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Birdsong is a complex behavior, which results from the interaction between a nervous system and a
biomechanical peripheral device. While much has been learned about how complex sounds are generated in
the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced
by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among
bird species makes birdsong a most suitable model to study phenomena associated to the production of complex
vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical
model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential
equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine
its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of
a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model
of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed
phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the
shift of the fundamental frequency observed in heliox experiments.
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I. INTRODUCTION

Birdsong is one of the preferred animal models to study
complex, learned, motor behavior [1]. Reasons for this choice
lie on the parallels found, in many species of birds, between the
mechanisms of acquisition of song and the learning of human
speech [2]. Songbirds, as well as humans, must hear a tutor
during a sensitive period of time in which they develop the
adequate motor gestures that produce the proper vocalizations
of the adult.

The complex vocalizations that compose the adult song
come as a result of the interaction between a nervous system,
which generates motor instructions, and a biomechanical
periphery. Even though much progress has been made in
understanding the motor control mechanisms at both levels
[3,4], little is certain about how responsible for that complexity
is the highly nonlinear biomechanical periphery or the neural
activity generating the patterns.

The avian vocal organ, the syrinx, is composed in oscine
birds of two sound sources. Each source has a set of tissues
(labia) that enter a regime of sustained oscillations when driven
by an airflow, which is in its turn controlled by the bird via
the subsyringeal air sac pressure [5,6]. The human voice is
produced in a very similar way: There is one source in the
larynx, made up of a set of vocal folds that oscillate when
driven appropriately [7].

The dynamics of the source, nonlinear in its nature,
exhibits complex phenomena that might create complexities
in the vocalizations even when driven by simple physiological
instructions. In a recent work, Zollinger et al. investigated
the occurrence of such nonlinear phenomena in the vocal
organ of the northern mockingbird (Mimus polyglottos) in an
attempt to assess to what degree the intrinsic nonlinearities
of the vibratory sound-generating structures in the vocal
organ contribute to song complexity [8]. Among their various
findings, we highlight the unilateral occurrence of nonlinear

phenomena, such as frequency jumps (i.e., jumps in the
frequencies of the vocalizations). They observed that these
events were consistent neither with fluctuations of the air
sac pressure nor with the syringeal airflow, supporting the
hypothesis that their occurrence did not require complex motor
gestures.

Between the sound source and the environment stands
the tract. The interglottal pressure, which provides the force
driving the oscillations of the labia, depends on the pressure
at the input of the tract. In this way, the tract is capable of
affecting the labial motion. In humans, the dynamics of the
vocal folds has been observed to be independent of the tract
(except in some exceptional situations [9,10]). Beyond the
sound source-filter hypothesis, however, the consideration of
the interactions between the source and the filter adds a great
deal of complexity to the biomechanical periphery responsible
for sound generation [11,12].

A theoretical analysis of the nonlinear phenomena of the
source-tract interacting system was carried out in a previous
work [13]. One of the most popular models to account for
the transfer of energy of an airflow to the tissue capable of
displaying self-sustained oscillations is the two-mass model,
introduced by Ishizaka and Flanagan [14], in which the
dynamics of the vibrating tissue is described in terms of
two masses and a set of springs. In Ref. [13], a sound
source modeled as a two-mass system was coupled to a tract
(modeled as a tube). A numerical exploration exhibited the
characteristic features of a chaotic dynamical system [13].
When the coupling is strong enough, instabilities appear and
bifurcations leading to, for instance, coexistence of periodic
solutions are observed. In this kind of model it is difficult,
however, to discern whether the complexity of the behavior
is originated by the source-tract interaction. Since one deals
with a four-dimensional model for the source (two dimensions
for each of the masses), complex dynamics might occur even
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when the interaction with the tract is neglected. Additional
difficulties arise in this approach when analytical calculations
are attempted to unveil the dynamical origins of the nonlinear
phenomena found in the numerical explorations.

With the aim of finding if complexity can occur only due
to source-tract interaction, we presented in previous work a
minimal model in which the source, when uncoupled to the
tract, could only undergo a Hopf bifurcation [12]. In this way,
any additional nonlinear phenomena taking place when the
coupling was added to the model could be identified as a
consequence of the interaction with the tract. In particular, by
taking the system to a highly dissipative limit and studying
the phase equations of the system, analytical expressions for
the periodicity of the solutions could be found. Conditions
for the coexistence of periodic solutions could be established
for a parameter accounting for the length of the tract, and a
mechanism for the occurrence of jumps in the frequency of
vocalizations was proposed.

