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Abstract

An exponentially nonlinear reduced-order observer for robot manip-

ulators is developed. Velocity estimation of N-link manipulators is

performed by integrating only N differential equations. Consequent-

ly, computational effort is reduced. Convergence is investigated, and

a design criterion is proposed. Simulation results using a two-link

manipulator model are presented.
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1. Introduction

The issue of controlling the motion of robot manipulators
has been studied extensively in the robotics and control
literature. Most of the proposed control strategies (such
as feedback linearization, compute torque control, PID
control, and variable structure control) require not only
position information, but also velocity information. Gen-
erally, clean position measurements are readily obtained by
means of encoders or resolvers, which can give very accu-
rate measurements of the joint displacements. Conversely,
velocity sensors are undesirable for many reasons. In the
first place, measurements obtained from tachometers are
often contaminated by noise. This constrains the use of
high-gain controllers, reducing the dynamic performance
of the robot. Secondly, tachometers increase the weight of
the moving parts, thereby decreasing the robot’s efficiency.
Therefore, velocity information should be inferred from po-
sition information. A trivial way to avoid velocity sensors
would be by computing the time-derivative of the position,
but this is not recommended because of its noisy nature.
One solution to overcome this problem is the development
of an observer, which estimates velocity from position and
torque measurements, without resorting to noisy numerical
differentiation.

In this paper a reduced-order observer for robot ma-
nipulators is proposed. As can be confirmed, many pro-
posed observers in literature are full-order observers (see
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[1-7]). When implementing this kind of observer for an
N -link manipulator, 2N differential equations must be in-
tegrated. Nevertheless, since position is measured, there is
no need to estimate it. Based on this concept, a reduced-
order observer, which demands only N differential equa-
tions to be integrated, has been developed. Consequently,
computational burden is substantially diminished [8, 9].

The work is organized as follows. In Section 2, the
equations of the observer are formulated. In Section 3,
convergence is investigated, showing under what conditions
the observer converges exponentially. Section 4 deals with
simulation results using a two-link manipulator model.
Finally, concluding remarks are presented in Section 5.

2. Reduced-Order Observer

The model of the rigid N -link manipulator resulting from
the Lagrange equations is given by:

H(q)q̈ = τ − C(q, �q0 �q − τg(q) (1)

where q, �q, q̈ ∈ Rn, are the positions, velocities, and ac-
celerations, respectively. τ ∈ Rn is the control torque,
H(q)inRn×n is the definite positive inertia matrix, C(q, �q)
in n×n is the Coriolis and centripetal matrix, and τg ∈ Rn
are the gravity components.

The state variable representation of (1) is:

�x1 = x2 (2)

�x2 = β(x1, x2) + u(x1, τ) (3)

y = x1 (4)

where x1 = q, x2 = �q, β = H−1(x1)[−C(x1, x2)x2], and
u(x1, τ) = H−1(x1)[τ − τg(x1)].

In this section, we will deduce the equations of our
velocity observer, which will provide velocity estimation
using only position measurements. As a first approach, we
consider that the observer dynamic is given by (3), plus a
correction term:

�
x2 = β(x1, 
x2) + u(x1, τ) +G(x2 − 
x2) (5)

where 
x2 ∈ Rn is the velocity estimate and G ∈ Rn×n is
a constant matrix to be designed such that convergence is
guaranteed. Obviously, (5) cannot be the final equation of
the observer, because computation of the velocity estimate

x2 demands direct information of the real velocity x2
Therefore, (5) must be modified in order to obtain the
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final equations of our reduced-order observer. Accordingly,
an additional variable υ ∈ Rn such that υ = 
x2 − Gx1 is
defined. Then, taking υ as the new vector state, the set of
equations for the proposed observer becomes:


x2 = υ +Gx1 (6)

�υ = β(x1, 
x2) + u(x1, τ)−G
x2 (7)

It can be seen that now, the observer dynamic does
not explicitly depend on x2. Furthermore, it is important
to note that only N differential equations need to be
integrated in order to compute 
x2.

At this point, two questions arise: what are the design
conditions that ensure the observer convergence, and what
are the constrains for selecting the initial value of υ. These
are the subject of the next section.

