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This paper shows the connection between three previously observed but seemingly unrelated phenomena in
hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulent flows, involving the emergence of fluctuations
occurring on very long time scales: the low-frequency 1/f noise in the power frequency spectrum, the delayed
ergodicity of complex valued amplitude fluctuations in wave number space, and the spontaneous flippings or
reversals of large-scale fields. Direct numerical simulations of ideal MHD and HD are employed in three space
dimensions, at low resolution, for long periods of time, and with high accuracy to study several cases: different
geometries, presence of rotation and/or a uniform magnetic field, and different values of the associated conserved
global quantities. It is conjectured that the origin of all these long-time phenomena is rooted in the interaction
of the longest wavelength fluctuations available to the system, with fluctuations at much smaller scales. The
strength of this nonlocal interaction is controlled either by the existence of conserved global quantities with a
back-transfer in Fourier space or by the presence of a slow manifold in the dynamics.
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I. INTRODUCTION

A characteristic of turbulence is the dynamical involvement
of fluctuations over a broad range of length scales. At the
largest scales, the general expectation is that of nonuniversal
behavior and influence by boundary conditions and/or driving.
At intermediate scales, statistical behavior can be obtained,
and at the smallest scales, behavior is determined by some
dissipation mechanism. Associated with these length scales
are corresponding ranges of time scales. The characteristic
nonlinear time scale, assuming local interactions in scale, is
obtained dimensionally as the ratio l/ul , where l is a length
and ul is the corresponding typical velocity at l. Suppose we
choose a particular length L and its associated time scale L/uL

as the unit of time measurement. Frequently, L will be the
largest length scale in the system, or perhaps the size of the
energy-containing eddies. In these units, the range of locally
computed time scales l/ul will typically extend from unity
(or times of order one) to smaller time scales at the smaller
length scales. However, there are some situations in which
there is an emergence of much longer time scales, which
can not be associated with this kind of an estimate that is
local in scale. Some of these issues have previously been
identified in numerical simulations [1], for example, in the
case of a driven-dissipative three-dimensional (3D) magne-
tohydrodynamic (MHD) system in the presence of a strong
background magnetic field, and in two-dimensional (2D)
hydrodynamic (HD) and MHD driven-dissipative systems. In
these three cases, the presence of long time fluctuations is
connected with the appearance of a 1/f noise type frequency
power spectrum at very low frequencies �uL/L. In many
situations, a 1/f noise spectrum arises from the existence of
multiple correlation times in the system (see [2]). Such 1/f

spectra associated with long time scale fluctuations have been
observed in a wide range of situations [3,4], but the presence
of 1/f noise in turbulent flows was reported only recently [1].

Dynamo simulations of the generation of magnetic fields also
exhibit 1/f spectra [5]. Low-frequency dynamics has also
been reported in laboratory experiments of HD and MHD
flows [6,7]. Closely related are observations in the solar wind
of 1/f behavior in the spacecraft frame magnetic and density
spectra at low frequencies [8,9]. However, in the solar wind
case, the 1/f signal appears to trace back to the corona or even
to the photosphere [10]. It is therefore a consequence of long
time scale variability of the solar wind sources, rather than a
property that emerges due to solar wind dynamics itself.

It is conjectured in [1] that the long time fluctuations in
the turbulent MHD flows arise from the nonlocal couplings
between the longest length scale in the system (the k = 1 mode
in Fourier space) with the smaller scales, from the inertial to
the dissipation range (k � 1). Such nonlocal interactions are
known to be stronger for MHD than for HD flows [11,12]. It
remains, however, an open issue as to whether the existence of
dissipation, the effects of the driving, or the particular choice
of boundaries are influential in determining the character
or presence of the 1/f noise that is generated. This paper
attempts to show that the presence of a 1/f noise spectral
regime is specifically with the structure of the equations and
the nonlinear couplings. We accomplish this by employing a
series of numerical simulations of ideal flows in a variety of
situations. We emphasize that these simulations are neither
dissipative nor driven. Furthermore, the 1/f regime will be
characterized by showing its existence (or absence) and its
range of frequencies for several different kinds of ideal flows
and geometries. We will argue that a key feature in each system
is the existence of either ideal global invariants or quasi-
invariants (to be defined below), which provide constraints on
behavior of a small number of important degrees of freedom
in the system.

We will further argue below that a related issue concerning
ideal flows is the phenomenon of delayed ergodicity [13], also
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identified as broken ergodicity [14,15]. In this phenomenon,
the ideal flow is described as a statistical mechanical system
composed of Fourier modes (degrees of freedom). Some
of these Fourier modes (those corresponding to the largest
length scale in the system) appear to spend long periods
of time in restricted regions of phase space (i.e., in some
interpretations, thus breaking the ergodicity assumption in
statistical mechanical systems). As it will be clear from this
paper, this effect is essentially the same as that which produces
the 1/f spectra.

Additionally, we make a further connection with another
phenomenon observed on long times scales, i.e., the spon-
taneous flipping or reversal of some large-scale fields. A
prominent example is the reversal of magnetic field or its
magnetic dipole in MHD systems, an effect well known in the
context of geomagnetic studies [16–18].

The organization of the paper is as follows. In Sec. II, the
model equations, the standard ideal equations of HD and MHD
flows, are introduced, and the numerical method to solve them
is described. In Sec. III, the results are presented, divided
into subsections for different kinds of systems. In Sec. IV,
a discussion is developed, followed by the conclusions and
summary in Sec. V.

II. MODEL EQUATIONS

In this paper, we consider several systems of equations,
including HD flows with and without rotation, and MHD
flows with and without externally imposed magnetic fields. We
also consider an approximation of the MHD equations in the
limit of strong imposed magnetic fields, the so-called reduced
MHD (RMHD) equations. All systems are three dimensional,
and the flows are incompressible and ideal (zero dissipation
coefficients).