The motor gestures that determine the fundamental fre-
quencies of vocalizations of songbirds are coordinated with the
geometry of several parts of the vocal tract, such as the length
of the trachea, the volume of the oropharyngeal-esophageal
cavity, or the beak aperture [3,15,16]. In many of the reported
experiments, however, this coordinated activity does not result
in nonlinear effects as obvious as jumps in frequency. In order
to determine the contributions of the source-tract coupling to
the complexity of birdsong it is helpful to derive its effects on
the amplitude of the sound, which is the most direct observable
of birdsong.

Keeping this in mind, we study here the model presented
in Ref. [12] in a way that allows us to observe nonlinear
phenomena in the amplitude of the sound. This model holds
the advantage that phenomena associated with the coupling are
easily identified. Working in the weakly nonlinear limit, we
derive analytical expressions for the amplitude of the sound.
With these expressions we are able to explore systematically
the effects on it introduced by the coupling, paying special
attention to the regions where the frequencies of the sound
produced in the source are close to the resonances of the tract.

The organization of this work goes as follows. In Sec. II,
we describe our model and a selection of results, obtained
by numerical exploration, which can be related to acoustic
features of the solutions. In Sec. III, we deal analytically
with the model in the weakly nonlinear limit. We discuss
the acoustic properties of synthetic birdsong generated by
our model in Sec. IV, focusing on the features that appear
when going beyond the source-filter approximation. Finally,
we present our conclusions in Sec. V.

II. THE MODEL

As we did in a previous work, we introduce a model
for the source based on Titze’s “flapping mechanism,” in
which the motion of the labia are ruled by a second-order
equation [12]. This model is a simplified version of the one
presented in Ref. [6], which was built on a previous model
proposed by Titze to account for the oscillation of human
vocal folds [17]. It assumes that each labium supports both an
upward propagating surface wave, which is often observed

as a phase difference between the upper and lower ends
of the fold, and a lateral oscillation of its center of mass.
Requiring that the labia have a more convergent profile when
they are moving away from each other than when they are
closing in, the force made on them by the glottal pressure
will be greater in the opening phase than in the closing
phase. In this way, the folds are capable of performing a
“flapping” motion that enables a net transfer of energy from
the airflow to sustain oscillations in the labia. This can be
mathematically written in terms of Newton’s second law for
the departure from equilibrium of the center of mass of a
labium, x:{ .

x = y
.
y = −kx − βy − cx2y + pi + (ps − pi)f (x,y),

where, in the second equation, the first term describes the
elastic restitution of the labium, the second term represents
dissipation, and the third term a nonlinear saturation that
bounds the labial motion. The system is driven by the last
two terms. They account for the average interglottal pressure,
written in terms of the subsyringeal pressure ps , and the
pressure at the input of the tract pi (all pressures in this work
are defined per unit mass per unit area of the labium). In
the driving term, f (x,y) is a function of the geometry of the
folds that depends on the ratio of the cranial and bronchial
areas of the labial valve. The experimentally observed phase
difference between the upper and lower portions of the labia
is introduced in this function [6,11,12,17]. An equivalent way
of stating the requirements for flapping motion is that the
average pressure between the labia is closer to the bronchial
pressure when the labia present a convergent profile, and
closer to atmospheric pressure when they are divergent. The
force goes therefore in the same direction as the velocity
of displacement of the labia, which might overcome the
dissipation for high enough subsyringeal pressure. These
requirements are met if f (x,y) is proportional to the velocity
of the labia, i.e., f (x,y) = y/vchar, with vchar a characteristic
velocity [6]. In contrast to the more detailed two-mass models,
our system restricts the dynamics of the source to a simple
spatial mode. In a previous work, we explored its dynamics
in the (ps,k) parameter space and found that it is capable
of accounting for the mechanisms of sound production of
the northern cardinal (Cardinalis cardinalis) [18]. Despite
its simplicity, the simplified model proved realistic enough
to synthesize birdsong when driven by actual physiological
recordings of subsyringeal pressure and ventral muscular
activity [19].