3. Design of G for Observer Convergence

The dynamic of the velocity estimation error (ex2 = x2 −

x2) can be derived by subtracting (5) from (3). Then, it
can be written as:

�ex2 = ∆β −Gex2 (8)

where ∆β = β(x1, x2)− β(x1, 
x2).
We will design G using the Lyapunov direct method in

order to guarantee the convergence of the observer.
Let function V positive definite:

V = eTx2
ex2 (9)

be a candidate Lyapunov function. If its time derivative
can be put in the form:

�V ≤ σ‖ex2‖2 (10)

with σ < 0, it can be proven that the observer converges
exponentially (see Appendix 1) given by:

‖ex2‖ ≤ ‖ex2(t0)‖ exp
(σ

2
(t− t0)

)

(11)

with initial time t0.
Now, the problem of convergence has been reduced to

finding G such that inequality (10) is verified.
The time derivative of V is:

�V = −eTx2
Qex2 + 2∆βT ex2 (12)

where Q = (GT +G).
Choosing G = goIn×n, with go a positive constant and

I identity matrix, Q becomes Q = 2goIn×n. Then �V is
bounded by:

�V ≤ −2go‖ex2‖2 + 2‖∆β‖ ‖ex2‖ (13)

According to physical considerations, velocity x2 is
limited. It belongs to the ball B1(0, r1) ⊂ Rn, whose radius
r1 > 0 is the maximum velocity ‖x2MAX

‖ reachable by the
real system. Then, given an initial velocity error ex2(t0),
it can be asserted that for t = t0 the estimated value 
x2 is
confined inside a compact set, namely:


x2(t0) ∈ B2(0, r2) ⊂ Rn (14)

where r2 ≥ ‖x2MAX
‖+ ‖ex2(t0)‖ = r1 + ‖ex2(t0)‖. There-

fore, if the partial derivatives ∂β
∂ξ (x1, ξ) exist and they are

continuous in B2(0, r2), then β is Lipschitz in B2(0, r2) and
∆β can be bounded by:

‖∆β‖ ≤M‖ex2(t0)‖ (15)

where M = supξ∈B2
‖∂β∂ξ (x1, ξ)‖. Replacing (15) in (13)

for t = t0:

�V |t=t0 ≤ −2(go −M)‖ex2(t0)‖2 (16)

Then, if G is designed such that:

go > M (17)

it ensures that at least for t = t0, the inequality (10) is
satisfied. This guaranteed that the velocity estimation
error will continuously decrease:

‖ex2(t0)‖ > ‖ex2(t0 +∆t)‖ (18)

Under these circumstances 
x2 remains inside B2(0, r2), and
consequently, the boundM is still applicable. This ensures
that ‖ex2‖ will decrease again. Thus 
x2 will not escape
from B2(0, r2), and M will still be an appropriate bound.
Following this reasoning, (13) can be rewritten as:

�V ≤ −2(go −M)‖ex2‖2 ∀t ≥ t0 (19)

designing G such that go > M .
In this way exponential convergence is guaranteed.

However, a problem still exists. As can be observed in (14),
precise knowledge of ex2(t0) seems to be needed in order
to compute r2, and consequent calculation of M . If this
is so, velocity measurement would be required, at least at
t = t0. Fortunately, this obstacle can be easily overcome
by setting a bound to ex2(t0). Initialize 
x2 with known
value 
x2(t0), then it can be assured that:

‖ex2(t0)‖ ≤ ‖
x2(t0)‖+ r1 (20)

Hence, redefining r2 in (14) by using (20) becomes:

r2 = 2r1 + ‖
x2(t0)‖ (21)

being independent of the initial velocity measurement.
The proposed design criterion described in this section

can be summarized as follows:
1. Study the plant and, based on physical considerations,

determine the maximum velocity ‖x2MAX
‖ = r1.

2. Define B2(0, r2), specifically r2:

(a) if some information of x2(t0) is available, 
x2(t0)
must be selected as close as possible to x2(t0).
Then, r2 should be computed following (14): r2 =
r1 + ‖ex2(t0)‖.

(b) If no information of x2(t0) is available, r2 is cal-
culated according to (21): r2 = 2r1 + ‖
x2(t0)||,
with 
x2(t0)initialized inside B1(0, r1). Further-
more, choosing 
x2(t0) = 0 generates the smallest
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B2(0, r2), and consequently the lowest M under
these conditions.

3. Compute M = supξ∈B2

∥

∥

∥

∂β
∂ξ (x1, ξ)

∥

∥

∥.

