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We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field

evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation

and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic

behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or

quiescent singularities. The latter correspond to a type of sudden singularity.
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I. INTRODUCTION

One of the most puzzling discoveries of the last years in
physics is the current acceleration of the Universe [1].
Despite the huge efforts made so far to find a well-
motivated theoretical framework for this behavior no
consensus has been reached, even though a fin- tuned
cosmological constant is the simplest option to match
the current observations [1–4]. There are two main streams
of thought that try to explain the late-time speed up of the
Universe: (i) modified theories of gravity on large scale,
which by weakening the gravitational interaction on those
scales allow inflationary universes (cf. Refs. [5–9]) (ii) a
dark energy component, corresponding to a new compo-
nent on the cosmic pie of the Universe, that violates the
strong energy condition and therefore allows accelerating
universes [10].

One approach to build a modified theory of gravity relies
on extra dimensions. The idea of extra dimensions is quite
old in physics and it dates back to Kaluza and Klein. In the
last decades it has been invoked by string theory as an
approach to unify the different interactions in nature and,
in particular, as a new road to obtain a consistent theory of
quantum gravity. In this modern approach not only do the
extra dimensions play a crucial role but also the branes
[11]. In particular, within the context of brane-world
models, our Universe corresponds to a brane; i.e., a
4-dimensional (4d) hypersurface, embedded in a higher
dimensional space-time dubbed the bulk. The simplest of
these models are Randall-Sundrum models corresponding
to an ultraviolet modification of general relativity [12] or
the Dvali-Gabadadze-Porrati (DGP) model corresponding
to an infrared modification of general relativity [13]. The
latter is a promising approach, despite its shortcomings
[14], to describe the current inflationary epoch of the
Universe.

The DGP model contains two set of solutions, usually
referred to as the self-accelerating branch and the normal
branch. While the self-accelerating branch as its name
indicates is accelerating in the absence of any kind of
dark energy, the normal branch requires some sort of stuff
to describe any inflationary era of the Universe. On the
other hand, the normal branch is free from the ghost issue
present on the self-accelerating DGP solution. Therefore, it
is very interesting to obtain late-time accelerating solutions
on the normal branch as it is a mean to combine the positive
aspects of both branches: acceleration and avoidance of
the ghost problem. This will be one of our motivations on
the present work. Indeed, in the present paper, we show
how it is possible to get a set of accelerating branes of the
normal branch by means of a k-essence field embedded on
the brane. The Lagrangian of such a field is quite general
and it was introduced to explain the cosmological inflation
and a link between string theory and inflation [15]. There
the authors introduced the k inflation and showed that the k
field may drive an inflationary evolution starting from
rather generic initial conditions. Perhaps, the latter is the
only known mechanism that can dynamically solve the
flatness and the horizon problem of the Universe [16].
The k-essence scalar field is driven by a potential depend-
ing on the k field and a kinetic function depending on
nonstandard higher order kinetic terms. In this general
framework, and due to these nonstandard terms, it was
possible to evidence that the k field may drive an accel-
erated expansion of the Universe without using a specific
potential term [17]. Latter on purely kinetic models [18,19]
driven by the k field and the crossing of the phantom
divide with purely kinetic multiple k-essences were
developed [20].
A k-essence field localized on the brane evolving

linearly with the cosmological time for arbitrary kinetic
functions and driven by an inverse quadratic polynomial
potential in [Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW)] cosmology was investigated in [21]. There the
solutions include accelerated and bouncing universes as

*mariam.bouhmadi@ist.utl.pt
†chimento@df.uba.ar

PHYSICAL REVIEW D 82, 103506 (2010)

1550-7998=2010=82(10)=103506(6) 103506-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.103506


well as a model ending in a final singularity such as a big
crunch or a big rip, obtaining also power law solutions in
the high- and low-energy regimes. The potential interpo-
lates between V / ����1 in the early Universe where the
strong effect on the brane cosmology becomes important
and V / ��2, recovering the power law solution at late
times. Really, the quadratic brane correction shifts the
inverse square potential, characterizing the FLRW cosmol-
ogy, to the inverse linear one at high energy. Recently the
crossing of the phantom divide with a linear k field in a
flat three brane with nonzero cosmological constant and
negative energy density was analyzed [22]. In showing the
crossing, there was used the energy conditions on the
effective equation of state of the brane worlds.

