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In this paper we propose a functional of the many-body cumulant of the second-order reduced
density matrix within the spin-free formalism of quantum chemistry which quantifies the idea of
electron correlation and allows one to detect spin entanglement. Its properties are rigorously stated
and discussed for spin-adapted pure states. Numerical determinations are performed for both
equilibrium conformations and dissociation processes in molecular systems. © 2010 American
Institute of Physics. �doi:10.1063/1.3503766�

I. INTRODUCTION

The collective behavior of an interacting many-electron
quantum system is known as correlated motion and is de-
scribed according to the level of approximation used for the
wave function. In such systems the relevant interaction
which drives the motion is that arising from the electrostatic
Coulomb potential between the electrons. The differences
between the description of the systems at the independent
particle level of approximation �uncorrelated wave func-
tions�, that is, the Hartree–Fock �HF� solutions which corre-
sponds to a Slater determinant and those from wave func-
tions which explicitly incorporate the treatment of the
electron interaction1 is noted in practice by the behavior of
the physicochemical properties. Consequently, the correla-
tion or many-body effects are crucial for determining the
properties of atoms and molecules.2,3 Their influence on the
electron distribution reveals through their relationships with
the chemical descriptors and the topology of the
distribution4,5 and it is crucial in the understanding of the
nature of the chemical bond.6–19 The fundamental chemical
concepts are the summary of the physical information con-
tained in the pth-order reduced density matrices �p-RDMs�
of an N-electron molecular system �p�N� which are directly
derived from the wave function.2,3,10 Most of the attempts to
describe the electron distribution in molecular systems have
been concentrated on the spin blocks of the first-order re-
duced density matrices �spin up or � and spin down or �
1-RDMs�, which determine electron and spin densities and
provide intuitive interpretations of chemical data.3,10,11 Nev-
ertheless, electron densities are not enough for a complete
description of the electron distribution of molecular systems,
especially those undergoing chemical reactions and electron
rearrangements �nonequilibrium geometrical conformations�
such as formation and breaking of bonds. In these cases,

higher-order density matrices are relevant20–23 and particu-
larly the second-order reduced density matrices �2-RDM� are
essentially needed.3,10 These latter types of system states per-
mit to introduce a natural linkage between the quantum
chemistry phenomena of correlation and entanglement23 �the
correlation that has not a classical counterpart�. This linkage
is based on electron interaction and spin conservation in a
single molecular system during the rearrangement.

In spite of the central place the electron correlation plays
in the electron distribution description, this is not an observ-
able in the quantum mechanical sense and consequently,
there is not a unique way to quantify its strength. Therefore
the search for a measure or degree of correlation �correlation
strength� associated with a determined wave function is a
challenge in quantum chemistry. The most widespread way
to perform this task rises from its definition and refers to the
difference between the actual and the HF energy.2,3 There are
also measures of electron correlation, such as the statistical
correlation coefficients based on the structure of the reduced
density matrices24,25 and recently others supported by en-
tropic concepts.20,21,23 Entanglement definition shares the
same difficulty and may be defined according to physical
considerations. Therefore, to give a measure of entanglement
is related with the idea of quantifying the correlation �its
nonclassical component� of the molecular electronic states,
which simplest example in quantum mechanics is the singlet
state of two spins.26 Antecedents in this sense may be found
in Ref. 22, where a Frobenius norm of the spin-dependent
cumulant matrix has been proposed to provide a quantitative
measure of correlation from spin entanglement of the state;
up to what we know it is the first definition in the scenario of
the two-particle reduced density matrix. Another interesting
approach based on entropic concepts to define entanglement
in molecular systems has been proposed in Ref. 23. We will
adopt the definition based on the general statement that a
quantum system of N identical particles in a pure state con-a�Electronic mail: rboc@df.uba.ar.
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tains at least two nonentangled subgroups of particles when
all the subgroups exhibit a complete set of properties.27,28

