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Abstract. An explicitly gauge invariant strong field theory is introduced and tested using a model laser-
atom interaction. The theory relies on a power series in the target potential. Transitions amplitudes are
obtained by using a corresponding series in the momentum space wave function. We demonstrate that this
approach is explicitly gauge invariant to all orders. A well know 1D delta function potential model is used to
test the convergence of the series in the evaluation of total ionization probabilities and ionization spectra.
Actually, the convergence is verified when both, the perturbation as well as the order of the expansion, are
increased.

1 Introduction

In recent works the subject of the gauge dependence (or
independence) of the theoretical descriptions for the ion-
ization of atoms and molecules by laser pulses has cap-
tured a great deal of attention [1–3]. It is widely known
that generally, not only the first Born approximation but
also the so called strong field approximations SFA [4–6]
are strongly gauge dependent [7]. Therefore the question
arises on which gauge should be used for a given problem.
Until recently there was a kind of agreement on the su-
periority of the length form of the SFA [8]. However, the
SFA in velocity gauge has been gaining consensus as the
proper theory for quantitatively accounting for recent ex-
perimental results of fluorine negative ions detachment [9].
Furthermore, even when a numerical treatment can be
carried out in any of both gauges, it is well know that
the velocity gauge is actually preferred due to the faster
convergence of the angular momentum expansion of the
electronic wave function [10].

Among the efforts to clarify this controversy, explicitly
gauge-independent theories have been proposed [11–13],
as – for instance – the gauge-independent strong field
model, developed by Antunes Neto and Davidovich [12]. In
order to test their theory at work, they apply it to a one-
dimensional system with an electron bounded by a delta-
function potential and found a rather good agreement
with full time dependent Schrödinger equation (TDSE)
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simulations. However, they only calculated the zero or-
der term in the series expansion. Furthermore, no electron
spectra, but only survival probabilities, were reported. In
particular, they use the unitary condition to deduce the
total ionization probability. Quite recently a new deriva-
tion of this theory has been presented for a model detach-
ment of H− along with some limited calculations up to the
first order [14]. Unfortunately, no comparison with exper-
iments and/or TDSE calculations was presented, and the
convergence issue of the strong field series remains as an
open question.

The purpose of this communication is twofold. First,
a new simpler derivation based on an expansion of the
momentum-space wavefunction on the “weak” target po-
tential is presented. Second, up to three orders of the ex-
pansion are calculated for a simple model, consisting of a
1D delta function potential under the action of a strong
laser pulse field [15–19]. Let us point out that, even for this
simple model, some controversy arises on the reliability of
the corresponding TDSE numerical calculations [20–22].
In this communication we avoid this issue by using a bor-
derless approach based on a solution of the integral equa-
tion for the coordinate wave function at the origin. This
equation defines the momentum wave function without
any requirement on a particular box size or, equivalently,
basis set size.

In the following section, the theory is presented in the
context of the atom-laser interaction. We focus in the two
main gauges, namely the velocity gauge and the length
gauge.
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In Section 3 we apply the model to the well known
simple 1D delta function potential model subject to a
laser pulse. Our results for highly non-perturbative condi-
tions are presented and compared with a numerical “ex-
act” TDSE solution in Section 4. Finally, conclusions and
perspectives are discussed in Section 5.

Atomic units are used throughout unless otherwise
stated.

2 Theory

2.1 Derivation of the transition amplitudes
in velocity gauge

Under non-relativistic conditions, the Hamiltonian for a
minimal coupling atomic - laser field interaction is written
as

H(t) =
1

2me

(
p− e

c
A(r, t)

)2

+ eφ(r, t) + VT (r). (1)

Here A(r, t) and φ(r, t) are, respectively, the vector and
scalar potentials, and VT (r) is the electron-atom interac-
tion.

By using the Coulomb gauge (φ(r, t) = 0 and ∇ ·
A(r, t) = 0) and the dipolar approximation (λ � 〈r〉 ⇒
A(r, t) ≈ A(t)), and by rewriting A(t)/c → A(t), we ob-
tain the following expression for the laser-atom interaction
Hamiltonian:

H (t) =
1
2
(p + A(t))2 + VT (r). (2)

The corresponding time dependent Schrödinger equation
(TDSE) reads:

i
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 (3)

with the initial condition: |Ψ(0)〉 = |ϕi〉.
By noting that the first term of the Hamiltonian oper-

ator in (2) is diagonal in the momentum space, we project
the TDSE in order to obtain:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i ∂
∂t ψ̃(p, t) = 1

2 (p + A(t))2ψ̃(p, t)

+
∫
ṼT (p − p′) ψ̃(p′, t)dp′

ψ̃(p, 0) = ϕ̃i(p) = 1
(2π)3/2

∫
dr e−ip·rϕ̃i(r).