With the proposed f (x,y) = y/vchar, the system has a fixed
point at (x,y) = (0,0). After a change of scales (t → t/γ and
y → γy), and setting vchar = 1 for simplicity, we write{ .

x = y
.
y = −kγ 2x + γ (ps − β)y − γ cx2y + γpi(γ − y).

(1)

To assume that the source-filter separation hypothesis holds
means that the pressure at the input of the tract is con-
sidered negligible in the driving part of the system. This
is expressed by setting pi = 0 in (1). For certain values
of the parameters (ps,β), the driving force overcomes the
dissipation, and a Hopf bifurcation occurs: The fixed point
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becomes unstable, and a limit cycle is born with zero
amplitude and finite frequency [20]. Beyond the bifurcation,
the midpoint of the labia oscillates around their equilibrium
position.

Coupling between the source and the tract is introduced by
pi �= 0. When the dynamics of pi = pi(x,y,t) is introduced,
complexity is added to the equations of motion of the labia.
If the labial valve is coupled to a tube, the pressure at the
input of the tract pi will be affected by the reflections of the
sound wave at its output. There is a contribution to the driving
term that comes from a feedback that depends on the value of
pi at a previous time depending on the length L of the tract.
We derived in Ref. [12] a functional form of pi that accounts
for this feedback. We assume two main contributions to the
supraglottal pressure pi : one due to the fluctuations originated
in the glottis and injected into the tube, and the other one
due to the feedback. For flow fluctuations of the order of kHz
and tube section of the order of mm, the contribution of the
fluctuating glottal flow Ug can be written as p+ = ρ0vsUg/Ai ,
where ρ0 is the unperturbed air density, Ai the section of the
input of the tract, and vs the speed of sound. The average
speed of the air in the glottis is given by a phenomenologically

corrected Bernoulli’s law, Vm =
√

2ps

kt ρ0
, in which kt stands for

the trans-glottal pressure coefficient [17]. The glottal flow can
be approximated as Ug = Vmam, where the glottal area am

is proportional to the displacement from equilibrium of the
midpoint of the labia x. We can therefore write the contribution
to pi due to fluctuations in the glottal flow as p+ = α

√
psx,

where α is inversely proportional to the area of the tube. The
other contribution to the pressure at the input of the tract comes
from the reflection at the output. We model the tract as a tube
of length L, open at the end that is the furthest from the source.
A sound wave entering the tube will be partially transmitted at
the other end and partially reflected with a coefficient r . The
reflection of a sound wave entering the tube at a given time
will contribute to the pressure at the input of the tract with a
delay of τ = 2L/vs (the time it takes the wave to propagate to
the other end and back), and opposite sign. Considering both
contributions, the supraglottal pressure can be written as

pi(t) = α
√

psx − rpi(t − τ ). (2)

In previous work [12], motivated by the experimentally
observed coordination between the geometry of the avian
vocal tract and the fundamental frequencies of vocalizations
[1,15,21], we performed a numerical search for qualitatively
different solutions of system (1) and (2) in the region where the
resonant frequency of the tract was close to the fundamental
frequency of the unperturbed source.

For strong enough coupling, we found a region of coexis-
tence of periodic solutions. Working in the high-dissipation
limit, a phase equation was derived for the dynamics of
the source. Then, introducing the coupling to the tract as a
perturbation to the phase dynamics, a bifurcation leading to
the appearance of a coexistence region of periodic solutions
was identified [12].

The coexistence of periodic solutions found was proposed
as a mechanism by which frequency jumps can be achieved
as a result of the coordination between the activities of the
source and the tract. Beyond this effect in the frequencies

of vocalizations, we are interested in nonlinear phenomena
leaving their signature in the most direct observable of
birdsong, i.e., the recorded sound amplitude.

