Yagi–Uda type, consisting of an array
of equally-spaced nano-rods [see Fig. 2(b)].8 The main aim of the reasearch in this area pretends
to manipulate, characterize, and predict the field concentration in reduced areas.

The development of ultrasmall spots of light may be the key to achieve, at the same
time, a high spatial resolution and an efficient emitter-receiver system. Communication at
these spatial distances is exclusively governed by evanescent waves. When these highly local-
ized and very intense fields are activated, the optical properties in the gap between particles
are altered, leading to interesting physical effects such as superluminal signal transmission,9

which, in turn, implies a conceptual change in communications. Given the characteristics
of these resonators, optical antennas constitute a promising interface device between optical
nanocircuits.10

Fig. 2 Two plasmonic nano-optical antennas: (a) Bowtie type. The incident field propagates in
the z direction and is polarized in the x direction. The near field is intensified just in the gap g and
in the triangles’ corners; (b) Yagi type antenna of 5 elements. The typical distance between the
antenna elements is about λ/4. Variations of the geometrical parameters and materials make it
possible to change the optical operation range.
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The potential for ultrafast communications is not the only possible use of these devices. In
general, the plasmon excitation is very sensitive to the medium surrounding the metal nanopar-
ticle as well as to the particle shape. These features of the system itself make optical antennas an
exceptional probe to explore the complex biological world in vitro or in vivo. One of the great
challenges in biology is to understand the complex molecular dynamics in its natural environ-
ment. For this purpose, a small amount of organic matter should be scanned (below 50 nm), and
these lengths are precisely of the order of magnitude that an optical antenna can provide for the
field confinement. Thus, it is possible to explore individual cells and to obtain their topography,
biochemical maps, and fluorescence images at the same time, with nanometer details. Besides,
other techniques based on optical or plasmon resonance antennas are being proposed and used
in biology and medical physics, for example, using these resonators as fluorescent markers or
as an ablation mechanism of cancer cells.11,12

The first steps are given. The cellular super-resolution and the generation of optical circuits
seem to be just around the corner helped by optical antennas.
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