This definition intuitively corresponds to the physical situa-
tion of processes such as the mentioned electron rearrange-
ments during chemical reactions; dissociation processes are
particular cases of central importance in understanding the
nature of chemical bond.29 In such cases, it is necessary to
specify the pure states of the system as being spin-adapted,
i.e., the wave functions are eigenfunctions of the squared-

and projection-spin operators, Ŝ2 and Ŝz, with eigenvalues
S�S+1� and Sz, respectively. We will restrict ourselves to
such kind of states because spin purity is of fundamental
importance for a correct interpretation of highly correlated
entangled states, despite in general a pure state may not be
necessarily spin-adapted20,21 for most of cases in which en-
tanglement is defined. Regarding these previous consider-
ations, we propose a new measure of electron correlation in
molecular electronic states based on the many-body spin-free
cumulant of the 2-RDM which collects spin and Coulomb
correlation effects and allows one to quantity spin entangle-
ment. The onset of this measure has its physical roots in the
concept of effectively unpaired electrons �particle-hole
interrelations�18,30,31 which gathers correlation effects in both
closed- and open-shell systems. It is shown that the defini-
tion proposed follows the necessary physical and mathemati-
cal conditions expected to describe phenomena related with
molecular electron distribution.

We have organized this article as follows. The second
section summarizes the theoretical concepts and notation
used in this paper. In the third section we propose the new
tool for measuring electron correlation and spin entangle-
ment, showing its advantages. Our proposal has been applied
to selected molecular systems in equilibrium and nonequilib-
rium conformations; a discussion of the obtained numerical
results and their physical consequences is reported in the
fourth section. Finally, the last section points out the conclu-
sions of this work.

II. THEORETICAL BACKGROUND

We will describe an N-electron system by means of a
determined wave function, ��S ,Sz�, with defined spin quan-
tum numbers S and Sz. The elements of the first- and second-
order reduced density matrices corresponding to that state

will be denoted by 1Dj�
i� and 2D

j�l��
i�k��

, respectively, in which
i , j ,k , l ,¯ are orbitals of an orthogonal basis set and � and
�� are the spin coordinates �� ,��=� ,��. The spin-free ver-
sion of the elements of these reduced density matrices are
1Dj

i =��
1Dj�

i� and 2Djl
ik=��,��

2D
j�l��
i�k��

and their traces, Tr�1D�
and Tr�2D�, will be normalized to N and � N

2
�, respectively.

The elements 2D
j�l��
i�k��

have been formulated by cumulant
theory as25,32–34

2D
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= 1
2
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k��

− 1
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l��
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k��
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, �1�

where �
j�l��
i�k��

are the cumulant matrix elements of the second-
order reduced density matrix. The spin-free version of the

elements of the second-order reduced density matrix, 2Djl
ik

=��,��
2D

j�l��
i�k��

, can be written as35

2Djl
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2
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in which 1Dj
i =��

1Dj�
i� are the elements of the spin-free first-

order reduced density matrix; 1D�s�
j
i = 1Dj�

i� − 1Dj�
i� are the ele-

ments of the spin density matrix and � jl
ik=��,��� j�l��

i�k��
. The

elements 2Djl
ik and 1Dj

i are independent of the spin substates
of quantum number Sz corresponding to the state �,36 as
well as those of the sum �−�1 /4�1D�s�

l
i 1D�s�

j
k ;+�1 /2�� jl

ik� in
Eq. �2�.35 However, the terms 1D�s�

l
i 1D�s�

j
k and � jl

ik separately
are Sz-dependent.35 In fact, the sum �−�1 /4�1D�s�

l
i 1D�s�

j
k

+ �1 /2�� jl
ik� is the spin-free version of the cumulant of the

second-order reduced density matrix.25,37,38 The matrix �
possesses the fundamental property that is a size-consistent
quantity.22,39,40 This matrix may be contracted in two differ-
ent ways as has been published elsewhere14,30,41 and it there-
fore shows its connection with the elements of the density
matrix of effectively unpaired electrons, uj

i, defined
as16–18,31,42

uj
i = �

k

1Dk
i 1D̄j

k = 2 1Dj
i − �

k

1Dk
i 1Dj

k, �3�

where 1D̄j
k stands for the matrix elements of the first-order

hole reduced density matrix, 1D̄. The trace of the u matrix
has been termed as number of electrons effectively
unpaired42–44 so that Nu=�iui

i=2N−�i,k
1Dk

i 1Di
k.