Here we search for qualitative changes introduced by
the coupling in the amplitude of sounds generated in the
system. The acoustic pressure at the input of the tract is
pi(t). Hence the partially transmitted wave at the output of
the tract at a given time t is p(t) = (1 − r)pi (t − τ/2). This
quantity is the acoustic pressure at the output of the system.
To find the amplitude of a synthesized sound we compute
p(t) by numerically integrating Eqs. (1) and (2) and, after a
long enough transient (i.e., long enough for oscillations with
constant amplitude to be observed), find the maximum of its
norm. This quantity, |p|max, is hereafter called the “sound
amplitude.” We focus on the region where the fundamental
frequency of the sound produced by the unperturbed source
f0 = ω0/2π is close to the resonance of the tract, which
is where we previously found coexistence [12]. Since we
focus on the qualitative changes introduced by the source-tract
coupling in the dynamics of the system, we set the parameters
to dimensionless values that enable us to spot bifurcations in
the oscillatory solutions through the numerical exploration.
We find a nontrivial behavior of the amplitude, depending on
the strength of the coupling coefficient α. These findings are
summarized in Figs. 1 and 2. In Fig. 1 we plot |p|2max versus
(k,α). Each point represents the value of |p|2max, computed for
a grid of different initial conditions (x0,y0). When the coupling
is considered, the values of k at which the maximum sound
amplitude occurs shift, and their corresponding peaks grow.
Both the shift and the enhancement of the peaks are observed
even for smaller values of α than the ones required for the
bifurcation leading to coexistence to take place. Consequently,
phenomena associated with source-tract coupling are more
likely to be identified in the amplitude of the vocalizations,
where their signature is not restricted to a constrained region
in the parameter space. A region of coexistence appears
for strong enough coupling, as is evident in Fig. 2. In this
picture, the squared amplitudes for a particular α are plotted
for the coupled system, together with the results of computing
the same quantity when the contribution of the supraglottal
pressure is neglected in the forces driving the source. When
the source-filter hypothesis is assumed, there is no bifurcation
leading to coexistence. Moreover, no shift is observed in the
frequency at which the peak occurs, and its corresponding
amplitude is smaller than when the coupling is considered.

Numerical observations motivate analytical work. In order
to find out the dynamical origin of the amplitude effects
of source-tract coupling, we will reduce the system (1) and
(2) to a simpler set of equations preserving the dynamics
of the amplitude of oscillatory solutions. We propose here
to study the weakly nonlinear limit of the system, in which
the nonlinearities introduce a deviation from the periodic
solutions of the linear part of the system [20,22]. In this
limit we are able to obtain analytical expressions for the
mentioned deviations, both in amplitude and in the phase
of the oscillations. Different oscillatory solutions will appear
when the nonlinear perturbations are introduced. Moreover,
the types of solutions found when the nonlinearities include
the source-tract coupling might be different from those
found when the nonlinearities contain only the dynamics
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FIG. 1. Sound amplitude against k for different values of the
coupling coefficient α. As the coupling increases, the amplitude at
the resonance grows. For large enough α, a coexistence region sets in,
where two oscillatory solutions with different amplitudes are possible.
Parameters used for numerical integration were (γ, ps, β, c, r) =
(7000π, 0.1, 0.01, 1 × 10−6, 0.71) in dimensionless units, τ =
1.43 × 10−4 s.

of the source. For this reason, we concentrate on the sys-
tem

..
x +ω2

0x = μ

[
.
x −c̃x2 .

x +(1− .
x)α̃

∞∑
n=0

(−r)nx(t − nτ )

]
,

(3)

which is essentially the same as the one described by
Eqs. (1) and (2), with γ = 1,μ = ps − β,c̃ = c/μ,α̃ =√

psα/μ,ω2
0 = k.

III. ANALYSIS OF THE MODEL

The advantage of studying system (3) in the weakly
nonlinear limit (μ << 1) is that, as the nonlinear part is seen
as a perturbation, trajectories will be deviations from harmonic
oscillations. Conditions can be found for those trajectories to

FIG. 2. (Color online) Detail of sound amplitude against k and
comparison with the source-filter uncoupled system. Crosses repre-
sent the amplitude of sounds originated in a source-filter system. Dots
represent sounds generated in the source-tract coupled system. Empty
dots highlight the region of coexistence of periodic solutions: At those
values of k, the amplitude of the sound will be either of two values,
depending on the initial conditions. Parameters used for numerical
integration were (γ, ps, β, c, r, α) = (7000π, 0.1, 0.01, 1 ×
10−6, 0.71, 0.0014) in dimensionless units, τ = 1.43 × 10−4 s.

be oscillatory. Moreover, bifurcations can be found leading to,
for instance, coexistence of oscillatory solutions. Equation (3)
can be written equivalently as{ .

x= y
.
y= −ω2

0x +μ[y − c̃x2y + (1 − y)α̃
∑∞

n=0(−r)nx(t −n τ )].