A complementary motivation for our analysis is to
classify the different kinds of singularities, in particular,
those related to dark energy, that may show up on the
brane. On the other hand, we would like to highlight that
there is a mathematical duality between both branches.
Indeed, we can obtain the homogeneous and isotropic
solutions and investigate them in any one of the two
branches (see Sec. II). In our case, the analysis will be
carried out on the normal branch and the set of solutions
obtained can be mapped to a different set of solutions on
the self-accelerating branches by means of the duality.

The paper is outlined as follows. In Sec. II, we present
the model we will analyze, i.e., a homogeneous and iso-
tropic DGP brane filled with a k-essence field that evolves
linearly with the cosmic time of the brane. At the end of
this section we introduce the form invariance transforma-
tion, which preserves the form of the Friedmann and
conservation equations, to show that there is a duality
between the solutions of the normal branch and the self-
accelerating one in the DGP model. This duality relates
expanding and contracting solutions among themselves. In
Sec. III, we present the analytical solutions of the model
for the normal branch and analyze the different behavior of
the brane depending on the equation of state of the k field
and its energy density. In the last section, we summarize
our main results and conclude.

II. THE DGP MODELWITH A k-ESSENCE FIELD

Wewill analyze the evolution of a DGP brane [13] filled
with a k-essence field [23] confined on the brane. The
energy momentum tensor reads [23]

T�� ¼ Vð�Þð2Fx���� � g��FÞ; Fx ¼ dF

dx
: (2.1)

Here F ¼ FðxÞ is an arbitrary function of the kinetic
energy of the k-field x ¼ g��r��r�� and Vð�Þ is a

potential. We will assume a spatially flat, homogeneous
and isotropic brane, therefore, the modified Friedmann
equation reads [24]

H2 þ �

rc
H ¼ �2

4

3
�; (2.2)

where rc is the crossover scale and is related to the ratio
between the 4-dimensional effective gravitational constant,
�2
4, and the 5-dimensional gravitational constant of the

bulk. Finally, � ¼ �1 stands for the two branches of the
DGP model, � ¼ �1 corresponds to the self-accelerating
DGP branch, and � ¼ þ1 corresponds to the normal DGP
branch [24]. For latter convenience we rewrite the
Friedmann equation as

H ¼ �

2rc

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

�m

s �
; (2.3)

where

�m ¼ 3

4r2c�
2
4

: (2.4)

The energy momentum tensor is conserved on the brane
and therefore,

_�þ 3Hð�þ pÞ ¼ 0: (2.5)

In addition, it can be shown that the Raychaudhuri equation
can be written as

_H ¼ 1

2
�2
4ðpþ �Þ

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

�m

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

�m

q
�
: (2.6)

From Eq. (2.1), we obtain the energy density � and
pressure p of the k field

� ¼ Vð�ÞðF� 2xFxÞ; p ¼ �Vð�ÞF; (2.7)

with equation of state � ¼ ðpþ �Þ=� ¼ �2xFx=ðF�
2xFxÞ. The evolution equation of the k field can be deduced
by substituting Eqs. (2.7) into Eq. (2.5)

ðFx þ 2xFxxÞ €�þ 3HFx
_�þ V0

2V
ðF� 2xFxÞ ¼ 0; (2.8)

with 0 ¼ d=d�.
For simplicity, we consider the k field evolving linearly

with time [22,25]; i.e., � ¼ �0t where �0 ¼ constant.
Then, 	0 ¼ F� 2xFxjx¼��2

0
is constant and Eq. (2.8)

implies

H ¼ � �0

3�0

V 0

V
; � ¼ 2Fx�

2
0

	0

¼ �0: (2.9)