Recently, in Refs. 30 and 45 we have reported the rela-
tionships between the quantities Nu, �i,k�ki

ik�Sz�, and the spin
quantum numbers S and Sz resulting

Nu = 2S + 2S2 − 2Sz
2 + �

i,k
�ki

ik�Sz� . �4�

Note that the quantity Nu is Sz-independent but the elements
� jl

ik depend on that substate35 which is stressed by the nota-
tion �Sz� in formula �4�. In the case of the highest projection
substate, Sz=S, Eq. �4� is transformed into the simpler ex-
pression

Nu = 2S + �
i,k

�ki
ik�Sz = S� , �5�

which provides the decomposition of the number of effec-
tively unpaired electrons into two terms. The first term 2S
represents the number of net spin unpaired electrons whereas
the second one �i,k�ki

ik�Sz=S� accounts for the statistically
irreducible correlation effects.30 The decomposition of the
trace of the effectively unpaired electron density
matrix14,18,19,31,46,47 into well defined terms30 �cf. Eqs. �4� and
�5�� permitted to understand the physical meaning of the cu-
mulant densities and therefore the direct connection of the
former matrix with the spin and correlation effects. Therefore
because of the apparent relation between the correlation ef-
fects and the concept of entanglement, in the next section we
propose an alternative assessment of electron correlation and
spin entanglement based on the quantity �i,k�ki

ik�Sz=S�.
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III. A MEASURE OF THE CORRELATION:
SPIN ENTANGLEMENT CONTRIBUTION

It has been reported that correlation measures only de-
pending on the 1-RDM exhibit the same degree of correla-
tion for systems states differing significantly,22 which is ob-
viously unphysical. However, in quantum systems with two-
particle interactions, there is a one to one mapping between
the 2-RDM and the wave function for nondegenerate ground
states48 or for degenerate states which can be distinguished
by at least one operator containing just two-particle
interactions.33 Hence, Ref. 22 concluded from this mapping
that the 2-RDM is needed for a correlation measure of
atomic and molecular systems in order to avoid the above
mentioned drawback. For these reasons and according to our
previous studies involving the quantities defined by Eqs. �4�
and �5�, formulated in terms of many-body cumulant ele-
ments �the statistically irreducible part of the 2-RDM�,30 it
seems feasible to propose the quantity

	 = �
i,k

�ki
ik�Sz = S� �6�

as a simpler measure of electron correlation 	, corresponding
to the wave function ��S ,Sz=S�.

Our proposal is based on the properties of the cumulant
matrix, but in practical terms it only needs the spin-free first-
order reduced density matrix �available in most of the codes�
and the spin S of the state of the system. However, it is
worthy to note that the 	 quantity implicitly depends on the
2-RDM due to its dependence on the S spin number coming

from the square spin operator Ŝ2, which is a two-particle
operator. The quantity 	 viewed as Nu−2S �Eq. �5�� should
be regarded as the effective number of correlated electrons.21

It is evident from 	 definition �cf. Eq. �6�� that this quantity
accounts for the total electronic correlation which includes
classical correlation and nonclassical one �i.e., entangle-
ment�. Both effects are present in the many-body cumulant
part of the 2-RDM and they may not be separated. Neverthe-
less, as will be shown later, it is possible to evaluate the spin
entanglement itself in certain cases, as in dissociation pro-
cesses of molecular systems. Thus, the difference between
the 	 quantities of a given molecular system at the dissocia-
tion limit and those of its dissociation fragments allows one
to extract the spin entanglement measure from the whole
electronic correlation.

Let us now enumerate and discuss the properties of the
spin-free 2-RDM cumulant crossed trace measure �CCTM�
defined by Eq. �6�. These properties constitute often required
criteria for correlation and entanglement measures.49 They
follow from those of the cumulant part of the 2-RDM, and
hence, they are generally shared by the measure introduced
in Ref. 22, the square of the Frobenius norm of the cumulant
2-RDM.

�1� CCTM is invariant under any unitary transformation of
the orbital space.

�2� The correlation energy is commonly accepted to be
negative; hence the negative this energy is, the more
correlation the system has, defining a trend. Therefore,
due to the relationship between correlation and en-

tanglement concepts, measures of entanglement �and/or
correlation index� have been considered as real values
in the literature, i.e., the index may be positive or nega-
tive. CCTM is positive semidefinite, i.e., 	
0,30 the
equality being valid only for a Slater determinant wave
function. Also it has an upper limit, 	�2�N−S�.30 Con-
sequently, such an index is easier to interpret regarding
its zero reference value corresponding to the indepen-
dent particle model as a nonentangled state.21

�3� CCTM for particles and holes are coincident, i.e., 	

= 	̄=�i,k�̄ki
ik�Sz=S� as a consequence of the coincidence

of the second-order particle and hole reduced density
matrix cumulants,50 thus preserving the particle-hole
symmetry �cf. Eq. �3��.