(4)

Before introducing any approximations, we begin by propos-
ing the change of variables{

x = aeiωt + āe−iωt

y = iωaeiωt − iωāe−iωt ,

where a = a(t) is a new, complex variable, and ā stands for its
complex conjugate. By replacing variables in system (4) we
can derive an equation for

.
a:

2iωȧ = (
ω2 − ω2

0

)
(a + āe−2iωt ) + μf (a,ā,eiωt ,e−iωt ). (5)

At this point, no approximations have been made, and this
last equation is identical to (4). If μ = 0, the system has a
fixed point at ω = ω0, where a is constant and oscillations are
harmonic. When we consider the case where the dissipation
and the nonlinearities are small μ << 1, solutions at ω ≈ ω0

The relation between a and its time derivative should read
.
a<< aω. In this way, the change in a over one period of
oscillation can be neglected. If these assumptions hold, many
terms in the system can be eliminated, leading to a simpler
equation that retains the dynamics. Equation (5) can be written
in the form

.
a= μ

2iω

∞∑
n=0

Fn(a,ā)eiωnt ,

where the right-hand side of the equation is the Fourier series
of the right-hand side of (5), with coefficients

Fn = 1

T

∫ t+T

t

[
ω2 − ω2

0

μ
(a + āe−2iωt ′ )

+μf (a,ā,eiωt ′ ,e−iωt ′ )
]
e−inωt ′dt ′.

This expansion is exact if a is constant. If a changes slowly,
a = a(μt), its change over one period of the oscillation
T is small, and we can consider it approximately constant
when evaluating the integral. Since we are interested only in
the slow changes in a, we keep only the nonoscillating terms
in the expansion. By means of this standard procedure, we
eliminate all the nonresonant terms in the equation, which are
those that would have zero average over one cycle of oscillation
of the slow varying a. After this and upon the introduction of
the new The second change of variables is mistaken, it should
read a → A = a

√
c̃. dimensionless equation for the dynamics

of the deviation from harmonic oscillations A(t ′) = ρ(t ′)eiφ(t ′):⎧⎨
⎩

.
ρ = ρ

[
1 + α

√
psr

(ps−β)ω
sin (ωτ )

1+r2+2r cos (ωτ )

]
− ρ3

.
φ = ω2

0−ω2

(ps−β)ω − α
√

ps

(ps−β)ω
1+r cos (ωτ )

1+r2+2r cos (ωτ ) .
(6)

The search for oscillatory solutions to the system (1) and (2)
now reduces to a search for fixed points in (6). Thus, observing
the bifurcations in the fixed points of (ρ,φ), we can find
qualitative changes in the oscillatory behavior of x, and by
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these means of the squared amplitude of the sound produced
by the source-tract system per unit α,

|p|2max = (1 − r)2 psρ
∗2

1 + 2r cos (ωτ ) + r2
, (7)

where ρ∗ is the value of ρ at a fixed point:

ρ∗2 = 1 + α
√

psr

(ps − β)ω

sin (ωτ )

1 + r2 + 2r cos (ωτ )
,

with ω satisfying

ω2
0 = g(ω) = ω2 + α

√
ps

1 + r cos (ωτ )

1 + r2 + 2r cos (ωτ )
. (8)

With these expressions we can identify the conditions under
which three, one, or no fixed points exist for ω ≈ ω0.
Moreover, the stability of the solution can be determined
analytically. These results are summarized in Fig. 3. Given
a value of ω that satisfies condition (8), the system will present
a stable fixed point if ∂g

∂ω
> 0, unstable if ∂g

∂ω
< 0. Function

g(ω) increases from ω = 0, in a way that fixed points will
be stable unless it happens that g(ω) presents a maximum at
some value satisfying ∂g

∂ω
= 0, ∂2g

∂ω2 < 0. At this maximum, a
saddle-node bifurcation occurs, and three fixed points coexist:
two stable and one unstable. If that maximum is found, g(ω)
also presents a minimum for a larger value of ω ( ∂g

∂ω
= 0,

∂2g

∂ω2 > 0 at that point). A stable and an unstable fixed point will
collide in a new saddle-node bifurcation. The existence of this
pair of saddle-node bifurcations requires that g(ω) presents
a maximum. Consequently, it is possible to find, for fixed
(r,ω), the smallest value of α for which the conditions (8)
and ∂2g

∂ω2 > 0 can be satisfied. These critical values of (α,ω0)
happen at a cusp bifurcation. For every fixed point of a, the
source-tract system oscillates. In Fig. 4 we plot the square