The previous equation can be integrated with result
V ¼ V0a

�3�0 . We obtain the same potential deduced in
[22] because the result is independent of the modified
Friedmann equation of the brane. Similarly, we can show
that � ¼ �0a

�3�0 , where �0 ¼ 	0V0.
In order to analyze the dynamics of the brane, it is useful

to introduce the following variable:

Z ¼ �m

�
: (2.10)

Therefore, the Hubble parameter can be expressed as

H ¼ 1

3�0

_Z

Z
: (2.11)
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Notice that by specifying the variable Z, we can determine
the k-essence field potential as V / 1=Z. This last relation
can be deduced by combining Eqs. (2.9) and (2.11) and
� ¼ �0t. Finally, by substituting Eq. (2.11) in the modi-
fied Friedmann equation (2.3), we obtain

_Z ¼ 3��0Z

2rc

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Z

s �
: (2.12)

There are two aspects of the normal DGP branch that
deserve to be commented on: (i) it requires some sort of
dark energy, for example, in the form of a k-essence field,
to describe the late-time behavior of the Universe, while
the self-accelerating branch does not require any cosmic
fuel to mimic the current acceleration of the Universe
[8,11]; (ii) the normal branch is free of ghosts, a character-
istic presents on the self-accelerating branch [14].

At this point, it is interesting to note that the two
branches of the DGP model can be related by a form
invariance transformation that preserves the form of the
Friedmann and conservation equations. In fact, the change

H!�H; �!��; �! �; �þp!�ð�þpÞ;
(2.13)

transforms the two branches of Eq. (2.2) between them
and preserves the form of the conservation equation (2.5).
This internal symmetry gives rise to a duality: a ! 1=a,
which after integration implies H ! �H, between ex-
panding and contracting universes [26]. More precisely,
if we know a solution a of the branch � corresponding to a
fluid with energy density � and pressure p, that satisfies the
weak energy condition, then 1=a is a solution of the branch
�� with the same energy density and pressure �2�� p
that violates the weak energy condition. It means that
there is a symmetry between the normal and the self-
accelerating branches.

Along this paper, we will use the normal branch and the
conclusion for the self-accelerating branch will be obtained
by applying the form invariance transformation (2.13).
Here, once more our motivation to focus on the normal
branch is because it does not suffer from the ghost problem
present on the self-accelerating branch.

III. THE NORMAL DGP BRANCH

In what follows, we concentrate our analysis on the
solutions of a brane filled with the k field introduced in
the previous section for � ¼ 1, corresponding to the nor-
mal DGP branch geometry. There are four cases to be
analyzed depending on the sign of the equation of state
�0 and the energy density of the k field �.

A. Positive energy

For 0 � �; i.e., 0 � Z, the Eq. (2.12) can be integrated
analytically [27]

Z�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 þ Z
p

þ 1

2
ln

�
1

2
þ Zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ Z

p ��
� K�

1

¼ 3�0

2rc
ðt� t1Þ; (3.1)

where K�
1 and t1 are constants. The solutions of Eq. (2.12)

for þ and � will be written as Zþ, Z� respectively.
If the k-field mimics a cosmological constant; i.e.,

�0 ¼ 0, then Eq. (3.1) is easily satisfied as the left-hand
side and right-hand side of Eq. (3.1) vanish (notice that the
energy density and, therefore, the variable Z� are constants
on this particular case).
At high energy �m � �, i.e., Z� � 1 ([see Eq. (2.10)],

Z� can be approximated as

ffiffiffiffiffiffiffi
Z�p

�� 3�0

4rc
t; (3.2)

where we have made a rescaling of the cosmic time.
Therefore, V� / ð�0=�Þ2. We kept the square root on
the previous equation because it is crucial to fix the sign
of the cosmic time of the brane for a given sign choice
of �0. At low energy � � �m; i.e., 1 � Z�, it can be
proved that