�4� Assuming a closed-shell system XM with associated
spin number SXM

, composed of a number M of identical
subsystems �X1� with spin number SX1

, it holds

	�XM� = M�	�X1� − 2�SXM

M
− SX1

	
 
 M	�X1� .

The equality is valid for the case in which the system
dissociates into closed-shell subsystems40 and indicates
that the cumulant of the system is equal to M times the
individual 2-RDM cumulants, and for open-shell states
that couple in such a way that the term �SXM

/M�−SX1
vanishes �an example will be shown in the next sec-
tion�, while the inequality holds for other coupling
cases of open-shell fragments. A similar expression
may be derived in the case the subsystems are not iden-
tical. Therefore, the inequality measures the correlation
of the subsystems due to the spin entanglement and the
size consistency �extensivity� property applies to
CCTM because the cumulant scales linearly with the
size of the system.

In the next section we report numerical determinations which
guarantee the reliability of our proposal.

IV. RESULTS AND DISCUSSION

Numerical calculations have been performed for selected
systems in order to achieve a reliable physical understanding
of the concept of electron correlation and entanglement. Two
situations have been considered: molecular systems in equi-
librium conformations and dissociation processes that repre-
sent conformations out of equilibrium. For the systems in
equilibrium, the calculations have been carried out at their
corresponding experimental geometries,51 at level of con-
figuration interaction with single and double excitations
�CISD�, using 6-31G basis sets. For the dissociation se-
quences a full configuration interaction level has been used
with minimal basis �STO-3G� sets to render the calculations
feasible. All calculations have been performed with the PSI

3.3 program package52 using as reference the restricted
Hartree–Fock wave functions �singlets� and restricted open-
shell Hartree–Fock �doublets and triplets� states and their
corresponding molecular orbitals as orthonormal basis sets.
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Table I reports the results for the CCTM 	 and related
quantities for several molecular systems at their equilibrium
conformations. We will discuss the systems in that Table
divided into selected compound sets to relate the concept of
correlation with global properties of physical relevance. The
first set is composed by the isoelectronic series constituted
by the molecules HF, H2O, NH3, and CH4 in their singlet
states; as may be seen in Table I, the CCTM 	 increases as
the system becomes linked by stronger covalent bonds, i.e.,
following the sequence HF�H2O�NH3�CH4. These re-
sults are physically acceptable because ionic systems tend to
transfer charge from one atom to another to preserve a
closed-shell structure, while covalent bonds increase the
charge density in the internuclear regions.6,7 The second set
is composed by the diatomic homonuclear molecules C2 ,O2

and the linear HBBH one in their triplet ground states, pos-
sessing all of them an inversion center; as can be observed
all these systems show similar CCTM despite the number of
electrons of the diatomic systems is different. These results
are consistent with those observed in the first series because
in these homonuclear molecules each atom possesses an
even number of electrons providing a covalent bond and BH
and BB bonds in HBBH are covalent.35 The group of sys-
tems composed of carbon and hydrogen atoms
CH4,CH3,CH2,CH is useful to compare the effect the num-
ber of substates of a multiplet has on the correlation of the
system. The CH4 singlet possesses the greater 	 within this
set. The CCTM decreases as the multiplicity of the state
increases having similar values for the CH3 and CH doublets
and smaller value for the triplet state of CH2. Another group
to exemplify the equilibrium situations is that of doublet
states of NO and H2NO which have similar CCTM values,
showing the same trend as the above hydrocarbon series. All
these simple examples have permitted to note that the spin
projection S and the number of electrons in the system are
relevant to describe such a correlation measure but also the
nature of the bonds is important to give a physical insight
about this property.

The second step to test the CCTM proposal is to con-
sider its behavior in molecular conformations out of equilib-
rium, i.e., electron rearrangements during chemical reactions.