In the most general case, the incompressible HD and MHD
equations can be written in dimensionless form as

∂u
∂t

+ ω × u + 2� × u = − 1

ρ
∇P + j × B, (1)

∂B
∂t

= ∇ × (u × B), (2)

where B is the magnetic field, u the velocity field,
j = ∇ × B the current density, ω = ∇ × u the vorticity, and
P the pressure. A term considering rigid rotation with angular
velocity � can be included in the velocity equation. This term
corresponds to the Coriolis force, with the centrifugal force
absorbed into the total pressure term. The pressure can be
obtained by taking the divergence of the velocity equation,
using the incompressibility condition ∇ · u = 0, and solving
the resulting Poisson equation. The solenoidal (∇ · B = 0)
magnetic field includes a uniform part B0 and a fluctuating
part b, so that B = b + B0.

With B0 = 0, these equations reduce to the MHD equations
without an external field. When B ≡ 0, the equations are
the ideal incompressible three-dimensional hydrodynamic
equations, that is, the Euler equations, which we also consider
as a case study. Finally, when � �= 0, any of these systems is
written in a rotating frame, while � = 0 corresponds to the
nonrotating case.

The RMHD equations can be derived from Eqs. (1) and
(2) for � = 0 and in the limit of strong B0 = B0ẑ, assuming
low frequencies and weak spatial gradients along the direction
of the background magnetic field [19,20]. The equations
involve potentials a(x,y,z,t) and ψ(x,y,z,t) such that, in
rectangular (x,y,z) coordinates, one has b = ∇⊥ × ẑa and
u = ∇⊥ × ẑψ , where ∇⊥ = (∂x,∂y,0). To get slow dynamics
as B0 ∼ 1/ε → ∞, for small ε, one is forced to an ordering
such that ∂z = O(ε). In this sense, the RMHD equations are
“quasi-two-dimensional” in x and y. The dynamical equations
become simply those of the potentials

∂ω

∂t
+ u · ∇⊥ω = b · ∇⊥j + B0

∂j

∂z
,

(3)
∂a

∂t
+ u · ∇⊥a = B0

∂ψ

∂z
,

where the electric current density is j = −∇2a and the
vorticity is ω = −∇2ψ .

In the subsequent section, we will describe numerical
results obtained with two different type of codes, which we
now describe briefly. The parameters of all runs discussed
below are given in Table I for reference.

For one set of numerical simulations, we assume periodic
boundary conditions in a cubic box, of side 2πL0 in each
Cartesian direction, with L0 the arbitrary unit of length. Fields
can then be decomposed in Fourier modes

u =
∑

k

uke
ik·r, b =

∑
k

bke
ik·r, (4)

where uk, bk are the Fourier coefficients of the expansion,
and k is the wave vector, having integer components in the
dimensionless case.

We employ a pseudospectral code to accurately numerically
solve these equations. With the pseudospectral method (using
full de-aliasing with the 2/3 rule), any quadratic invariant
(such as the total energy) is exactly maintained, except for
machine roundoff errors and time integration discretization
errors. Time integration here is done with a second-order
Runge-Kutta method, with a very small time step dt , to control
the discretization error over the long simulations we carry out.
Typically, we use dt ∼ 5 × 10−4, which is much less than the
global large-scale turnover time L0/u, where u is the root mean
square (rms) velocity. As an example, in an integration of 1000
unit times duration, for initial primitive fluctuation fields u and
b with rms values of 1, these values remain equal to unity with
an error less than 5 × 10−6 at the end of the integration. In
dissipative MHD, the energy E balance equation satisfies

dE

dt
= −2ν(〈j 2〉 + 〈ω2〉). (5)

The decay in energy due to time discretization errors can
be interpreted as numerical dissipation and, for the example
mentioned, using a time averaged value for 〈j 2〉 + 〈w2〉 ∼ 10,
the numerical viscosity is estimated as ν ∼ 10−10.

In a second set of numerical simulations, we consider
spherical geometry: the HD or MHD equations are solved
inside a sphere of unit dimensionless radius, with vanishing
velocity and magnetic field at the sphere boundary. For this
geometry, a fully spectral Galerkin code is used, based on a

066318-2



EMERGENCE OF VERY LONG TIME FLUCTUATIONS AND . . . PHYSICAL REVIEW E 83, 066318 (2011)

TABLE I. Summary of all runs, with N3 the total number of grid points, Hm and Hv the magnetic and kinetic helicity, and � or B0 the
respective amplitude of the imposed solid body rotation or uniform magnetic field. The first column indicates which equations have been
integrated, SMHD being the MHD equations in spherical geometry with qmax corresponding to the truncation of the C-K functions [see Eq. (5)
and text]; all other runs are computed in periodic cubic geometry. “ROT” stands for runs with rotation, and B0 stands for runs with an imposed
magnetic field. The last column gives the estimated strength and range of the observed 1/f noise spectrum (see figures).

Run N 3 Hm or Hv � or B0 1/f range

MHD 163 −0.008 0 weak, T ∼ 20–100
MHD 163 0.027 0 medium, T ∼ 20–200
MHD 163 0.129 0 strong, T ∼ 100–1000
MHD 163 −0.395 0 strong, T ∼ 200–1000
MHD 323 0.027 0 strong, T ∼ 100–1000
MHD 643 0.015 0 strong, T ∼ 1000–2000
SMHD qmax = 5 0.03 0 weak, T ∼ 10–50
SMHD qmax = 7 0.03 0 strong, T ∼ 50–100
SMHD qmax = 8 0.03 0 strong, T ∼ 100–200
SMHD + ROT qmax = 5 0.03 16 strong, T ∼ 50–200
MHD + B0 323 8 strong, T ∼ 500–1000
RMHD 323 8 strong, T ∼ 500–1000
HD 323 −0.26 0 weak, T ∼ 10–50
HD + ROT 323 −0.26 16 medium, T ∼ 50–100

Chandrasekar-Kendall (C-K) decomposition of the fields. The
C-K functions [21,22] are

Ji = λ∇ × rψi + ∇ × (∇ × rψi), (6)

where we work with a set of spherical orthonormal unit
vectors (r̂ ,θ̂ ,φ̂), and the scalar function ψi is a solution of
the Helmholtz equation (∇2 + λ2)ψi = 0. The explicit form
of ψi is