Zþ ¼ 3�0

4rc
t; (3.3)

lnðZ�Þ ¼ � 3�0

rc
t: (3.4)

Consequently, the k-field potential on this regime fulfils:
Vþ / �0=� and V� / exp½3�0�=ðrc�0Þ�. Let us point
out also the high-energy regime corresponds to a 4d re-
gime; i.e., H2 � �2

4�=3. To complete our analysis, based
on Eqs. (3.1), (3.2), (3.3), and (3.4), is it is helpful to
distinguish two cases: a positive and a negative �0.

1. Positive �0

The solution Zþ corresponds to a brane that starts
its evolution with a big bang singularity where ��
4=ð3�2

0�
2
4Þt�2. Consequently, at early time, coinciding

with the high-energy regime, the scale factor scales as a /
t2=ð3�0Þ corresponding to the relativistic behavior of a 4d
FLRW universe filled with the same matter content as the
brane. This is in agreement with the fact that a homoge-
neous and isotropic DGP brane at high energy behaves like
a FLRW universe in 4d general relativity [24,28]. The
brane keeps expanding and at very late time, the energy
density and scale factor can be approximated by ��
1=ð�2

4rc�0Þt�1 and a / t1=ð3�0Þ, respectively. This is a con-
sequence of the low-energy behavior of the normal DGP
branch [with a þ sign in Eq. (2.3)] where H � rc�

2
4�=3

[24,28].
The solution Z� is asymptotically de Sitter in the past

where �� expð3�0t=rcÞ and a / expð�t=rcÞ. Notice that t
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is negative as can be easily seen from Eq. (3.2) bearing in
mind that �0 is positive. Afterwards the brane starts
contracting until it hits a big crunch in the future, where

�� 4=ð3�2
0�

2
4Þt�2 and a� t2=ð3�0Þ. Because the brane is

contracting in this case and 0< �0, the high-energy regime
takes place at late time while the low-energy regime
describes the early-time evolution of the brane.

2. Negative �0

For a negative �0, the energy density is a growing
function of the scale factor. Therefore, the high-energy
regime corresponds to large scale factors while the low-
energy regime takes place at small scale factors.

The brane described by Zþ starts its expansion at
t ! �1 where a� 0. More precisely, at early time ��
1=ð�2

4rc�0Þt�1 and a3�0 / �0t. This regime corresponds to

the low-energy regime of the normal DGP branch [with a
þ sign in Eq. (2.3)] where the Hubble rate is approximately
a linear function of the energy density of the brane. The
brane keeps expanding in a superaccelerating way; i.e.,
0< _H, as Eq. (2.6) implies for �0 < 0, 0< �, and � ¼ 1.
The expansion of the brane halts when it hits a big rip
singularity at t ¼ 0 where the scale factor, the energy
density, the pressure, the Hubble rate, and its cosmic
derivative blow up [29,30]. The last stage of the brane
expansion corresponds to the high-energy regime; there-
fore a 4d regime, where �� 4=ð3�2

0�
2
4Þt�2 and a3� / t2

while t ! 0�.
On the other hand, the brane corresponding to Z� starts

its evolution with a type I singularity [30] in the past.
Initially, the energy density and scale factor are very large,
indeed �� 4=ð3�2

0�
2
4Þt�2 and a3� / t2 where t ! 0þ.

This corresponds to the high-energy regime. Then the
brane starts contracting; i.e., H < 0, even though 0< €a
because 0< _H. The brane is asymptotically de Sitter in
the future, corresponding to the low-energy regime, where
�� �m expð3�0t=rcÞ and a / expð�t=rcÞ.

