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ABSTRACT: This work describes a Mulliken-type partitioning of the expectation value of the spin-squared operator <Ŝ2>
corresponding to anN-electron system. Our algorithms, which are based on a spin-free formulation, predict appropriate spins for the
molecular fragments (at equilibrium geometries and at dissociation limits) and can be applied to any spin symmetry. Numerical
determinations performed in selected closed- and open-shell systems at correlated level are reported. A comparison between these
results and their counterpart ones arising from other alternative approaches is analyzed in detail.

1. INTRODUCTION

The study of procedures to decompose the expectation
value of the spin-squared operator <Ŝ2> corresponding to an
N-electron system into one- and two-center terms (local spins)
has attracted attention of a considerable number of authors in the
last years. This interest arises from the ability of the local spins
to determine the spin state of an atom or group of atoms in a
molecule, radical, cluster, etc., as well as to describe magnetic
interactions between the atoms which compose the system. In
fact, spin�spin coupling constants can be calculated by means
of two-center local spins within the well-known Heisenberg
Hamiltonian model. The partitioning of the <Ŝ2> quantity has
been performed using several approaches. One of them utilizes
the technique of local projection operators, in which the total
spin-squared operator Ŝ2 is decomposed into one- and two-
center operators associated with the nuclei of the system; then in
a subsequent step the expectation values of these operators are
evaluated for different approximations of the wave function.1�7

Alternatively, the partitioning of the expectation value <Ŝ2> has
also been performed in a direct way.8�13 Within the framework
of this last procedure the quantity <Ŝ2>, expressed in terms of
elements of reduced density matrices and related quantities, is
partitioned in the Hilbert space of the atomic basis set according
to a Mulliken-type population analysis. More recently, this
technique of partitioning has also been extended to the three-
dimensional physical space and its results compared with those
arising from the Hilbert space.14

This work deals with the partitioning of the <Ŝ2> quantity in
the Hilbert space. Determinations of local spins in that space at
the level of single Slater determinant wave functions and higher
correlation levels have been described in refs 8, 9, 11, and 13.
These reported results are satisfactory from a chemical point of
view since they show appropriate spins for the fragments at the
dissociation limit and zero local spin values for closed-shell
systems described at the restricted Hartree�Fock level. How-
ever, at correlated level, the algorithms used to get these results
depend on the spin blocks of the second-order reduced density
matrix, which, in practice, are not available in most standard
codes in quantum chemistry. Besides, these matrix elements
depend on the substate Sz corresponding to a determined spin S

for nonsinglet states. Consequently, the values of the terms
derived from that <Ŝ2> partitioning are Sz dependent. Obviously,
the partitioning of a quantity into several components is usually
not unique. Hence, it is important to consider other possibilities
which can also produce physically reasonable results in those
limit cases, provided they present additional theoretical and
practical advantages. The aim of this work is to overcome the
mentioned drawbacks, reporting an algorithm in terms of spin-
free tools, so that the local spins of a system can be calculated
for any state of any spin symmetry, fulfilling the physical
requirement of uniqueness for the spin multiplet components
(in absence of magnetic fields). Our algorithm is based on the
use of the one-electron effectively unpaired electron density
matrix15�17 and the two-electron spin-free cumulant matrix of
the spin-free second-order reduced density matrix;18,19 both
matrices are directly calculable from the spin-free first- and
second-order reduced density matrices, which can be obtained
from standard codes.

The organization of this work is as follows. The second section
describes a straightforward derivation of the formulas used in
refs 11,13 to evaluate one- and two-center local spins at
correlated level. In this way, we point out their Sz dependence
and the difficulties to access to elements of the cumulant matrix
in the spin�orbital representation, in standard codes, mainly for
nonsinglet states. In the third section, we propose an alternative
algorithm which only utilizes matrix elements of spin-free
quantities. In the fourth section, we describe the results obtained
from both Sz-dependent and Sz-independent algorithms for
some selected closed- and open-shell systems, as well as their
corresponding discussion. A study of the dependence of the
results on the degree of correlation used is also included in this
section. Finally, in the last section we summarize the concluding
remarks of this work.