ψi(r,θ,φ) = Cql jl(|λql|r)Ylm(θ,φ), (7)

where jl(|λql|r) is the order-l spherical Bessel function of
the first kind, {λql} are the roots of jl indexed by q (so that
the function vanishes at r = 1), and Ylm(θ,φ) is a spherical
harmonic in the polar angle θ and the azimuthal angle φ.
The subindex i is a shorthand notation for the three indices
(q,l,m); q = 1,2,3, . . . corresponds to the positive values of λ,
and q = −1, − 2, − 3, . . . indexes the negative values; finally,
l = 1,2,3, . . ., and −l � m � l. The C-K functions satisfy

∇ × Ji = λiJi . (8)

With the proper normalization constants, they are an orthonor-
mal set that has been shown to be complete [23]. The values
of |λi | play a role similar to the wave number k in the
Fourier expansion. Note that boundary conditions, as well as
the Galerkin method to solve the equations inside the sphere
using this base, were chosen to ensure conservation of all
quadratic invariants of the systems, crucial for our present
study of ideal flows for long times. More details about the
technique to numerically solve the HD and MHD equations in
this spherical geometry can be found in [24,25].

III. RESULTS

A. Three-dimensional MHD in a box and in the sphere

For three-dimensional incompressible ideal MHD with no
mean magnetic field, there are three quadratic invariants: the
total (kinetic plus magnetic) energy per unit mass

E = 1
2 〈|u|2 + |b|2〉 = Eu + Eb, (9)

(with 〈. . .〉 denoting a spatial average), the cross helicity

Hc = 〈u · b〉 , (10)

and the magnetic helicity

Hm = 〈a · b〉, (11)

where a is the vector potential such that ∇ × a = b. The
robustness of the Gibbs equilibrium ensemble predictions
for this system is well established [26–30]. The expectation
value of spectra is readily obtained in the Gibbs ensemble
using Lagrange multipliers associated with each conserved
quantity. These expectations are well verified with numerical
simulations [29,30]. Usually, the Gibbs ensemble has been
viewed as a predictor of the direction of spectral transfer,
although more recently it has also been found that the ideal
Gibbs-Galerkin system shares additional characteristics with
the dissipative turbulent system at short and intermediate time
scales and length scales. One of the characteristics found
is that, even in the ideal truncated case, cascades develop
during transients [31–34]. For long times, the system goes
to solutions with zero flux, but any perturbation of the
system away from the zero flux solutions (e.g., by thermal
fluctuations) is corrected by transient nonzero fluxes associated
with the nonlinear interactions [35]. For wave number k � 1
(the wave number k in the following discussion should be
considered equivalent to |λi | for the spherical case), the Gibbs
ensemble predicts in three dimensions an omnidirectional
spectrum going like k2. Attaining this equilibrium prediction
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is frequently called “thermalization” of the large wave number
modes, as this corresponds to equipartition of energy among
all individual modes, i.e., a flat modal spectrum. At the
fundamental modes k = 1 (the largest possible wavelength
modes in a finite size system), condensation is predicted,
according to the established value of Hm. When Hm �= 0,
condensation at the k = 1 mode occurs, and this has been
the base for prediction [29] of an inverse cascade of magnetic
helicity in dissipative MHD (i.e., when dissipation and forcing
is added to the ideal MHD equations).

Furthermore, when both Hm �= 0 and Hc �= 0, the conden-
sation of magnetic helicity induces a partial condensation
of the cross helicity [30]. For such cases, the largest scales
are expected to contain signatures both of magnetic helicity
(helical b) and of Alfvénic correlation (u ∝ b).

We note here that the ideal model can be viewed as a
dynamical model of the nonlinearities that drive turbulence.
It is a simplified model because it becomes Gaussian, and
also it lacks a preferred average direction of spectral transfer.
But, it is worth remembering that, in “real turbulence,” with
dissipation, there are large numbers of couplings that take
energy to higher k, and also large numbers of couplings that
take energy to lower k. These two types of couplings are almost
in balance. However, transfer to higher k dominates slightly:
this is just what the direct cascade is (an inverse cascade would
be the case where the transfer to lower k dominates slightly).
This has been observed in numerical simulations, as well as in
laboratory experiments. In this regard, the ideal model is not
“real turbulence,” but it shares some of its properties [31].

An assumption for the equilibrium ensemble predictions
is the property of ergodicity. The required property is that,
in a long period of time, the system, defined by the set of
real and imaginary parts of its Fourier coefficients (i.e., the
dynamical degrees of freedom of the ideal MHD system) will
visit all accessible regions in complex phase space. A point in
phase space is “accessible” if it is permitted by the values of
the invariant quantities. This is well verified for k > 1 modes,
which evolve on relatively fast time scales. However, for the
longest wavelength k = 1 modes, there is an apparent breaking
of ergodicity that has been identified in simulations [14,15].
There is, however, evidence that ergodicity is restored at very
long times [13]. As a result, the k = 1 modes seem to wander
for very long periods of time in restricted regions of phase
space until, at some point, a possibly sudden “hopping” [13]
occurs and a new period of wandering occurs in another
restricted region of phase space. As has been recently also
pointed out [15], the time duration of these wandering periods
is related to the dimension of the system (i.e., the finite
number of modes assumed for the numerical simulation). This
is to be expected since the delayed ergodicity is related to
condensation, and for any system with the same values of the
ideal invariants, the condensation is more complete for systems
with larger numbers of degrees of freedom [30].