FIG. 3. (Color online) Angular frequencies of fixed points of
system (6). The dark bold lines indicate stable fixed points, where
condition (8) is met and ∂g

∂ω
> 0. Thinner, lighter lines indicate

unstable fixed points, at which ∂g

∂ω
< 0. The lines in the (α,ω0)

plane delimit the region of coexistence of fixed points. On these
lines ∂g

∂ω
= 0, indicating the occurrence of saddle-node bifurcations

of fixed points. The point where they meet is where a cusp bifurcation
occurs: that is, the critical value for (α,ω0) at which coexistence is
possible. Parameters used were (ps, β, r, τ ) = (5.1, 0.1, 0.51, 1.0)
in dimensionless units.

FIG. 4. (Color online) Sound amplitude of stationary oscillatory
solutions. The dark, bold lines indicate stable oscillatory solutions.
Thinner, lighter lines indicate unstable limit cycles. The lines in the
(α,ω0) plane delimit the region of coexistence of fixed points. On these
lines, ∂g

∂ω
= 0 indicating the occurrence of saddle-node bifurcations

of fixed points. The point where they meet is where a cusp bifurcation
occurs. Parameters used were the same as in Fig 3.

of the amplitude of the oscillations per unit α [computed via
Eq. (7)] corresponding to the fixed points displayed in Fig. 3.

In the search for signatures of source-tract coupling in the
amplitude of the sound generated by the complete system,
we compare the previous results to those obtained when the
source-filter independence is assumed to hold. In this latter
case, fixed points of a occur at (ρ∗ = 1,ω = ω0). Consequently
there are no bifurcations leading to coexistence of limit cycles.
Moreover, the amplitude of oscillations per unit α does not
depend on α. The resulting amplitudes are displayed in the top
panel of Fig. 5. In the middle panel of the figure, the squared
amplitudes, computed for the same values of parameters for
the acoustically coupled system, are displayed together with
the cusp lines in the same way we discussed in the previous
paragraph. We also included in this panel a dotted line to
illustrate another phenomenon originated by the coupling: the
shift of phonation threshold. The existence of limit cycles in
the coupled system depend on Eq. (8) to be satisfied. For a fixed
set of (α,ps,r,τ ), values of ω0 below a certain threshold do not
lead to oscillations. These threshold values were computed and
plotted as a dotted line on the (α,ω0) plane. The bottom panel
of the figure illustrates the qualitative differences between the
sound amplitudes coming out of a coupled system and the
ones produced in a source-filter sound generator. A value
of α is selected, and the squared amplitudes per unit α

plotted for both approximations. The coupled system displays
coexistence of stable solutions with different amplitude, a shift
and enhancement of the resonance peaks, and the introduction
of an α-dependent phonation threshold.

IV. ACOUSTIC FEATURES OF THE SOLUTIONS

Source-tract coupling introduces complexity in the system
of equations describing the dynamics of the vocal organ. Even
considering simple dynamics for the source, the source-tract
coupled system presents a nontrivial bifurcation diagram,
including a cusp bifurcation leading to a region of coexistence
of periodic solutions. In the previous section, we also found
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FIG. 5. (Color online) Amplitudes (squared, per unit α) of sounds
originated in source-filter and source-tract coupled systems. Sounds
coming out of a source-filter system (top panel). Sounds coming out
of a source-tract coupled present coexistence of stable solutions. The
thick, dark lines represent stable solutions, the thinner, lighter lines
indicate unstable solutions. Regions of coexistence of solutions are
indicated by the intersecting lines in the (α,ω0) plane. Phonation
thresholds are indicated by the dotted line in the (α,ω0) plane (middle
panel). Comparison of amplitudes of sounds elicited by both systems
for α = 7.0, as indicated by the arrow in the middle panel (lower
panel). Parameters used were the same as in Fig 3.

dynamical mechanisms leading to phenomena affecting the
amplitude of the oscillatory solutions, as well as a shift in the
values of parameters required for a Hopf bifurcation to take
place.

Characteristics of the oscillatory solutions depend on
parameters accounting for physiological variables of the
system. In this way, the complexity of the solutions, leaving

their signature in the acoustic properties of the vocalizations
produced, can be controlled by simple, coordinated motor
gestures in the source-tract system.