B. Negative energy density

The DGP model has solutions with a k field with a
finite negative energy density as long as ��m � � < 0;
i.e., Z � �1, cf. Eqs. (2.3) and (2.12). At the minimum
energy density � ¼ ��m, which corresponds to a finite
value of the scale factor, the Hubble rate vanishes [see
Eq. (2.3)], while the derivative of the Hubble rate diverges
[cf. Eq. (2.6)], even though the energy density and the
pressure are finite. Therefore this is a ‘‘quiescent’’ singu-
larity [31], but notice that it is different from the one
discussed in [31] which was induced by

(i) the presence of a dark radiation term on the brane,
and therefore a black hole in the bulk which is not the
case in the DGP model, and matter with positive
energy density and whose equation of state satisfies
specific conditions;

(ii) or through an inequality condition satisfied by a
linear combination of the bulk cosmological con-
stant and the brane tension which cannot be fulfilled
on the DGP model.

Note as well that a quiescent singularity can also shows up
in a DGP brane-world model with a Gauss-Bonnet term in
the bulk [32]. Here again, the singularity is different from
the one that takes place at � ¼ ��m. The singularity in
[32] is caused by a combination of infrared and ultraviolet
modifications of general relativity. The presence of this
singularity is the main motivation for looking for the
solution of Eq. (2.12) when the energy density is negative.
We summarize next the dynamics of the normal branch on
those cases.
For � � 0; i.e., Z� � 0, Eq. (2.12) can be rewritten as

_Z ¼ 3�0

2rc
½�Z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ Z

p
�; (3.5)

which can be also integrated analytically [27]

Z�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 þ Z
p

þ 1

2
ln

�
� 1

2
� Z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ Z

p ��
� K�

2

¼ 3�0

2rc
ðt� t2Þ; (3.6)

where t2 and K�
2 are constants. Here again, the function

Zþ, Z� will refer to the Z function satisfying Eq. (2.12)
with þ and �, respectively.
For � � 0 with �0 < 0; i.e., Z� � 0, the solution (3.6)

can be expanded about the minimum energy density,
� ¼ ��m or Z ¼ �1,

Z� þ 1� 3�0

2rc
t� 2

3

�
� 3�0

2rc
t

�
3=2

; (3.7)

where a
3�0
m ¼ ��0=�m. Below, we will see that the second

term in the expansion is responsible for the divergence of €a
when it is evaluated at a ¼ am or t ¼ 0. At this point the
brane approaches the quiescent singularity because H re-
mains finite but _H diverges. For simplicity, we have set
a ¼ am at t ¼ 0. The potential close to the singularity can

be approximated by V� � V0a
�3�0
m ½1� 3�0�=ð2rc�0Þ��1

and it is clearly finite at the singularity where � ¼ 0. The
scale factor am stands for the scale factor at the quiescent
singularity, which is the minimum scale factor of the
brane for 0<�0 and the maximum scale factor of the
brane for �0 < 0.
On the other hand, at very low energy (� ! 0� or

Z� ! �1), we obtain

Zþ � 3�0

4rc
t; (3.8)

lnð�Z�Þ �� 3�0

rc
t: (3.9)
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The k-field potential on this regime fulfils: Vþ / �0=�
and V� / exp½3�0�=ðrc�0Þ�. It is also worthy to mention
that the brane always shrinks when filled by a negative
energy density [see Eq. (2.3) with � ¼ 1]. Like in the
previous subsection, to complete our analysis, based on
Eqs. (3.1), (3.7), (3.8), and (3.9), is it is helpful to distin-
guish two cases: a positive and a negative �0.

1. Positive �0

For Zþ and 0<�0, the brane starts its evolution with a
very large radius and an almost vanishing energy density,

where �� �0rc=t and a / ðt=rcÞ1=3�0 . The Hubble rate
and the derivative of the Hubble rate are almost zero
initially. This solution is defined in a region where the
cosmic time is negative. Afterwards the brane starts con-
tracting until it hits the quiescent singularity at a minimum
scale factor

����m

�
1þ 3�0t

2rc
þ 2

3

�
� 3�0t

2rc

�
3=2

�
; (3.10)

a� am

�
1� t

2rc
� 2

9�0

�
� 3�0t

2rc

�
3=2

�
; (3.11)

where the latter equation shows explicitly that €a diverges
at t ¼ 0.