We will focus here then on the time behavior of a single
k = 1 mode, and the point we make is that there is a
connection between this aperiodic cycle of wandering and
hopping behavior, and the 1/f power frequency spectrum
already observed in dissipative MHD [1]. The time behavior
of the k = 1 mode can be interpreted as the time behavior of
the large-scale magnetic field, i.e., it corresponds to the time

behavior of the fluctuating magnetic field after a filtering of
the smaller scales (with k > 1) is performed. This connection
between k = 1 and the apparent or observable large-scale
magnetic field becomes sharper as the condensation becomes
more complete. In dissipative MHD, this filtering process
occurs naturally through dissipation, which damps the small
scales. In ideal MHD, however, the thermalization of the small
scales, with a spectrum going like k2, tends to obscure the time
behavior of the k = 1 mode if a power frequency analysis is
applied to the full fluctuating magnetic field. As a result, we
shall look at the time behavior of a single k = 1 mode in this
case in order to properly see the long time fluctuations that
develop. In what follows, we thus present a series of results
for the time behavior and the frequency spectrum of the k = 1
mode for different numerical simulations of ideal MHD with,
first, a fixed system size (fixed N , with N3 = total number
of modes) and varying the magnetic helicity, and second,
by varying the number of modes N3 but with approximately
fixed magnetic helicity. Our working hypothesis is that these
scalings can be understood in terms of scalings within the
Gibbs ensemble [30]: For fixed Hm/E, increasing N intensifies
the condensation until all Hm asymptotically resides in k = 1.
For fixed N , increasing Hm/E increases condensation until,
as this ratio approaches its maximum value, all excitations
condense to k = 1.

1. Periodic box

We begin by considering the behavior in time of a large-
scale mode in a sequence of three incompressible ideal 3D
MHD simulations with increasing |Hm|. These are further
described in Table I, and have Hm = −0.008, 0.129, and
−0.395, a fixed simulation size of N3 = 163, and fixed total
energy equal to 1. The fluctuations are initially equipartitioned
Eu = Eb, and concentrated in a range of wave numbers 1 <

k < 4. In particular, Fig. 1 illustrates the temporal behavior of
the k = 1 modes, choosing the real part of bz(k = 1,0,0) as an
indicator of the behavior of the large-scale modes. Indeed, the
same behavior is obtained for other components bx , by or for
other directions in k, except of course for directions for which
k is parallel to the field component, which are identically
zero due to the ∇ · b = 0 condition. The different panels in
Fig. 1 correspond to increasing values of |Hm|. It is apparent
that, as the magnitude of magnetic helicity is increased, long
period fluctuations (as long as 1000 unit times) begin to appear.
Such fluctuations are not observed in the time series of modes
with larger wave number (i.e., smaller spatial scales), and
are characteristic of the largest scale Fourier modes in the
system. Note that the value of the magnetic field fluctuation
amplitude increases with Hm, consistent with the condensation
phenomenon.

Qualitatively, it would be reasonable to say that the low
helicity case in Fig. 1 (top panel) is more “stationary,” as
the fluctuations in that case approach a zero mean within
say 100 time units or less. On the other hand, the two
higher helicity cases exhibit coherent fluctuations at a scale of
hundreds, or even thousands, of time units. The suggestion is
that low-frequency oscillations are becoming more dominant
with higher helicity. Indeed, there is clear evidence of this
in the frequency spectra, shown in Fig. 2 for each of the
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FIG. 1. Time series of a component of the magnetic field for the
k = (1,0,0) mode in a MHD run with 163 modes and with different
values of the magnetic helicity: Hm = −0.008 (top panel), 0.129
(middle panel), and −0.395 (bottom panel).

three time series given in Fig. 1. The increasing power in the
low-frequency part, and the emergence of a ∼1/f power law
at the very low frequencies �1, are associated with increasing
|Hm|. We note here that, often in the literature, 1/f is loosely
used to refer to any spectrum of the form f −α , with 0 < α < 2
(i.e., omitting both white noise and Brownian motion).

The important point that we want to stress here is not
the exact power law index that fits the spectra (which in
fact is dependent on the time duration of the simulations
because when longer time fluctuations appear, a more extended
run would be needed), but rather the fact that there is no
obvious reason for which fluctuations with time scales orders
of magnitude longer than the unit time should appear here.
The longest time scale based on local time arguments is
TL = L/uL, which, for the largest length scale of L = 2π

(box size) corresponding to k = 1 and for uL = 1, is TL =
2π . Frequencies below fL = 1/TL = 1/(2π ) should normally
have a flat power spectrum (white noise), indicating the
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FIG. 2. Power frequency spectra of the time series in Fig. 1, with
different values of the magnetic helicity Hm = −0.008, 0.129, and
−0.395. The reference vertical line corresponds to a frequency value
fL = 1/(2π ) (see text) and the horizontal line to the value of P (fL).

existence of a defined correlation time. However, as Fig. 2
shows, for the cases where long time fluctuations appear, the
spectrum to the left of the fL = 1/(2π ) is far from being flat.
This is indicated in the panels of the figure with a vertical line at
the frequency 1/(2π ) and a horizontal line at the corresponding
value of the power spectrum for that frequency. We identify
the difference between the observed power spectrum and a
flat power spectrum as the range of 1/f spectra in each case
(again, using a loose definition for 1/f ).

This range of the 1/f spectra is short for the lower values
of Hm, with corresponding time periods (T ∼ 1/f ) of the
order of 10 unit times, and increasing to T ≈ 100–500 for
Hm = 0.129, and as long as T ≈ 500–1000 for Hm = 0.395.
It is interesting to observe the autocorrelation function for
each of the time series in the cases shown, as a complementary
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way to see the appearance of long time fluctuations. Here, the
autocorrelation function is defined as

C(t) = 〈b(t0)b(t0 + t)〉, (12)

where b represents a Cartesian component of a magnetic field
mode [for instance, the z component of the real part of the
magnetic field Fourier mode for k = (1,0,0)], with subtracted
mean and normalized so that 〈b2〉 = 1, t0 is an arbitrary origin
in time, t is the time lag, and 〈· · ·〉 denotes a time average.

This is shown in the panels of Fig. 3. The case with smallest
Hm presents a compact correlation function, localized within
about 10 unit times, whereas the cases with larger Hm show a
much broader correlation function. A correlation time can be
obtained as

tc =
∫ Tf

0
C(t)dt, (13)
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FIG. 3. Autocorrelation function for the time series of magnetic
field in Fig. 1, with different values of the magnetic helicity
Hm = −0.008, 0.129, and −0.395. A correlation time tc (see text)
is indicated in each case.

where Tf is the final time of the run, assuming it is a large
time.