2. PARTITIONING OF <Ŝ2> AT CORRELATED LEVEL

A finite basis set of orthonormal orbitals will be denoted
by {i, j, k, l, ...}; in this basis set 1Dj

i and 2Djl
ik will stand for the
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spin-free matrix elements corresponding to the first- and second-
order reduced density matrices of anN-electron system in a state
Ψ, respectively. The trace of the first-order reduced density
matrix is normalized to tr(1D) = N and that of the second-order
one may be normalized to

tr 2D
� � ¼

N

2

0
@

1
A

or to tr(2D) =N(N� 1);11,13 in this work we will use the former
procedure. The expectation value of the spin-squared operator
Ŝ2, <Ŝ2> = <Ψ|Ŝ2|Ψ>, can be expressed as follows:20,21

<Ŝ2> ¼ N �N2

4
� ∑

i, k

2Dik
ki ð1Þ

Likewise, taking into account the values of those traces, eq 1 can
be written as follows:

<Ŝ2> ¼ 3
4∑i

1Di
i �

1
2∑i, k

2Dik
ik � ∑

i, k

2Dik
ki ð2Þ

The decomposition of these spin-free matrix elements accord-
ing to their spin orbitals, that is, 1Dj

i = (1Djα
iα +1Djβ

iβ) and
2Djl

ik = (2Djαlα
iαkα +2Djαlβ

iαkβ +2Djβlα
iβkα +2Djβlβ

iβkβ), and an appropriate
permutation of spin orbitals, based on the anticommutation rules
of fermion operators, leads to the following:

<Ŝ2> ¼ 3
4∑i

ð1Diα
iα þ 1Diβ

iβ Þ � ∑
i, k

2Diβkα

iβkα

� 1
2∑i, k

2Diαkα
kαiα�

1
2∑i, k

2Diβkβ

kβiβ � 2∑
i, k

2Diαkβ

kαiβ ð3Þ

A trivial but tedious algebra, which consists in relating the
second-order reduced density matrix elements in the spin�orbital
representation, with the corresponding elements of its cumulant
matrix Γjσlσ0

iσkσ0 (σ,σ0 = α,β), that is as follows:22

2Diσkσ
0

jσ lσ0 ¼ 1
2
1Diσ

jσ
1Dkσ

0

lσ0 �
1
2
1Diσ

lσ0
1Dkσ

0

jσ þ 1
2
Γiσkσ

0

jσ lσ0 ð4Þ

provides to express eq 3 as follows:

<Ŝ2> ¼ 1
2∑i, k

ðPsÞikðPsÞki þ 1
4∑i, k

ðPsÞiiðPsÞkk

þ 3
4∑i

1Diα
iα � ∑

k

1Diα
kα

1Dkα
iα þ 1Diβ

iβ � ∑
k

1Diβ

kβ
1Dkβ

iβ

" #

� ∑
i, k

2Diβkα

iβkα �
1
2
1Diβ

iβ
1Dkα

kα

� �

� 1
2∑i, k

2Diαkα
kα iα �

1
2
1Diα

kα
1Dkα

iα þ 1
2
1Diα

iα
1Dkα

kα

� �

� 1
2∑i, k

2Diβkβ

kβ iβ �
1
2
1Diβ

kβ
1Dkβ

iβ þ 1
2
1Diβ

iβ
1Dkβ

kβ

� �

� 2∑
i, k

2Diαkβ

kα iβ �
1
2
1Diα

kα
1Dkβ

iβ

� �
ð5Þ

In eq 5, (Ps)j
i =1Djα

iα �1Djβ
iβ are the elements of the spin-density

matrix and the second-order reduced density matrix has been

normalized by the value of its trace.

tr 2D
� � ¼

N

2

0
@

1
A

The derivation of this equation has required to add and to
subtract terms in order to express the <Ŝ2> quantity by means
of the spin�orbital components of the cumulant matrix of the
second-order reduced density matrix, which are the last four
brackets (see eq 4).