To give a physical interpretation of the present measure we
have chosen dissociation processes of diatomic molecular
systems in states which separate into both closed- or open-
shell fragments. The size consistency of this measure is of
fundamental importance to test its ability to quantify spin
entanglement, as noted in Ref. 22. Table II and Figs. 1–6
show the behavior of 	 in dissociation processes. Let us in-
spect the results regarding the consistency reference of
CCTM 	 for a system such that M times the measure of an
isolated single closed-shell fragment �atom or group of at-
oms� equals M times the measure of one of these closed-
shell fragments at infinite separation. Table II shows that the
CCTM 	 for dissociation of the Be2 molecule at infinite
nuclear separation equals the measure for two isolated Be
atoms because both the molecule and the atoms possess
closed-shell structure. Figure 1 shows that the 	 value for the
system Be2 asymptotically tends to the corresponding value
for two isolated Be atoms. This observation points out that
the correlation only arises from the interaction of the elec-
trons inside each fragment. Figure 1 shows the increment of
Be2 correlation energy Ecorr as a function of the interatomic
distance, reaching a constant value for infinite separation. It
may be noted that absolute values of Ecorr and CCTM 	 show

TABLE I. CCTM 	, number of electrons N, and spin number S for selected
species at their equilibrium conformation, at configuration interaction level
�single and double excitations�, with 6-31G basis sets.

System State 	 N S

HF 1�+ 0.2372 10 0
H2O 1A1 0.3081 10 0
NH3

1A1 0.3520 10 0
CH4

1A1 0.3858 10 0
C2

3�g
+ 0.5043 12 1

O2
3�g

− 0.5036 16 1
HBBH�linear� 3�g

− 0.3981 12 1

CH3
2A1 0.3118 9 1

2

CH2
3B1 0.2414 8 1

CH 2 0.3499 7 1
2

NO 2 0.5480 15 1
2

H2NO 2B1 0.5080 17 1
2

TABLE II. Size consistency of the CCTM 	, for molecular systems at infi-
nite internuclear distances, at full configuration interaction level, with
STO-3G basis sets.

System State 	

Be2
1�g

+ 1.553
2Be 1.553
H2

1�g
+ 2.000

2H 0.000
Li2

1�g
+ 2.002

2Li 0.002
Li2

3�g
+ 0.002

2Li 0.002
H4 �chain� 1�g

+ 4.000
4H 0.000
H6 �chain� 1�g

+ 6.000
6H 0.000
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FIG. 1. CCTM 	 and correlation energy, Ecorr, as functions of the internu-
clear distance R �in angstroms� for Be2 molecule in singlet ground state.
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a similar behavior during the dissociation process. The H2

system in singlet state is crucial to understand dissociation
processes into open-shell fragments that couple into a singlet
state. For infinite distances, 	�H2�=2.0, while for isolated
hydrogen atoms 	�H�=0 because there is no electron inter-
actions, as shown in Table II. Therefore, the only source of
correlation in this system is due to spin, i.e., spin entangle-
ment. Figure 2 shows the increase in correlation energy and
CCTM 	 due to the spin state of the system. To complement
this example, the Li2 molecule in its singlet state is pre-
sented, to show the CCTM when a larger number of elec-
trons is considered. Figure 3 shows 	�Li2� reaching the value
2.002 at infinite nuclear separation and Table II shows that
	�Li2��2	�Li��0. This latter result reflects the fact that as
Li fragments are open-shell atoms, the correlation is not only
due to spin but also to correlation effects of the electrons in
the fragments. Thus, the difference between the 	 value of
Li2 system at infinite internuclear separation and that corre-
sponding to two infinitely separated Li atoms measures en-
tanglement due to spin. Figure 3 shows that the correlation
energy increases following the same trend as the H2 system.
However, Li2 in a triplet state, i.e., a greater spin multiplicity