This quantity is well defined if the correlation function is
confined within a finite range of time lags, decaying faster for
long times. However, if the correlation function does not decay
faster, and it depends on the time duration of the series, then the
correlation time is not well defined. In particular, for an exact
1/f power spectrum, there is no single correlation time that
can be defined. The values indicated in the plot for the three
Hm cases of tc = 14, 189, and 346 show again that longer time
fluctuations (and correlations) appear as Hm is increased.

Recalling that condensation in the ideal Gibbs ensemble
intensifies as the number of degrees of freedom (∼N3)
increases, we now explore whether the emergence of long
time scale coherent fluctuations and the associated 1/f spectra
behave the same way. The next series of plots in Fig. 4 show the
time behavior of a magnetic field component of a single mode
k = (1,0,0) varying the size of the simulation of 3D MHD, for
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FIG. 4. Time series of a component of the magnetic field for
the k = (1,0,0) mode in the MHD runs with different resolution
N 3 = 163, 323, and 643 and magnetic helicity Hm = 0.027, 0.027,
and 0.015.
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N3 = 163, 323, and 643, and for low values of Hm = 0.027,
0.027, and 0.015, respectively, for each N . These results show
that long time fluctuations appear even for low values of Hm

when the size of the system is increased. We note that, for
the N = 64 case, a longer time range is needed to observe
fluctuations to average to zero. This is indeed observed in this
run when it is extended until t > 10 000, but not shown here
for consistency with the shorter time range selected for the rest
of the cases in this figure. Figure 5 shows the corresponding
power frequency spectra P (f ) for each size N . The range of
low-frequency 1/f noise increases from T ∼ 10 for N = 16
to T ∼ 2000 for N = 64 (compare Figs. 2 and 5).

Furthermore, Fig. 6 shows the autocorrelation function and
the obtained correlation time tc for each time series for different
values of N . Also evident in this figure is the appearance of
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FIG. 5. Power frequency spectra of the time series in Fig. 4,
with different resolution N3 = 163, 323, and 643 and magnetic
helicity Hm = 0.027, 0.027, and 0.015. The reference vertical line
corresponds to a frequency value fL = 1/(2π ) (see text) and the
horizontal line to the value of P (fL).
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FIG. 6. Autocorrelation function for the time series of magnetic
field in Fig. 4, with different resolution N3 = 163, 323, and 643 and
magnetic helicity Hm = 0.027, 0.027, and 0.015. A correlation time
tc (see text) is indicated in each case.

long time fluctuations as N is increased through the broadening
of the autocorrelation function.

Another view of the long time fluctuations can be obtained
from the time evolution of individual Fourier modes in a phase
space plot in the complex plane [14,15]. For instance, the
bz(1,0,0) mode for the 323 run in the Hm = 0.027 case is
shown in Fig. 7. For comparison, the behavior in the complex
plane of the bz(2,0,0) mode, with a larger k, for the same run
is shown in Fig. 8. The long time fluctuations of the bz(1,0,0)
mode correspond to long periods of time spent in a restricted
region in the complex plane, as contrasted by the quick filling
of the complex plane allowed region for the bz(2,0,0) case.
This phenomenon has been called [13] “delayed ergodicity”
because the ergodicity property of the k = 1 seems to be
broken only temporarily, as the mode spends long times in
a region of the complex plane, thus, not filling the entire
space. For longer times, the “hopping” of the mode between
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FIG. 7. Complex phase space trajectory for the k = (1,0,0) mode
in the MHD 323 run, with Hm = 0.027, for different intervals of time.

different regions starts filling the space. As observed here, this
corresponds to long time fluctuations of the time series and to
the appearance of the 1/f power law in the power frequency
spectrum.

As can be seen in the time series plots, the component
of the large-scale magnetic field shown, which is a dominant
contribution to the global magnetic field when condensation is
strong, progresses for long periods of time without changing
sign, and then experiences a reversal in sign, followed by
another long period of time without sign change (see, e.g.,
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FIG. 8. Complex phase space trajectory for the k = (2,0,0) mode
in the MHD 323 run, with magnetic helicity Hm = 0.027. Notice the
noticeably larger wandering in phase space when compared to Fig. 7,
indicative of clearer ergodicity.
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FIG. 9. Top panel: Real part of the by component of the
k = (1,0,0) mode vs time (black), and imaginary part of bz for the
k = (1,0,0) mode vs time (light gray) for the MHD 323 run with
magnetic helicity Hm = 0.027. Bottom panel: Imaginary part of −by

for the k = (1,0,0) mode vs time (black), and real part of bz for the
k = (1,0,0) mode vs time (light gray).

Figs. 1 and 4). We will come back to this “reversal”
phenomenon in spherical runs, but it can already be seen that
this is part of the same long time fluctuations phenomenon
reported as 1/f noise.

Another interesting diagnostic is shown in Fig. 9, where
the real and imaginary parts of the complex amplitudes of
several field components of the mode k = (1,0,0) are shown
as a function of time for the same run (N3 = 323 and
Hm = 0.027). This is a case with long time fluctuations and
delayed ergodicity. Apparently, from our analysis, the k = 1
magnetic modes satisfy particular equilibrium configurations,
namely, the field is quasi-force-free. A force-free magnetic
field satisfies j × b = 0, that is, the Lorentz force term in the
momentum equation is zero. If the velocity field u is zero,
this means that, for an ideal flow (no viscosity or diffusivity),
the magnetic field will remain force free in time and all
nonlinear terms will be zero. Force-free states also correspond
to maximum allowable values of the magnetic helicity (see
[36]).