Formula 5, which is expressed in an orthogonal basis set, is
equivalent to those reported in refs,11 and 13 expressed in
nonorthogonal atomic basis sets; a simple basis transformation
allows one to pass from this formula to the others. The
partitioning of the quantity <Ŝ2> according to formula 5 trans-
formed to the atomic basis set, requires to know the values of the
elements of the second-order reduced density matrix in the
spin�orbital representation (2Djσlσ0

iσkσ0,σ,σ0 = α,β), which usually
are not provided by the execution of most standard codes. Apart
from this shortcoming, another aspect to take into account is
that, as is well-known, those matrix elements depend on the Sz
substate of the state Ψ and consequently the local spin results
for nonsinglet states turn out to be Sz dependent. Thus, the
requirement of uniqueness for the spin multiplet components is
not fulfilled by this partitioning. This aspect has been numerically
tested in the lowest triplet state of the system HeH+

(see Appendix A). As has been mentioned in the Introduction,
the purpose of this work is to set up a spin-free Sz-independent
algorithm that avoids these drawbacks. In the next section, we
report that algorithm.

3. SPIN-FREE TREATMENT PROPOSAL

We will express the elements of the spin-free second-order
reduced density matrix as follows:18,19

2Dik
jl ¼ 1

2
1Di

j
1Dk

l �
1
4
1Di

l
1Dk

j þ 1
2
Λik

jl ð6Þ

in which Λjl
ik stands for the elements of the spin-free cumulant

matrix of that second-order reduced density matrix. These matrix
elements are related with those of the cumulant matrix ones
(Γjσlσ0

iσkσ0) by the following:23

Λik
jl ¼ � 1

2
ðPsÞilðPsÞkj þ ∑

σ, σ0
Γiσkσ

0

jσ lσ0 ð7Þ

However, we will regard the effectively unpaired electron
density matrix u, initially defined by Takatsuka et al.15 as follows:

uij ¼ 21Di
j � ∑

k

1Di
k
1Dk

j ð8Þ

The mathematical features of this matrix have been widely
studied16,17,23�25 and utilized in a great variety of population
analysis studies.26�32 Although other formulations of the matrix
u have been proposed,33�35 in this work we will use that for-
mulated by eq 8 whose relation with theΛmatrix turns out to be
following:17

uij ¼ � 2∑
k
Λik

jk ð9Þ

The substitution of the elements 2Dik
ik and 2Dki

ik according to
eq 6 and the use of eqs 8 and 9 provide to express the quantity
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<Ŝ2> in formula 2 as follows:

<Ŝ2> ¼ 1
2∑i

uii �
1
2∑i, k

Λik
ki ð10Þ

However, in order to partition the <Ŝ2> quantity into one-
center and two-center terms it is more useful to express that
equation in the basis set of the atomic orbitals {μ,ν,λ,γ,...}

< Ŝ2 > ¼ 1
2∑μ

ðuSÞμμ �
1
2 ∑
μ, ν, λ, γ

ðSÞμλΛλν
γμðSÞγν ð11Þ

where (S)ν
μ = < μ|ν > are the elements of the overlapmatrix of the

atomic orbitals.
The decomposition of the expectation value <Ŝ2> in the

Hilbert space of atomic orbitals into one-center terms <Ŝ2>A
and two-center terms <Ŝ2>AB:

<Ŝ2> ¼ ∑
A

< Ŝ2>A þ ∑
A 6¼B

< Ŝ2>AB ð12Þ

is performed assigning every atomic function μ to one nucleus A.
Although the matrix Λγμ