of the state �cf. Table II�, shows that at infinite distance
	�Li2�=2	�Li�, because the unpaired electrons accommodate
in different spatial parts; i.e., the wave function of the triplet
is expanded nearly by only one Slater determinant at all dis-
tances leading to a nonentangled spin state for large dis-
tances between the nuclei. This situation is different from the
singlet state which needs at least two Slater determinants to
be expanded �Fig. 4�. It means that this correlation measure
is also capable of detecting the deviation of the wave func-
tion of the system from a monodeterminantal one and pro-
vides a measure of the multiconfigurational character of the
wave function. Figure 4 shows the vanishing correlation en-
ergy for the infinitely far apart fragments. The last set of
systems is two H atom chains, H4 and H6 in their singlet
states, i.e., H–H–H¯H which show results for CCTM and
correlation energy similar to those obtained for H2 singlet
state �cf. Fig. 5�. Table II shows CCTM values 4.0 and 6.0
respectively; due to the absence of electron interaction
within the fragments, these CCTM values arise only from
spin entanglement in both systems. Similarly, the correlation
energies increase as the internuclear distance between the
atoms tends to be infinite, as shown in Figs. 5 and 6.
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FIG. 3. CCTM 	 and correlation energy, Ecorr, as functions of the internu-
clear distance R �in angstroms� for Li2 molecule in singlet ground state.
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FIG. 4. CCTM 	 and correlation energy, Ecorr, as functions of the internu-
clear distance R �in angstroms� for Li2 molecule in triplet state.
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FIG. 5. CCTM 	 and correlation energy, Ecorr, as functions of the internu-
clear distance R �in angstroms� for H4 molecule in ground singlet states.
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FIG. 2. CCTM 	 and correlation energy, Ecorr, as functions of the internu-
clear distance R �in angstroms� for H2 molecule in singlet ground state.
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V. CONCLUDING REMARKS

In this work we have dealt with electron correlation ef-
fects, which are of paramount importance to describe mo-
lecular properties and electron rearrangement. We have fo-
cused on the entanglement concept, that is, the correlation in
a quantum system which has no classical picture. We have
proposed a measure of electron correlation and entanglement
within the spin-free formulation of quantum chemistry. We
have also analyzed the physical and mathematical properties
of that quantity, which has been termed by the acronym
CCTM. This measure which is directly related with the
2-RDM many-body cumulant allows one to interpret the on-
set of the contributions to the correlation effects and to
evaluate the spin entanglement, which is an important part of
such correlation effects. Numerical examples are presented
dealing with equilibrium and nonequilibrium geometrical
structures in selected molecular systems to measure spin cor-
relations. The present proposal, i.e., CCTM, can be applied
to any wave function quality since it does not depend on how
the 2-RDM is obtained. The information contained in the
2-RDM and the size consistency of its many-body cumulant
indicate that the CCTM quantity is a useful tool to properly
describe the strength of electron correlation and entangle-
ment in quantum mechanics.

ACKNOWLEDGMENTS

This report has been financially supported by Projects
X017 �Universidad de Buenos Aires�, PIP No.
11220090100061 �Consejo Nacional de Investigaciones
Científicas y Técnicas, República Argentina�, Grant No.
CTQ2009-07459/BQU �the Spanish Ministry of Education�
and Grant No. GIU09/43 �Universidad del País Vasco�. We
thank the Universidad del País Vasco for allocation of com-
putational resources.

1 P. Fulde, Electron Correlations in Molecules and Solids �Springer, Berlin,
1993� �and references therein�.

2 P. O. Löwdin, Phys. Rev. 97, 1474 �1955�.
3 E. R. Davidson, Reduced Density Matrices in Quantum Chemistry �Aca-
demic, New York, 1976� �and references therein�.

4 R. F. W. Bader, Atoms in Molecules: A Quantum Theory �Clarendon,

Oxford, 1994� �see also references therein�.
5 P. L. A. Popelier, Atoms in Molecules: An Introduction �Pearson, London,
1999�.