(4)

Following Lamb [23], the time dependent transition am-
plitude is calculated in the velocity gauge (2) by:

afi(t)=〈ϕf | ei A(t)·r |Ψ(t)〉 =
∫
dp′ ϕ̃∗

i
(p′)ψ̃(p′ − A(t), t).

(5)
As usual we will consider A(0) = A(τ) = 0, being t = 0
and t = τ , the initial and final time of the laser pulse.
However, equation (5) is useful in order to compare tran-
sitions amplitudes calculated at intermediate times.

Let’s define a solution series for TDSE (4) in powers
of the target potential VT :

ψ̃[n](p, t) = ψ̃(0)(p, t) + ψ̃(0)(p, t) + . . .+ ψ̃(n)(p, t). (6)

By replacing (6) into (4) and identifying equal powers of
the target potential VT we obtain:

i
∂

∂t
ψ̃(0)(p, t) =

1
2
(p + A(t))2ψ̃(0)(p, t)

i
∂

∂t
ψ̃(1)(p, t) =

1
2
(p + A(t))2 ˜ψ(1)(p, t)

+
∫
ṼT (p − p′) ψ̃(0)(p′, t)dp′

. . .

i
∂

∂t
ψ̃(n)(p, t) =

1
2
(p + A(t))2ψ̃(n)(p, t)

+
∫
ṼT (p − p′) ψ̃(n−1)(p′, t)dp′. (7)

The iterative equations (7) can be exactly solved, obtain-
ing:

ψ̃(0)(p, t) = e
−i

t∫
0

dt′ 1
2 (p+A(t′))2

ϕ̃i(p)

ψ̃(1)(p, t) = −i
t∫

0

dt′e
−i

t∫
t′

dt′′ 1
2 (p+A(t′′))2

×
∫
ṼT (p − p′) ψ̃(0)(p′, t′)dp′

. . .

ψ̃(n)(p, t) = −i
t∫

0

dt′e
−i

t∫
t′

dt′′ 1
2 (p+A(t′′))2

×
∫
ṼT (p − p′) ψ̃(n−1)(p′, t′)dp′. (8)

Having defined the series in the momentum space wave
function (6), we can use (5) to obtain the corresponding
series for the transition amplitudes:

a
[n]
fi (t) = a0

fi(t) + a1
fi(t) + . . .+ an

fi(t),

a
(n)
fi (t) =

∫
dp′ ϕ̃∗

f
(p′)ψ̃(n)(p′ − A(t), t). (9)

We would like to discuss the validity limit of expansion (9).
From equation (8) it is evident that the functions ψ̃(n), and
therefore the factors a(n)

fi , are roughly proportional to the
n power of the time duration and the strength of the target
potential. Furthermore, the overlap in equation (9) dimin-
ishes for larger values of the vector potential. Thus, the
convergence of expansion (9) would improve for shorter
times, weaker target potentials and stronger fields.
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Let us point out that the role of the field strength
in the convergence of equation (9) is not limited to the
overlap, but is also present in the time integrals in (8)

through the Volkov phase e
−i

t∫
t′

dt′′ 1
2 (p+A(t′′))2

. Therefore
we can crudely estimate a parameter for the series in terms
of the pulse duration τ , and vector potential amplitude
A0 ≈ E0/ω : η = EZT

E0
ωτ , where EZT is the mean electric

field over the electron by the target, E0 the electric field
amplitude of the laser field, and ω is the laser frequency.
We note that this parameter is dimensionless.

2.2 Derivation of transition amplitudes in length gauge

The length gauge is derived as usual by the phase change:

|ψ(t)〉 = e−iA(t)·r |ψL(t)〉 . (10)

The Hamiltonian changes to:

HL =
1
2
p2 − Ȧ(t) · r + VT (r), E(t) = −Ȧ(t) (11)

and therefore the momentum space TDSE reads

i
∂

∂t
ψ̃L(p, t) =

1
2
p2ψ̃L(p, t) − iȦ · ∇pψ̃L(p, t)

+
∫
ṼT (p− p′) ψ̃L(p′, t)dp′

ψ̃[L](p, 0) = ϕ̃i(p). (12)