λν possesses four indices, in this work we
have limited to determine only one- and two-center local spins
(excluding the three- and four-center contributions) so that two
of those indices have been mathematically removed by means
of a sum over them. Hence, the expressions for the <Ŝ2>A and
<Ŝ2>AB quantities according to eq 11 are as follows

<Ŝ2>A ¼ 1
2 ∑μ ∈ A

ðuSÞμμ �
1
2 ∑
μ∈A, ν∈A

∑
λ, γ

ðSÞμλΛλν
γμðSÞγν ð13Þ

and,

< Ŝ2>AB ¼ � 1
2 ∑
μ∈A, ν∈B

∑
λ, γ

ðSÞμλΛλν
γμðSÞγν ð14Þ

Formulas 13 and 14 provide the means to carry out numerical
determinations of one-center and two-center local spins, respec-
tively. Because the matrix elements uν

μ and Λγμ
λν are spin free,

Sz-independent quantities, the values of <Ŝ
2>A and <Ŝ

2>AB arisen
from these equations are independent of the quantum number
Sz. Consequently, local spin evaluations can be obtained for any
state of any spin symmetry, fulfilling the conditions of invariance
for all the components of a multiplet state. In practice, the
matrices Λ and u are calculated by means of eqs 6 and 8,
respectively. Hence, from a computational point of view the
unique required matrices to implement local spin determina-
tions are the overlap matrix S and the first- and second-order
reduced density matrices 1D and 2D, all of them in the spin-free
formulation, which are usually drawn from standard codes. In
the next section, we report results of local spins arising from
this procedure which are compared with those obtained in other
treatments.

4. NUMERICAL DETERMINATIONS AND DISCUSSION

The elements of the overlap matrices and those of the spin-
free first- and second-order reduced density matrices have been
obtained from a modified version of the PSI 3.3 package.36 In a
subsequent step, we have used our own codes to evaluate local
spins using eqs 13 and 14 within the spin-free treatment.We have
also performed determinations of local spins by means of eq 5,
expressed in the atomic basis sets, for singlet states with a unique
substate Sz = 0, for which the spin blocks of the second-order

reduced density matrix can be calculated from its spin-free matrix
elements.37 As has been mentioned in section 2, this procedure
was reported in refs 11 and 13. Table 1 gathers the results arising
from both algorithms (denoted by spin-free and with spin in that
Table) for singlet states, in order to carry out an appropriate
comparison between them. Likewise, in Tables 2 and 3, we report
results of systems in doublet and triplet spin symmetries respec-
tively, obtained from eqs 13 and 14. The computational details
are shown in these Tables, i.e., the basis sets and the experimental
geometries used38�42 as well as the correlation levels utilized, full
configuration interaction (FCI), configuration interaction with
single and double excitations (CISD), etc.

A survey of the results for singlet states reported in Table 1
shows that at equilibrium distances, the one- and two-center local
spins absolute values are a little lower in the spin-free treatment
than in that denominated with spin. However, these series of
values become almost coincident at distances near the dissocia-
tion limits of these molecules. As can be observed in that Table,
in both treatments the systems H2

a, Li2
a, Be2

a, and C2H4
a exhibit

values for the one-center local spins which are very close to those
corresponding to the dissociated fragments. In the case of the
ethylene molecule, the values reported for the system denoted by
C2H4