6 R. M. Lobayan, R. C. Bochicchio, L. Lain, and A. Torre, J. Chem. Phys.
123, 144116 �2005�.

7 R. M. Lobayan, R. C. Bochicchio, L. Lain, and A. Torre, J. Phys. Chem.
A 111, 3166 �2007�.

8 R. M. Lobayan, R. C. Bochicchio, A. Torre, and L. Lain, J. Chem. Theory
Comput. 5, 2030 �2009�.

9 R. M. Lobayan, D. R. Alcoba, R. C. Bochicchio, A. Torre, and L. Lain, J.
Phys. Chem. A 114, 1200 �2010�.

10 R. McWeeny, Methods of Molecular Quantum Mechanics �Academic,
London, 1969� �see also references therein�.

11 A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure �Macmillan, New York, 1982�.

12 R. C. Bochicchio, J. Mol. Struct.: THEOCHEM 228, 209 �1991� �and
references therein�.

13 X. Fradera, M. A. Austen, and R. F. W. Bader, J. Phys. Chem. A 103,
304 �1999�.

14 R. C. Bochicchio, L. Lain, and A. Torre, Chem. Phys. Lett. 374, 567
�2003�.

15 D. R. Alcoba, R. C. Bochicchio, L. Lain, and A. Torre, Chem. Phys. Lett.
442, 157 �2007�.

16 K. Takatsuka, T. Fueno, and K. Yamaguchi, Theor. Chim. Acta 48, 175
�1978�.

17 K. Takatsuka and T. Fueno, J. Chem. Phys. 69, 661 �1978�.
18 R. C. Bochicchio, J. Mol. Struct.: THEOCHEM 429, 229 �1998�.
19 R. C. Bochicchio, L. Lain, and A. Torre, Chem. Phys. Lett. 375, 45

�2003�.
20 A. V. Luzanov and O. V. Prezhdo, Mol. Phys. 105, 2879 �2007�.
21 A. V. Luzanov and O. A. Zhikol, Int. J. Quantum Chem. 104, 167 �2005�.
22 T. Juhász and D. A. Mazziotti, J. Chem. Phys. 125, 174105 �2006� �and

references therein�.
23 S. Kais, in Reduced-Density-Matrix Mechanics with Applications to

Many-Electron Atoms and Molecules, Advances in Chemical Physics Vol.
134, edited by D. A. Mazziotti �Wiley-Intersience, Hoboken, 2007� �and
references therein�.

24 W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 116, 4787 �2002�.
25 W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 110, 2800 �1999�.
26 L. Diósi, A Short Course in Quantum Information Theory. An Approach

from Theoretical Physics �Springer, Berlin, 2007�.
27 G. C. Ghirardi, L. Marinatto, and T. Weber, J. Stat. Phys. 108, 49 �2002�.
28 G. C. Ghirardi and L. Marinatto, Opt. Spectrosc. 99, 386 �2005�.
29 R. McWeeny, Faraday Discuss. 135, 13 �2007�.
30 L. Lain, A. Torre, D. R. Alcoba, and R. C. Bochicchio, Chem. Phys. Lett.

476, 101 �2009�.
31 D. R. Alcoba, R. C. Bochicchio, L. Lain, and A. Torre, Chem. Phys. Lett.

429, 286 �2006�.
32 C. Valdemoro, in Reduced-Density-Matrix Mechanics with Applications

to Many-Electron Atoms and Molecules, Advances in Chemical Physics
Vol. 134, edited by D. A. Mazziotti �Wiley-Intersience, Hoboken, 2007�
�and references therein�.

33 D. A. Mazziotti, Phys. Rev. A 57, 4219 �1998�.
34 D. A. Mazziotti, Chem. Phys. Lett. 289, 419 �1998�.
35 D. R. Alcoba, R. C. Bochicchio, L. Lain, and A. Torre, Phys. Chem.

Chem. Phys. 10, 5144 �2008�.
36 R. McWeeny and Y. Mizuno, Proc. R. Soc. London A259, 554 �1961�.
37 L. Lain, A. Torre, and R. Bochicchio, J. Chem. Phys. 117, 5497 �2002�.
38 A. Torre and L. Lain, J. Mol. Struct.: THEOCHEM 426, 25 �1998� �and

references therein�.
39 W. Kutzelnigg, in Reduced-Density-Matrix Mechanics with Applications

to Many-Electron Atoms and Molecules, Advances in Chemical Physics
Vol. 134, edited by D. A. Mazziotti �Wiley-Intersience, Hoboken, 2007�
�and references therein�.

40 J. Harriman, in Reduced-Density-Matrix Mechanics with Applications to
Many-Electron Atoms and Molecules, Advances in Chemical Physics Vol.
134, edited by D. A. Mazziotti �Wiley-Intersience, Hoboken, 2007�.