4. Design G verifying inequality (17), which guarantees
the observer exponential convergence.
It is important to note that once 
x2(t0) has been chosen

and G designed, the initial value of υ is defined.

4. Simulation Results

In this section the performance of the proposed observer
is assessed through computer simulation. The reduced
nonlinear observer is tested over a spatial two-link manip-
ulator. The dynamic model of the robot is:

H(q)q̈ = τ − C(q, �q) �q − τg(q)− fr( �q)

The elements of the inertia matrix are explicitly given by:

h11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2

h12 = h21 = m2(l
2
c2 + l1lc2 cos(q2)) + I2

h22 = m2l
2
c2 + I2

See the robot parameters in Appendix 2. The elements of
the Coriolis and centripetal torque matrix are:

c11 = −m2l1lc2 sin(q2) �q2

c12 = −m2l1lc2 sin(q2)( �q1 + �q2)

c21 = −m2l1lc2 sin(qs) �q1

c22 = 0

The gravity torque vector is comprised by:

τg1 = (m1lc1 +m2l1)g sin(q1) +m2lc2g sin(q1 + q2)

τg2 = m2lc2g sin(q1 + q2)

Finally, the ith element of the friction torque vector is
described by:

fri = fvi �qi + fci, i = 1, 2

where the first term represents a viscous friction component
and the second term is a non-symmetric Coulomb friction,
given by:

fci =







fcpi if �qi > 0

fcn+ i if �qi < 0
i = 1, 2

In this example, the robot manipulator is controlled
through feedback linearization. To take into account the
effect of sensor noise, Gaussian noise with σ = 0.01 has
been added to the measured variables q1 and q2. The
observer gain g0 has been selected as 3 to provide fast
observer convergence, compared with the dynamics of the
plant. The system starts from rest and its initial position is
q(0) = [ π10rad

π
8 rad]

T . Appropriate acceleration pulses are
applied to the manipulator to obtain the velocity profile

displayed in Fig. 1. It is important to note that, to demon-
strate the observer behaviour in the presence of incorrect
initial conditions, the initial velocity estimate has been
deliberately selected as 
x2(0) = [1.2rad/sec 1.4rad/sec]T .
The observer effectiveness can be clearly appreciated in
Fig. 2, where the velocity estimation error (ex2 = x2 − 
x2)
is depicted.

Figure 1. Actual velocity: (a) link 1, (b) link 2.

Figure 2. Velocity estimation error: (a) link 1, (b) link.

Further simulation has been carried out over many
other plants, using diverse values of go and initial con-
ditions, and in every case, the observer performance has
proven to be good, rendering very satisfactory results.

5. Conclusions

In this work a nonlinear reduced-order observer was p-
resented. It was developed in order to render velocity
estimation of an N -link robot manipulator by integrating
N differential equations. Since the number of differential
equations is divided by two (in comparison with those of a
full-order observer), while calculation complexity is not in-
creased, an important reduction of computational burden
is achieved. In addition, only one parameter (go) must be
designed to guarantee a desired speed of convergence.
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Appendix 1

Given the candidate Lyapunov function:
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V = ‖ex2‖2

If its time derivative can be bounded by:

�V ≤ σ‖ex2‖2

with σ < 0.

Then:

�V

V
≤ σ

such that:

V ≤ V (t0) exp (σ(t− t0))

It follows:

‖ex2‖ ≤ ‖ex2(t0)‖ exp
(σ

2
(t− t0)

)

so that the convergence is exponential.

Appendix 2

Table 1
Robot Manipulator Parameters

Description Notation Value Units

Length link 1 l1 0.45 m

Length link 2 l2 0.55 m

Center of gravity of link 1 lc1 0.091 m

Center of gravity of link 2 lc2 0.105 m

Mass of link 1 m1 23.90 kg

Mass of link 2 m2 4.44 kg

Inertial moment of link 1 I1 1.27 Kg.m2

Inertial moment of link 2 I2 0.24 Kg.m2

Gravity g 9.8 N/s2

Viscous friction link 1 fv1 2.288 N.s

Viscous friction link 2 fv2 0.175 N.s

Coulomb friction (+) link 1 fcp1 8.049 N.m

Coulomb friction (-) link 1 fcn1 7.14 N.m

Coulomb friction (+) link 2 Fcp2 1.734 N.m

Coulomb friction (-) link 2 Fcn2 1.734 N.m
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