a refer to its dissociation into two triplet methylene groups
by stretching the bond distance C�C. However, for singlets at
equilibrium distances, it seems reasonable to expect that the
distribution of the <Ŝ2> quantity along the whole molecule
presents not too high local spin values and consequently, from
a genuine chemical point of view, the lower values found in the
spin-free treatment can be regarded as a favorable tendency. This
behavior is followed by all systems included in Table 1, the light
ones (H2, Li2 and Be2), the hydrides of the second row (HF, H2O
and NH3) and the hydrocarbons (CH4, C2H6, C2H4 and C2H2),
at the reported correlation levels. Another aspect to highlight is
that both treatments predict identical signs for counterpart values
of the one- and two-center local spins. As has been pointed out
in refs 11 and 13 an adequate partitioning of the <Ŝ2> quantity
requires that the atomic spins for atoms at large distances
reproduce the spins of the free atomic fragments, as well as to
predict zero spins for systems described by closed-shell restricted
Hartree�Fock (RHF) wave functions, which would correspond
to a pure covalent description. The spin-free algorithm that we
have described in section 3 fulfills both requirements, i.e., it leads
to suitable spin values at the dissociation limits and provides
values <Ŝ2>A = 0 and <Ŝ2>AB = 0 for RHF wave functions (see
eqs 13 and 14) because all the elements of the matrices u and Λ
are zero for that type of wave functions.16,19 Moreover, in the
unrestricted Hartree�Fock (UHF) case the elements of those
matrices are nonzero and a simple algebra shows that eqs 5 and
10 are transformed to an identical expression.

Tables 2 and 3 show results of local spin evaluations within the
spin-free treatment for species (molecules and radicals) doublets
and triplets at the experimental equilibrium distances, except for
systems H2

a and Li2
a (in Table 3) which refer to the lowest triplet

states at distances near the dissociation limit. These results have
also been obtained from eqs 13 and 14 since they are valid for
any quantum number S. As can be seen in Table 2, the radicals
hydroxyl, cyano and amino present high values of the one-center
contribution <Ŝ2>A in the atoms oxygen, carbon, and nitrogen,
respectively, indicating that the unpaired electron which origi-
nates the doublet spin symmetry is located on those atoms. The
NO molecule shows a distribution of the spin cloud between
the nitrogen and oxygen atoms although the value <Ŝ2>N is
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considerably higher than the <Ŝ2>O one, which agrees with the
well-known structural features of that molecule. The doublet
radicals CH and CH3 (in Table 2) and the triplet one CH2 (in
Table 3) also show a clear localization of the unpaired electrons
on the carbon atom. In the series of radicals ethyl, vinyl, and
ethynyl the main localization of unpaired electrons appears on
the carbon atom linked to less hydrogen atoms, denominated as
C(2) in Table 2, which is markedly larger than on the other
carbon atom C(1). The application of this methodology to the
study of the allyl radical leads to show that the carbon atoms C(1)

and C(3) (Table 2) are equivalent, presenting a higher <Ŝ2>A
value in these atoms than in the C(2) one. This behavior is well-
known in this species and explained in terms of the resonance of
double bond between the atoms C(1) and C(2) and between the
atoms C(2) and C(3). In this radical, the two-center local spin
<Ŝ2>C(1)C(3)

turns out to be 0.247 which is a positive and non-
negligible value; this fact can be interpreted in terms of deloca-
lization of the unpaired electron. The presence of this feature,
that is, positive non-negligible values for the two-center local
spins, has also been found in the triplet homonuclear diatomic
molecules O2 and C2 as well as in the B2H2 molecule (Table 3).
The explanation of these values must be done again in terms of
delocalization of unpaired electrons. The rest of the triplet
systems described in Table 3, NF, NH, and C2H4 exhibit local
spin features in agreement with those presented in Table 2 and
consequently deserve similar comments. For the two triplets
reported in Table 3 at the dissociation limit, our treatment
describes values of one-center contribution <Ŝ2>A = 0.750 for
both H2

a and Li2
a molecules. These results coincide with those

reported for these systems in Table 1 (singlet states), leading
again to right <Ŝ2> values for the dissociated atomic fragments.
However, the values of two-center contributions <Ŝ2>AB = 0.250
found for both molecules allow a right <Ŝ2> = 2 for the global
triplet states described.