The transition amplitude can now be calculated as

afiL(t) = 〈ϕf |ψL(t)〉 =
∫
dp′ ϕ̃∗

f (p′)ψ̃L(p′, t). (13)

As we did in the previous section, let’s define a solution
series for the TDSE (12) in powers of the target potential
VT :

ψ̃[n](p, t) = ψ̃
(0)
L (p, t) + ψ̃

(1)
L (p, t) + . . .+ ψ̃

(n)
L (p, t). (14)

By replacing (13) into (12) and identifying equal powers
of the target potential we obtain:

i
∂

∂t
ψ̃

(0)
L (p, t) =

1
2
p2ψ̃

(0)
L (p, t) − iA(t) · ∇pψ̃

(0)
L (p, t)

i
∂

∂t
ψ̃

(1)
L (p, t)=

1
2
p2ψ̃

(1)
L (p, t) +

∫
ṼT (p − p′) ψ̃(0)

L (p′, t)dp′

. . .

i
∂

∂t
ψ̃

(n)
L (p, t) =

1
2
p2ψ̃

(n)
L (p, t)

+
∫
ṼT (p − p′) ψ̃(n−1)

L (p′, t)dp′. (15)

These iterative equations can be exactly solved:

ψ̃
(0)
L (p, t) = e

−i
t∫
0

dt′ 1
2 (p−A(t)+A(t′))2

ϕ̃i(p − A(t), 0)

ψ̃
(1)
L (p, t) = −i

t∫

0

dt′e
−i

t∫
t′

dt′′ 1
2 (p−A(t)+A(t′′))2

×
∫
ṼT (p − p′) ψ̃(0)

L (p′, t′)dp′

. . .

ψ̃
(n)
L (p, t) = −i

t∫

0

dt′e
−i

t∫
t′

dt′′ 1
2 (p−A(t)+A(t′′))2

×
∫
ṼT (p − p′) ψ̃(n−1)

L (p′, t′)dp′. (16)

By comparing (16) with (7) we obtain the following rela-
tionship:

ψ̃
(n)
L (p, t) = ψ̃(n)(p − A(t), t)

⇒ ψ̃
[n]
L (p, t) = ψ̃[n](p − A(t), t). (17)

Having obtained the series for the momentum-space wave
function (13), we can use (15) to calculate the correspond-
ing series for the transition amplitudes:

a
[n]
fi L(t) = a

(0)
fi L(t) + a

(1)
fi L(t) + . . .+ a

(n)
fi L(t), (18)

a
(n)
fi L(t) =

∫
dp′ ϕ̃∗

f
(p′)ψ̃(n)

L (p′, t)

=
∫
dp′ ϕ̃∗

f
(p′)ψ̃(n)(p′ − A(t), t) = a

(n)
fi (t). (19)

Note that by using (17) in the last term of equation (19),
we have demonstrated the gauge invariance of every trun-
cated series in powers of the target potential, namely

a
[n]
fi L(t) = a

[n]
fi (t). (20)

Quite obviously, the gauge invariance would arise by re-
placing (10) into equation (5). However, this would be
valid as far as the relationship between the exact or ap-
proximated wave functions does satisfy (10). For instance,
this is the relationship between the exact numerical solu-
tions of the TDSE in both gauges [24]. The main point
here is that we have demonstrated its validity at every
order of the series (6).

Not every perturbation series satisfies (19) or (20). For
instance, the Born series does not. We would like to re-
mark that the derived strong field series is closely related
to that obtained by Antunes and Davidovich [12]. These
authors used a propagator in the laser field in order to
obtain the perturbative series in the target potential. By
expressing their transitions amplitudes in the momentum
space, a series in power of the target potential arises nat-
urally as in equations (9) and (19). We believe that this



596 The European Physical Journal D

form of presenting the theory is illuminating. As a matter
of fact, the gauge invariance is due to gauge invariance of
the target potential, different from the manifestly gauge
dependence of the perturbation in the standard Born se-
ries.