The activity of the muscle syringealis ventralis vS is
directly correlated to the fundamental frequency of the sound
produced in the syrinx [23], in a way that leads to the
hypothesis that this physiological variable is responsible for
the active control of the stiffness of the labia [parameter k

in Eq. (1)] [6,19]. In addition, the activity of the vocal tract
has been reported to be coordinated with the frequency of
the vocalizations [15,24]. Beyond the source-tract separation
approximation, vocalizations with nontrivial acoustic features
can be generated by simple paths in the space of the parameters
accounting for motor gestures controlling the labial tension k,
subsyringeal pressure ps and vocal tract length L.

Among these vocalizations stand the unilaterally produced
frequency jumps. These are syllables in which the fundamental
frequency changes abruptly and have been observed in the
northern mockingbird [25]. We proposed in a previous work
a mechanism by which the bird exploits the coexistence
of periodic solutions to produce them [12]. A region of
coexistence in parameter space can be crossed by smoothly
varying the parameter accounting for the length of the tract L,
hence achieving the frequency jump with a simple motor
gesture.

The coordination of the vocal tract and the syringeal
activity is one of the mechanisms by which birds emphasize
the fundamental frequency of the vocalization. By adjusting
the length L of the trachea, the frequency of the sound
produced by the vibrations of the labia in the syrinx is
matched by the resonance of the tube through which the sound
is filtered ν = vs/(4L). The introduction of the source-tract
coupling in the model predicts, for certain values of the
parameters, an enhancement of this effect: Resonant sounds
in the source-tract coupled system present higher amplitudes
than in the source-filter approximation. In Fig. 2, synthetic
sounds were generated with identical systems, one of them
coupled, the other uncoupled. For a fixed L, the frequency of
the oscillation generated in the labia was varied (by sweeping
in the parameter accounting for their stiffness k), and the
amplitude of the oscillation was computed. In the source-tract
coupled system simulations, resonances occur at a higher
fundamental frequency and are stronger.

To illustrate the differences in spectral content of vocal-
izations produced in both approximations, we synthesize vo-
calizations by numerical integration of system (1) and (2). (A
modified version of Eq. (1) in which pi = 0 is integrated to pro-
duce the source-filter vocalization.) We introduce a very simple
pressure pattern, consisting merely of an increase beyond the
value at which the folds begin to oscillate and, after a time in-
terval, a return to subthreshold. During that time, vocalization
takes place. The length of the tract remains fixed, adjusted so
that its resonant frequency matches the fundamental frequency
of the sound produced by the source alone. The vocalizations
are plotted in Fig. 6 (acoustic pressure and sonogram). It is
remarkable that the energy of the source-tract coupled system
concentrates the energy in the fundamental frequency f0 and
in every harmonic (f0,2f0,3f0, . . .). In contrast, the peaks of
energy in the source-filter syllable occur as expected in a sound
filtered by an open-closed tube with L = vs/(4f0), namely, at
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FIG. 6. (Color online) Synthetic vocalizations produced by numerical integration of Eqs. (1) and (2), considering source-filter independence
(left panels) and source-tract interaction (right panels). Sound (top panels) is produced when the system is driven by a simple pressure gesture
(bottom panels). The sonograms (middle panels) show that the spectral content of the vocalizations are qualitatively different. Parameters used
for numerical integration were (γ, β, c, r, α) = (7000π, 0.01, 1 × 10−6, 0.71, 0.0014) in dimensionless units, τ = 1.43 × 10−4 s.

(f0,3f0, . . .). The quadratic term introduced by the feedback
in the driving part of system (1) is responsible for this effect.

Experiments have been performed in some species to study
how the vocal pathway modifies the sound generated in the
source, in which the ambient where the birds phonated was
filled with heliox [24,26]. The change of atmosphere carries an
increase in sound velocity of up to 550 m/s. If the source and
the tract do not interact, the fundamental frequencies of the
vocalizations recorded should not be modified as the velocity
of sound increases. By simulating a heliox experiment with
synthetic sounds generated by a source-tract coupled system,
we expect to be able to make quantitative predictions on the
changes in fundamental frequency and spectral content to be
observed as the sound velocity is increased.