In terms of Fourier modes, if a single k mode is in a
force-free state, i.e., jk × bk = 0, then, since jk = ik × bk, it
must satisfy ik × bk = λbk, which implies that λ2 = k2, that
is, λ = ±k. For the k = 1 modes, this means λ = ±1 and, since
these modes are equal to the Cartesian versors (unit vectors),
it also implies some relations between the components of
bk. By taking, for example, k = (1,0,0), these relations are
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Im(bz) = ±Re(by) and Re(bz) = ∓Im(by), where the field
components are in k space (notice that, for this mode, bx = 0
because of the divergence-free condition.) This is immediately
seen to be the condition for a circularly polarized fluctuation
in a k-aligned coordinate system, that is, if we let k = (1,0,0)
in a right-handed Cartesian system, then the above conditions
are equivalent to bk = eφk (0,1, ± i) for arbitrary phase φ. The
plots in Fig. 9 show that the imaginary and real parts of these
field components exhibit this correlation: they are very highly
correlated in time (light gray and black are used for each
corresponding component and are almost indistinguishable).
In fact, values of the correlation coefficient >0.95 are obtained
in each case, corresponding to near maximum helicity.

Similar relations can be found for the k = (0,1,0) and
k = (0,0,1) modes, and strong correlations >0.95 are also
found for the imaginary and real parts of the corresponding
field components in time (not shown). This is true for all the
previous runs for which long time fluctuations of the k = 1
modes are observed. However, the circular polarization is not
found for larger k modes [e.g., for k = (2,0,0)]. This is a very
special property of the k = 1 modes, i.e., that they evolve in
a quasi-force-free state in time. This condition is consistent
with the ensemble average predictions of the Gibbsian theory
[29,30], but is not imposed by it as an exact condition due to
allowance for fluctuations about the equilibrium expectation.
We will come back to this issue in the discussion section.

2. Spherical geometry

The next example corresponds to a series of spherical
MHD runs. Figure 10 shows three runs with a fixed value
of Hm = 0.03, and with three different values of qmax = 5,7,
and 8, corresponding to increasing number of degrees of
freedom in the model. Here, qmax is the maximum value of
the q index corresponding to the radial number in a spherical
harmonic expansion [see Eqs. (6) and (7) and text therein]; the
maximum values of l and m are also increased accordingly.
In this particular geometry, the maximum possible value of
helicity for a flow with unit energy is ≈0.22. Again, as in
the periodic box runs, it is seen that increasing the size of the
system shows the appearance of long time fluctuations and
a corresponding range of 1/f power frequency spectrum, as
shown in the plots of Fig. 11.

Here, we show again in Fig. 11, the reference vertical line
for the frequency fL = 1/2 based on the largest local nonlinear
time TL = L/UL = 2, which corresponds to structures with
the diameter of the sphere L = 2 (unit radius) and a unit root
mean square velocity UL = 1.

Another effect is shown in Fig. 12, which corresponds to
the time behavior of a single mode, by including nonzero
rotation with � = 16. Results for size qmax = 5 with � = 0
and 16 are shown. It is seen that longer time fluctuations appear
with the addition of rotation in the system. The corresponding
frequency spectra in Fig. 13 also show a wider range of 1/f

noise for the rotating case.
The long time fluctuations for the case of qmax = 5 and

Hm = 0.03 with rotation (see Fig. 12) appear as sign reversals
of the z component of the magnetic field, with excursions with
periods of the order T ∼ 50–200. In fact, another quantity that
can be studied for this system is the magnetic dipole, which is
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FIG. 10. Time series of the bz component of the magnetic field for
the (q,l,m) = (1,1,0) mode in the spherical MHD run with qmax =
5, 7, and 8, and magnetic helicity Hm = 0.03.

essentially a weighted moment average of the magnetic field,
which tends to highlight the low q modes. We defer a detailed
analysis of the magnetic dipole reversals to another paper, but
we point out that this long time fluctuation phenomenon is
directly related to 1/f noise and delayed ergodicity of the
q = 1 mode in complex phase space. As an example, a phase
space plot of the temporal behavior of the q = 1 mode is shown
in Fig. 14. It can be seen that this mode spends a long time
in a restricted region of phase space, thus delaying overall
ergodicity.

B. Three-dimensional MHD and RMHD with a background
magnetic field in a cubic box

1. MHD with a background magnetic field

In the presence of a background uniform magnetic field B0,
the 3D MHD equations lose one of the quadratic invariants,
the magnetic helicity, so the two invariants that remain are the
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FIG. 11. Power frequency spectra of the time series in Fig. 10
for qmax = 5, 7, and 8 and Hm = 0.03. The reference vertical line
corresponds to a frequency value fL = 1/2 (see text) and the
horizontal line to the value of P (fL).

total energy (magnetic plus kinetic) and the cross helicity. As
will be discussed in a following section, this fact can have an
influence on the interaction of the lowest k = 1 mode with the
remaining modes in the system, and correspondingly on the
1/f power spectrum.

Results for simulation runs of ideal 3D MHD with a
background magnetic field in the y direction B0y

= 8 (as
compared to fluctuations rms values of 〈b2〉1/2 = brms = 1)
are shown in Fig. 15, for the time evolution of a fluctuating
component of the magnetic field of the k = (1,0,0) mode,
and for the corresponding frequency spectra in Fig. 16. This
corresponds to a simulation of size 323. Long time fluctuations
of the order of 1000 unit times appear, and a corresponding
strong enhancement of very low-frequency power, associated
with a 1/f spectrum, is clearly observed. This case of MHD
with a background magnetic field has been thoroughly studied
for the driven-dissipative case [1]. Here, it can be seen that the
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FIG. 12. Time series of the bz component of the magnetic field
for the (q,l,m) = (1,1,0) mode in the spherical MHD run with zero
rotation � = 0 (top panel) and � = 16 (bottom panel) and qmax = 5.

1/f spectrum appears even in the ideal case and we conclude
that it is a property of the nonlinear interactions among the
modes in the system, and does not depend on the presence
of dissipation in an essential way. The complex plane phase
space trajectory for this case is shown in Fig. 17, and delayed
ergodicity of the k = (1,0,0) mode is also clearly observed.