3 The model

Here we briefly present the 1D delta function potential
model [15–19] used to test the strong field series (9)
and (18). We choose this rather simple, widely used model
in order to calculate the series at least up to the second
order. The Hamiltonian

H(t) =
1

2me
(p+A(t))2 − Zδ(x) (21)

leads, in the momentum space, to the following TDSE

i
∂

∂t
ψ̃(p, t) =

1
2
(p+A(t))2ψ̃(p, t) − Z ψ(0, t). (22)

Note that this equation can be explicitly solved in terms of
the time dependent coordinate wave function at the origin
ψ(0, t), namely

ψ̃(p, t) = e
−i

t∫
0

dt′′ (p+A(t′′) )2

2
ϕ̃i(p) +

i Z√
2π

×
∫
dt′e

−i
t∫

t′
dt′′ (p+A(t′′) )2

2
ψ(0, t′). (23)

By integrating (23) over p we obtain a simple integral
equation for ψ(0, t)

ψ(0, t) = φ(0, t) + i Z

t∫

0

dt′G(t′, t)ψ(0, t′) (24)

with the functions φ(0, t) and G(t′, t) defined by

φ(0, t) =
1√
2π

∞∫

−∞
dpe

−i
t∫
0

dt′′ (p+A(t′′) )2

2
ϕ̃i(p)

G(t′, t) =
e−i π

4√
2π(t− t′)

e−iβ(t′,t)e
−i α(t′,t)2

2(t−t′)

β(t′, t) =

t∫

t′

dt′′
A(t′′) 2

2

α(t′, t) = −
t∫

t′

dt′′A(t′′)

ϕ̃i(p) =
1

(2π)1/2

∫
dxe−ipxϕi(x) =

2Z3/2

(2π)1/2

1
(Z2 + p2)

.

(25)

This integral equation is numerically solved by means of
a simple advanced discretization scheme, and the time de-
pendent wave function in the momentum space is obtained
by using either (23) or (22). Finally, equation (5) provides
all the required transition amplitudes, both for the initial
and the continuum states.

We use a laser pulse given by the electric field:

E (t) = −dA(t)
dt

= E0 sin (ω t+ ϕ) sin
(
πt

τ

)2

(26)

with

Z = 1, ω = 1.5, τ = Ncycles
2π
ω
, ϕ = 0.

These parameters correspond to a deep bound state with
ionization potential 0.5 a.u. ∼13.6 eV, and a laser photon
energy three times larger. We should mention that ap-
propriate scaling rules, should be used if this ultra short
range potential is intended to simulate negative ions de-
tachment, as in these cases ionization potentials are con-
siderably smaller.

4 Results

In this section some calculations are performed in order to
test the convergence of the strong field series presented in
Section 2. The parameters have been taken from the paper
by Geltman [19]. We point out that Geltman calls “Volkov
first order”, to what we here called zero-order in the ex-
pressions (9) or (18), consistently with the actual order in
the weak target potential expansion. Our approach also
differs from Geltman’s in that we evaluate higher orders
in the expansion, and calculate the TDSE for all the cases
here considered. We focus our attention on a target with
Z = 1, and a fixed laser frequency ω = 1.5.

4.1 Above threshold ionization (ATI) structure
in the strong field regime

In Figure 1, the ejected electron distribution as a function
of the energy is shown for a strong field regimen, E0 = 1.
The breakdown of the simple first Born approximation
(dotted curve), but also of the SFA (full curve) is clearly
observed, when compared with the full TDSE (down trian-
gles). Both the first Born and strong field approximations
overestimate the one photon ionization peak. This fail-
ure can be understood as due to a strong depletion that
is not accounted for by none of these two theories. On
the other hand, SFA underestimates the subsequent ATI
peaks, which only slightly emerges from the background.
We should mention that ATI peaks in SFA become sharper
if the number of cycles is increased. TDSE results show
a clear ATI structure well above the background even for
this short pulse.
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Fig. 1. Ejected electron energy distribution as a function of
the energy for a model atom (Z = 1, ω = 1.5), a laser field
amplitude E0 = 1 and a pulse duration of 6 cycles. Down
triangles: exact TDSE, full and dotted curve, are SFA and first
Born approximation, respectively.

4.2 Ultra-strong field regime

We have not used the present expansion in the calcu-
lation shown in the previous figure, since the perturba-
tion is not strong enough for assuring the convergence of
equation (9). Let us now consider the ultra-strong regi-
men, exemplified by E0 = 5, 10 and 20. First of all we
displayed in Figure 2 the ionization probability (evalu-
ated as one minus the elastic probability) as a function of
time. Only zero- and first-order calculations are displayed
(dotted and dashed curves) along with the TDSE results
(down triangles). Let us remark that only the zero order
verifies unitarity. For higher orders this property arises
only from the overall convergence of both, the electron
energy distributions and elastic probabilities. As can be
seen in Figure 2, the convergence improves as the field
amplitude increases. In particular for E0 = 20, we can
hardly distinguish the different curves. Further discussion
about the results shown in this figure is referred to the
paper by Geltman [19], as we are more interested in the
convergence of series (9).