With this in mind, we generated a series of synthetic sounds
with all the parameters of system (1) and (2) fixed except
for vs , which ranged from 341 to 520 m/s. The fundamental
frequency of sounds originated in the uncoupled system
remained constant over the simulated heliox experiment, as
expected. No shift was observed in the fundamental frequency
or the higher resonances, but only a change in the ratio of the
peaks (see Fig. 7, left panels). The sounds synthesized using
the source-tract coupled system increased in fundamental
frequency as the sound velocity increased. Furthermore, the
shift in the amplitude peaks became larger the higher the
frequency at which they appeared (see Fig. 7, right panels).

Small shifts in frequencies have been observed when the
density of the air is reduced by mixing it with heliox [24].
We showed here that even with a simple description of the
dynamics of the folds, a shift in frequency is to be expected
upon a change in the density of the atmosphere; responsible for
this effect is the delayed feedback introduced by the coupling
to the tract.

V. CONCLUSIONS

In this work we have studied the dynamics of a simple
interacting sound source-tract system. Our model consists of
an oscillator coupled to a simple tube. Vocal tracts are actually
much more complex and include, for instance, the beak and
the oropharyngeal-esophageal cavity, whose activities have
been reported to be coordinated with that of the sound source
[15,27]. They affect, however, the filtering of the sound; their
contributions to the feedback are negligible. We have found
that when the frequencies of the sounds generated in the
source are close to the resonant frequencies of the tube, a
shift and an enhancement of the resonance peaks occur. For
some values of the parameters, we also found coexistence
of stable periodic solutions. This implies the possibility of
having rapid changes in the acoustic output of the system, in
both amplitude and frequency, even for smooth changes in the
parameters.

The parameters accounting for the physiology of the sound
source-tract system were set to dimensionless values at which
the effects of the coupling were noticeable as qualitative
changes in the dynamics. By these means, we were capable
of finding bifurcations in the system leading to acoustic
phenomena consistent with observations [8]. The difficulties
in estimating labial mass, or values for the muscle tensions
involved, make it difficult to advance beyond qualitative
analysis.

The mathematical model proposed to account for the
dynamics of the uncoupled sound source presents little
complexity, namely, just the possibility of oscillating by going
through a Hopf bifurcation. It is then the interaction between
the source and the tract that is responsible for the additional
phenomena discussed here.
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FIG. 7. (Color online) Fundamental frequencies of synthetic vocalizations and power spectrum for varying medium density. Fundamental
frequencies of sounds do not change with the air density if the source and the filter do not interact (top left panel). When the source is coupled
to the tract, there is a drift in the fundamental frequency (top right panel). The arrows A and B in the upper panels indicate two different
air densities, at which the power spectra of the synthetic sounds were computed (bottom panels). The power spectrum of the source-filter
synthetic sound changes only the relative values between the resonance peaks when the density of the air is changed (bottom left panel),
whereas a shift is observed in the peaks of the source-filter vocalizations (bottom right panel). Parameters used for numerical integration were
(γ, β, c, r, α) = (7000π, 0.01, 1 × 10−6, 0.71, 0.0014) in dimensionless units, τ = 9.6 cm/vs .

Complexity is introduced in the acoustic features of the
vocalizations when the interaction of the source and the
tract is taken into consideration. In our model, the tract
does not play the role of a passive filter, but it interacts
with the source, introducing a delayed feedback pi in the
driving term of the fold oscillations. The delayed feedback
introduced by the interaction of the tract and the source is
responsible for quantifiable effects in the acoustic properties
of the vocalizations, such as the position and relative intensities
of the resonant peaks when the fundamental frequency of
the sound produced is close to the frequency associated
to the tube. The weakly nonlinear approximation made in
this work pursued the goal of determining the underlying
dynamical mechanisms leading to these effects, as well as
proposing ways to quantify the degree of source-tract coupling
from the observed vocalizations. The use of a minimal

model pursued the goal of identifying what part of the
complexity of the sounds was due to the nonlinearities of
the source, and which was due to the interaction with the
tract.

The complex vocalizations elicited by songbirds come
as the result of the interaction of a nervous system and a
biomechanical periphery. In this work, we contribute to the
task of determining where such complexity is originated. This
issue has been addressed in Refs. [1,4,8]. It is hypothesized
that complexity in vocalizations might not require complex
active neural control, but can be achieved by the driving of
a highly nonlinear periphery with simple motor instructions.
The mechanism proposed here supports the idea that, in order
to understand the complexity of birdsong, it is necessary to
study in parallel the central neural control and the dynamics
of the periphery.
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