The solution corresponding to Z� is asymptotically
de Sitter in the past where once more the scale factor is
very large and the energy density is approaching zero. In
more specific terms, we obtain ����m expð3�0t=rcÞ and
a / expð�t=rcÞ where t � �1. Even though the brane
was asymptotically de Sitter in the past, it starts shrinking
because the Hubble rate is initially (almost) constant and
negative. In the future the brane will face a quiescent
singularity at a minimum scale factor characterized by

����m

�
1þ 3�0t

2rc
� 2

3

�
� 3�0t

2rc

�
3=2

�
; (3.12)

a� am

�
1� t

2rc
þ 2

9�0

�
� 3�0t

2rc

�
3=2

�
; (3.13)

and again €a diverges at t ¼ 0.

2. Negative �0

The solution Z� starts at a quiescent singularity, where
the brane reaches its maximum scale factor am, and has the
same behavior described by the solutions (3.10), (3.11),
(3.12), and (3.13). In this case the solutions are defined in
the region where the brane cosmic time is positive. The
solutions Z� describe a contracting brane that ends with a
vanishing scale factor even though at different rates. For
Zþ, the energy density and scale factor change with

the cosmic time as �� �0rc=t and a / ðt=rcÞ1=3�0 , while
for Z�, the same quantities behave as ��
��m expðð3�0tÞ=rcÞ and a / expð�t=rcÞ. In both cases,

the brane shrinks to a point in an infinite amount of its
proper time.

IV. CONCLUSIONS

We have investigated a DGP brane filled with a
k-essence field. This source is particularly interesting be-
cause it can take negative values and gives the possibility
of considering quiescent singularities in the DGP frame-
work. In addition, it gives rise to inflationary branes. We
have focused our analysis on the normal DGP branch, for
the reasons explained in the Introduction, fundamentally
based on the duality between both branches as we have
shown at the end of Sec. II. Our results for the normal
branch are summarized in the next paragraphs.
In the 0< � case we have found: (i) a singular scale

factor that represents an expanding universe with a final
power law scenario and, a contracting one with an initial
de Sitter phase and a final big crunch at t ¼ 0 for �0 > 0.
However, for �0 < 0, (ii) we have found an expanding
scale factor, such that, the Universe begins with a vanishing
value at t ¼ �1 and ends in a big rip singularity at t ¼ 0.
There exists also a singular universe which contracts from
a ¼ 1, at t ¼ 0, to an asymptotically de Sitter scenario in
the future.
In the � < 0 case we have obtained a contracting scale

factor for any value of the equation of state �0. For �0 > 0
the Universe contracts from the far past at t ¼ �1 with a
power law expansion or a de Sitter phase and ends with
a constant scale factor am, at t ¼ 0. We have shown that
the expansion rate is finite; more precisely H ¼ Hm ¼
�1=2rc, at t ¼ 0 and _Hm diverges, indicating that the
Universe ends in a quiescent singularity [31].
Nevertheless, the potential becomes finite when it is

evaluated at this singularity, Vm ¼ V0a
�3�0
m . Similarly,

the energy density and the pressure of the k field are finite
at this point. For �0 < 0 the Universe begins from the
constant value am in a quiescent singularity, after that, it
contracts and ends with a power law or a de Sitter phases.
In summary, this model is quite simple but at the same it

is a very good arena to describe several physical situations.
Indeed, we have seen how it is possible to get acceleration
on the normal DGP brane avoiding, therefore, the ghost
problem present on the self-accelerating branch. We have
also obtained several singularities, some of them related to
dark energy. Most importantly, one of these singularities
is a quiescent singularity which is specific of this model
and different from the one obtained in Ref. [31,32]
(cf. Sec. III B for more details).
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