More detailed information about the convergence
properties of the strong field expansion can be obtained
from the analysis of the energy electron spectrum. In
Figure 3 we show this spectrum for E0 = 5 a.u. and a
pulse duration of 6 cycles. The zero (dotted line) and first
(dashes line) and second-order (dot-dashed) are displayed,
as well as the TDSE (down triangles). We clearly see that
the series is still not convergent, since the results differ
from the TDSE and this departure is larger for larger or-
ders.

In Figure 4, we show the spectrum for E0 = 10. Now
we display the results up to third-order (solid line). All the
orders show the same structure in a linear scale plot. The
apparent divergence from TDSE as the order increases
is reverted at the third order for which pretty accurate
results are obtained as compared with TDSE. Further-
more, in the inset we compare the TDSE and third-order
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Fig. 2. Ionization probabilities in a model atom (Z = 1, ω =
1.5) at various ultra-strong E0 (5, 10 and 20) over 3.9 cycles
of the applied fields. The Zero-order (dotted curve), first-order
(down triangles) and TDSE solution (full curve) are shown.
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Fig. 3. Ejected electron energy distribution as a function of
the energy for a model atom (Z = 1, ω = 1.5) and a laser field
amplitude E0 = 5 at the end of a pulse with a duration of
6 cycles. The Down triangles correspond to the exact TDSE,
while the dotted, dashed and dot-dashed curves represent the
zero, first and second orders, in expansion (9), respectively.

spectra on a logarithmic scale over a larger energy range.
The agreement is rather good even for quite small elec-
tron distributions. An ATI peak structure, separated by
the photon energy can be clearly appreciated.

Figure 5 shows the same results of Figure 4 but for
E0 = 20. The overall structure of the spectra is similar,
but agreement between the TDSE and third-order results
is much better. We would like to state that even for this
simple model, the numerical calculation of higher orders
becomes complex and subject to a certain amount of nu-
merical uncertainties.

Finally, we show in Figure 6 the absolute value of the
TDSE exact wave function at the origin that satisfies the
integral equation (24) for different electric fields ampli-
tudes. For the particular model we deal with in the present
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Fig. 4. Same as Figure 3, but for E0 = 10, and with the
additional third-order result show as a solid line. The inset is
an expanded range figure in logarithmic scale.
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Fig. 5. Same as Figure 4, but for E0 = 20.

work, the series in (14) can be obtained by iteration of (24)
and the subsequent use of (22). We display the results for
the zero- (dotted line) and first-order (dashed line). We
can observe that the zero-order decreases faster than the
first-order for small times. This can be understood as due
to the fact that, since the zero-order does not account for
any target potential, the wave function propagates only
under the influence of the laser field. As the electric field
amplitude increases, overall convergence is achieved. How-
ever, as mentioned before, only when the target potential
is accounted for the description is good even for small
times. The convergence obtained is in agreement with our
estimated parameter, η = EZT

E0
ωτ . In the present case, es-

timating EZT ≈ Z/2 we obtain η ∼ 0.3 (Z = 1, τ = 8,
E0 = 20, ω = 1.5).

Fig. 6. Absolute value of the wave function at the origin as
a function of time for E0 = 5, 10 and 20 a.u. Down triangles:
exact TDSE. The dotted and dashed curves correspond to the
zero and first order iteration of (24), respectively.

5 Conclusions

A theory for calculating transition amplitudes for the
atomic ionization of atoms by intense laser pulses as a
series in the weak target potential has been derived. An
attempt to delimit the validity of the expansion has been
done by defining a convergence parameter η = EZT

E0
ωτ .

We demonstrated that both the velocity and length forms
of the theory give identical results at any given trunca-
tion order of the expansion series. We tested the theory
up to third order for a simple 1D delta function potential
model. We showed that our theory works better for strong
and short pulses of the laser field. We conclude that con-
vergence can be achieved for higher order, accounting for
rescattering in the target potential.
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22. M. Dörr, R.M. Potvliege, J. Phys. B At. Mol. Opt. Phys.

33, L233 (2000).
23. W.E. Lamb Jr,. R.R.S., M.O. Scully, Phys. Rev. A 36,

2763 (1987)
24. D. Bauer, P. Koval, Comput. Phys. Commun. 174, 396

(2006)


	Introduction
	Theory
	The model
	Results
	Conclusions
	References