41 D. R. Alcoba, L. Lain, A. Torre, and R. C. Bochicchio, Chem. Phys. Lett.
470, 136 �2009�.

42 L. Lain, A. Torre, R. C. Bochicchio, and R. Ponec, Chem. Phys. Lett.
346, 283 �2001�.

43 V. N. Staroverov and E. R. Davidson, J. Am. Chem. Soc. 122, 186
�2000�.

44 V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 330, 161 �2000�.

0

0.75

1.5

2.25

3

3.75

4.5

5.25

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-1.05

-0.9

-0.75

-0.6

-0.45

-0.3

-0.15

0
C

C
T

M

C
o

rr
e

la
ti
o

n
E

n
e

r g
y

( H
a

rt
re

e
)

R (Angstrom)

CCTM
Correlation Energy (Hartree)

FIG. 6. CCTM 	 and correlation energy, Ecorr, as functions of the internu-
clear distance R �in angstroms� for H6 molecule in ground singlet states.

144104-6 Alcoba et al. J. Chem. Phys. 133, 144104 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1103/PhysRev.97.1474
http://dx.doi.org/10.1063/1.2049227
http://dx.doi.org/10.1021/jp0681101
http://dx.doi.org/10.1021/jp0681101
http://dx.doi.org/10.1021/ct900281q
http://dx.doi.org/10.1021/ct900281q
http://dx.doi.org/10.1021/jp909935j
http://dx.doi.org/10.1021/jp909935j
http://dx.doi.org/10.1016/0166-1280(91)90058-R
http://dx.doi.org/10.1021/jp983362q
http://dx.doi.org/10.1016/S0009-2614(03)00751-6
http://dx.doi.org/10.1016/j.cplett.2007.05.068
http://dx.doi.org/10.1007/BF00549017
http://dx.doi.org/10.1063/1.436631
http://dx.doi.org/10.1016/S0166-1280(97)00357-6
http://dx.doi.org/10.1016/S0009-2614(03)00805-4
http://dx.doi.org/10.1080/00268970701725039
http://dx.doi.org/10.1002/qua.20511
http://dx.doi.org/10.1063/1.2378768
http://dx.doi.org/10.1063/1.1448827
http://dx.doi.org/10.1063/1.478189
http://dx.doi.org/10.1023/A:1015439502289
http://dx.doi.org/10.1134/1.2055932
http://dx.doi.org/10.1039/b615518a
http://dx.doi.org/10.1016/j.cplett.2009.05.071
http://dx.doi.org/10.1016/j.cplett.2006.07.068
http://dx.doi.org/10.1103/PhysRevA.57.4219
http://dx.doi.org/10.1016/S0009-2614(98)00470-9
http://dx.doi.org/10.1039/b806268d
http://dx.doi.org/10.1039/b806268d
http://dx.doi.org/10.1063/1.1499955
http://dx.doi.org/10.1016/S0166-1280(97)00304-7
http://dx.doi.org/10.1016/j.cplett.2009.01.034
http://dx.doi.org/10.1016/S0009-2614(01)00974-5
http://dx.doi.org/10.1021/ja993375x
http://dx.doi.org/10.1016/S0009-2614(00)01088-5


45 A. Torre, D. R. Alcoba, L. Lain, and R. C. Bochicchio, J. Phys. Chem. A
114, 2344 �2010�.

46 M. Head-Gordon, Chem. Phys. Lett. 372, 508 �2003�.
47 R. C. Bochicchio, A. Torre, and L. Lain, Chem. Phys. Lett. 380, 486

�2003�.
48 M. Rosina, in Reduced Density Matrices with Applications to Physical

and Chemical Systems, Queen’s Papers on Pure and Applied Mathematics
Vol. 11, edited by J. Coleman and R. M. Erdahl �Queen’s University,

Kingston, Ontario, 1968�.
49 D. Bru�, J. Math. Phys. 43, 4237 �2002�.
50 C. Valdemoro, Phys. Rev. A 45, 4462 �1992�.
51 Handbook of Chemistry and Physics, 59th ed., edited by R. C. Weast

�CRC, Cleveland, OH, 1979�.
52 T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King,

M. L. Leininger, S. T. Brown, C. L. Janssen, E. T. Seidl, J. P. Kenny, and
W. D. Allen, J. Comput. Chem. 28, 1610 �2007�.

144104-7 Measure of entanglement J. Chem. Phys. 133, 144104 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1021/jp9090848
http://dx.doi.org/10.1016/S0009-2614(03)00422-6
http://dx.doi.org/10.1016/j.cplett.2003.09.035
http://dx.doi.org/10.1063/1.1494474
http://dx.doi.org/10.1103/PhysRevA.45.4462
http://dx.doi.org/10.1002/jcc.20573