2. Reduced MHD

Another related case of interest is given by the RMHD
system, which is, as discussed in Sec. II, an approximation
to the low-frequency dynamics of the MHD equations with a
large background magnetic field. Results for a RMHD case
are shown in Fig. 18, namely, time series for a component
of the fluctuating magnetic field for the k = (0,1,0) mode,
and the corresponding power frequency spectrum is shown in
Fig. 19. This is for a case with a background magnetic field
in the x direction B0x

= 8 and size 323. As can be seen, long
time fluctuations are evident, with periods on the order of 1000
unit times. The RMHD system admits two known quadratic
ideal invariants: the total energy and the cross helicity. It is
interesting, however, that an additional quantity, the mean
square vector potential, which is strictly invariant in ideal 2D
MHD, behaves as a quasi-invariant in RMHD [37]. By this, we
mean that this quantity remains statistically constant for long
periods of time. The connection of this with the emergence of
long time fluctuations will be further discussed in Sec. IV.
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FIG. 13. Power frequency spectra of the time series in Fig. 12,
with rotation � = 0 and 16 and qmax = 5. The reference vertical
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horizontal line to the value of P (fL).

C. Three-dimensional hydrodynamic with and without rotation

There are two quadratic invariants in ideal three-
dimensional hydrodynamics, the kinetic energy

Eu = 1
2 〈|u|2〉 (14)

and the kinetic helicity

Hv = 〈ω · u〉 . (15)

These are also invariants of the 3D HD equations with addition
of constant rotation.

In the absence of rotation, these invariants do not con-
dense to the longest wavelength or engage preferentially in
back-transfer to the lowest k values [32,38]. Lacking these
tendencies, a rationale is lacking for expecting an inverse
cascade to large scales in the dissipative case. In the presence
of rotation, however, and in the ideal case, there is a transient
reduction to quasi-two-dimensional behavior and a transient
condensate, associated with the quasiconservation of the
energy in two-dimensional modes (modes with k‖ = 0, where
parallel refers to the direction of the rotation axis) [35,39].
These modes correspond to the so-called slow manifold of
the system. In the forced-dissipative rotating case, resonant
interactions transfer energy toward these modes, also resulting
in two dimensionalization and in the development of an inverse
energy cascade [40,41].
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FIG. 14. Complex phase space trajectory for the (q,l,m) =
(1,1,0) mode in the spherical MHD run, with qmax = 5 and rotation
� = 16.

The ideal behavior discussed above is similar to the
behavior of MHD in the presence of a background magnetic
field (see preceding section), which also reduces to a quasi-
two-dimensional dynamical behavior and has the mean square
vector potential as a quasi-invariant [28,37]. As will be
discussed further in the next section, this has an effect on
the emergence of long time fluctuations (see also [37]).

The time evolution of a velocity component for the
k = (1,0,0) mode with no rotation and with rotation �y = 16
(along the z axis) in a periodic box is shown in Fig. 20, and
the corresponding frequency spectra are shown in Fig. 21.
Long time fluctuations are much more apparent in the case
with rotation, where fluctuations are observed with periods
of the order of T ∼ 50–100, together with a corresponding
enhancement in the low-frequency 1/f range of the spectrum.
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FIG. 15. Time series of the z component of the magnetic field for
the k = (1,0,0) mode in the MHD 323 run with background magnetic
field B0y

= 8 and brms = 1.
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FIG. 16. Power frequency spectra of the time series shown in
Fig. 15. The reference vertical line corresponds to a frequency value
fL = 1/(2π ) and the horizontal line to the value of P (fL).

Similar results are obtained for simulations in spherical
geometry (not shown).

IV. DISCUSSION

All the simulations discussed in the previous section are
summarized in Table I. We summarize now the results and
discuss the related phenomena of emergence of long time
fluctuations, delayed ergodicity, and corresponding 1/f power
law in the frequency spectra.

The first examined case corresponds to ideal 3D MHD.
This system shows long term memory, 1/f noise, and delayed
ergodicity in the k = 1 modes. As pointed out, the system
has three quadratic invariants, i.e., the total energy, cross
helicity, and magnetic helicity, and in a statistical steady state,
the amplitudes of Fourier modes are controlled by the Gibbs
ensemble prediction. Specifically, the magnetic helicity allows
condensation at the lowest wave number mode. This happens
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FIG. 17. Complex phase space trajectory for the k = (1,0,0)
mode in the MHD 323 run with background magnetic field B0y

= 8.
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FIG. 18. Time series of the z component of the magnetic field
for the k = (0,1,0) mode in the RMHD 323 run with background
magnetic field B0x

= 8.

for nonzero values of Hm, and it becomes more intense as the
absolute value of Hm is increased. Condensation also becomes
more intense as the number of modes ∼N3 is increased for
fixed Hm/E. The k = 1 mode is special then in the dynamics
of this system. As shown, this mode is in a quasi-force-free
state, so its evolution is slow, weakly coupled with a sea
of lower amplitude modes at much larger wave numbers.
The force-free property is prescribed by the Gibbs ensemble
solution; the modes with k = 1 have maximum helicity, the
magnetic field is parallel to the current density, and these
largest scale fluctuations are circularly polarized.

The coupling between the k = 1 modes and the small scale
modes is defined by triads of wave numbers, constructed
with a k = 1 mode and two large wave number modes.
The time evolution of these interactions is controlled by the
(comparatively small) amplitude of the larger wave number
modes, but the large length scale (small k) of the lowest wave
number mode. As pointed out in [1], this can be seen from
the expression for this type of interaction, which is of the
(schematic) form

∂b(k)

∂t
= −ik

∑
k=p+q

u(q)b(p) , (16)
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FIG. 19. Power frequency spectra of the time series shown in
Fig. 18. The reference vertical line corresponds to a frequency value
fL = 1/(2π ) and the horizontal line to the value of P (fL).
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FIG. 20. Time series of the z component of the velocity field for
the k = (1,0,0) mode in the HD 323 run with rotation � = 0 (top
panel) and �y = 16 (bottom panel).

where b(k),u(q),b(p) are generic Fourier mode amplitudes,
with the constraint that k = p + q. In particular, we consider
the lowest wave number mode k = 1. If the triadic interaction
is local, then k ∼ p ∼ q by definition and the time scale of
that interaction is given by [ku(k = 1)]−1 ∼ 1, whereas if the
interaction is nonlocal, then p,q � k = 1, p ∼ q and the time
scale is [ku(q)b(q)/b(k = 1)]−1, which is much longer than
the local time scale since u(q),b(q) � u(k = 1),b(k = 1).

The fact that 1/f noise is also observed in cases with low
magnetic helicity but increasing size N suggests, however, that
even in cases with amplitude equipartition among modes (i.e.,
when magnetic helicity is small, as indicated by the Gibbs
ensemble predictions), the sea of large wave number modes is
again slowly modifying the dynamics of the k = 1 mode. This
idea is supported by previous studies [32] in which the effect
of the large wave number modes on the lower wave number
modes is modeled through an effective viscosity, even though
the systems are strictly ideal, such as the Euler equations.
This is also similar to ideas suggested by low dimensional
dynamical systems in connection with the reversals of the
geomagnetic field (see, e.g., [17,18]), with bistable states
driven by noise (in this case, the large wave number modes
would act as the driving noise for large-scale behavior).

These results, aside from being obtained for different
resolutions and values of the invariants in ideal cases (i.e.,
without viscous or external forcing, indicating the long term
behavior is intrinsic to the system of equations), are also
obtained for two different geometries: in periodic boxes and in
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FIG. 21. Power frequency spectra of the time series of Fig. 20.
The reference vertical line corresponds to a frequency value fL =
1/(2π ) and the horizontal line to the value of P (fL).

spheres. As a result, we conclude that the boundary conditions
do not seem to affect the long term behavior.

As mentioned before, the 3D MHD system has an ideal
invariant that experiences a condensation to the longest
wavelength modes of the system, and in the dissipative
driven case is expected to be involved in an inverse cascade.
Interestingly, another set of results observed here suggest that
certain systems such as MHD with a background magnetic
field or HD with rotation also allow for the emergence of
long time fluctuations and 1/f behavior. These systems do
not have an ideal invariant that condenses to the lowest wave
number mode in the Gibbs ensemble. There is, nevertheless, a
slow manifold of modes (the two-dimensional modes) that
are distinguished from all other degrees of freedom. We
argue that this slow manifold is controlling the emergence
of long time fluctuations in the k = 1 modes, as observed
in the results. It is interesting to note that these systems
are characterized by the existence of a quasi-invariant. By
this, we mean a slowly varying but not strictly conserved
quantity, such as the square vector potential 〈a2〉 in MHD
with a background field, or the energy in modes with k‖ = 0
in HD with rotation. The quasi-invariants are approximately
conserved in the slow manifold and, thus, introduce longer time
scales in the dynamics by permitting transient condensation at
the lowest wave number mode.

Finally, a third category is that of systems with flat
frequency spectrum for small frequencies, which are
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associated with negligible long time correlations. An example
is 3D HD without rotation, or 3D MHD with no magnetic
helicity and zero mean magnetic field. These systems have no
invariant or quasi-invariant that condensates at large scales in
the ideal case.

V. CONCLUSION

The emergence of long time fluctuations and 1/f noise
in the frequency spectrum of field variables is observed in
systems with a quadratic invariant allowing condensation at
the lowest wave number mode, such as the magnetic helicity
in 3D MHD. This happens when the invariant is large but
also when it is small, provided the number of modes (N3) is
large enough. This happens indistinctly in geometries such as a
periodic box or a sphere, thus, we argue that this is an intrinsic
property of the nonlinear couplings in the system and is not
dependent on the geometry or on other external properties of
the system such as driving or dissipation, which are absent in
the ideal systems analyzed here.

We can conjecture, therefore, that long time fluctuations
will be also observed in ideal 2D MHD and 2D HD, where a
quadratic invariant allowing condensation at the lowest wave
number mode also exists. A previous indication of this is given
in [1], where the driven-dissipative case for these systems
is studied and shown to have 1/f noise. Other nonlinear
systems that do not belong to fluid dynamics but have Gibbsian
statistical condensates and dissipative-driven inverse cascades
may also show this behavior (see, for instance, a case in
quantum optics [42]).

The 1/f power spectrum is also observed in systems
with a slow manifold and quasi-invariants, such as MHD
with a background magnetic field and hydrodynamics with
rotation. We also argue that other systems, such as flows in the
geostrophic approximation, with a slow manifold dynamics,
may show long time fluctuations as well.

The observed occurrence of a range of 1/f frequency spec-
tra in interplanetary magnetic field and density fluctuations is
another case of relevance to the present discussions [8–10] This
signal is observed in the frequency range ∼10−5– ∼10−4 Hz
in the solar wind at 1 AU and beyond, but is also observed in
the coronal and in the solar photospheric magnetic field. It is
therefore possible that the origin of this signal is either in the
solar dynamo or in coronal dynamics, or both. Interestingly,

one might well expect slow manifold behavior in either of these
cases due to rotation or regional effects of magnetic helicity in
the dynamo or quasi-invariance of the mean square potential
in the corona, which is dominated by a strong large-scale
magnetic field. It is tempting to also associate this phenomenon
to long time memory effects in geophysical flows as, e.g.,
the ocean circulation; indeed, the origin of multidecadal time
scales in the climate evolution still remains mysterious since
it is not directly associated with a known instability, and yet it
is well observed, and reproduced, with approximate accuracy,
in numerical models (see, e.g., [43–46]).

Finally, three-dimensional hydrodynamic flows, which do
not have condensed invariants or quasi-invariants, do not
develop 1/f noise in the ideal case (see also [1] for similar
results in the forced-dissipative case). The development of 1/f

noise in such systems, if it happens, may be associated with
forcing or boundary conditions.

The main result that can be concluded here is that, in
many cases, long time fluctuations are intrinsically given by
the nonlinear dynamics of the system and not controlled by
external properties or dissipation. Furthermore, these studies
serve to strengthen the growing understanding that there are
deep connections between condensation (or quasi-invariants)
and 1/f signals at low frequency as well as between the
associated slow manifolds and irregular large-scale stochastic
reversals (or delayed ergodicity). A number of phenomena
observed in many types of flows all can be understood in
terms of these couplings, and may therefore have universal
properties linked to the presence of invariants.
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