In Table 4, we report numerical values of local spins in order to
check the dependence on the electronic correlation of this
methodology. In that Table, we describe results arising from
both treatments (spin-free and with spin) for the singlet systems
HF, NH3 and C2H6, using the configuration interaction (CI)
technique at several levels; single and double excitations (CISD);
single, double, and triple excitations (CISDT) and single, double,
triple, and quadruple excitations (CISDTQ). In the case of the
ethane molecule, we have kept frozen (without excitation) 26 of
the 30 orbitals forming the 6-31G basis set (the 7 lowest occupied
molecular orbitals and the 19 highest unoccupied molecular
orbitals) in the procedure denoted frozen I, and 18 orbitals
(the 3 lowest occupied molecular orbitals and the 15 highest

Table 1. Local Spins of One- And Two-Centers (<Ŝ2>A and
<Ŝ2>AB) Arising from the Treatments Spin-Free (eqs 13 and
14) and with Spin (eq 5 in the Atomic Basis Set) for Singlet
Systems in the Ground State at Experimental Equilibrium
Distances (a near Dissociation Limits)

system

atom/

bond

spin-free with spin basis set/

method<Ŝ2>A <Ŝ2>AB <Ŝ2>A <Ŝ2>AB

H2 H 0.100 0.116 6-31G/FCI

HH �0.100 �0.116

H2
a H 0.743 0.744 6-31G/FCI

HH �0.743 �0.744

Li2 Li 0.204 0.210 STO-3G/FCI

LiLi �0.204 �0.210

Li2
a Li 0.750 0.750 STO-3G/FCI

LiLi �0.750 �0.750

Be2 Be 0.125 0.127 STO-3G/FCI

BeBe �0.125 �0.127

Be2
a Be 0.000 0.000 STO-3G/FCI

BeBe 0.000 0.000

C2H4 C 0.477 0.544 6-31G/CISD

H 0.058 0.067

CC �0.365 �0.411

CH �0.098 �0.108

C 3 3 3H 0.042 0.041

HH 0.008 0.008

H 3 3 3H �0.005 �0.003

H 3 3 3H �0.006 �0.005

C2H4
a C 1.884 1.875 6-31G/CISD

H 0.020 0.015

CC �1.850 �1.847

C 3 3 3H �0.038 �0.038

CH 0.019 0.023

HH 0.000 0.000

H 3 3 3H 0.000 0.000

H 3 3 3H 0.000 0.000

HF F 0.050 0.059 6-31G/CISD

H 0.050 0.059

FH �0.050 �0.059

H2O O 0.121 0.141 6-31G/CISD

H 0.055 0.064

OH �0.060 �0.070

HH 0.005 0.006

NH3 N 0.226 0.257 6-31G/CISD

H 0.059 0.068

NH �0.075 �0.086

HH 0.008 0.009

CH4 C 0.428 0.470 6-31G/CISD

H 0.066 0.077

CH �0.107 �0.118

HH 0.014 0.014

C2H6 C 0.361 0.400 6-31G/CISD

(staggered) H 0.059 0.068

CC �0.130 �0.136

CH �0.094 �0.104

C 3 3 3H 0.017 0.016

Table 1. Continued

system

atom/

bond

spin-free with spin basis set/

method<Ŝ2>A <Ŝ2>AB <Ŝ2>A <Ŝ2>AB

H 3 3 3H �0.003 �0.003

HH 0.012 0.012

C2H2 C 0.603 0.699 6-31G/CISD

H 0.049 0.055

CC �0.558 �0.646

C 3 3 3H �0.036 �0.037

CH �0.081 �0.090

HH �0.003 �0.002



3564 dx.doi.org/10.1021/ct200594f |J. Chem. Theory Comput. 2011, 7, 3560–3566

Journal of Chemical Theory and Computation ARTICLE

unoccupied molecular orbitals) in the procedure denominated
frozen II. As has been pointed out above, in absence of correla-
tion that is, for RHF wave functions, formulas 5, 13 and 14
predict zero values for local spins of one- and two-center which is

Table 2. Local Spins of One- And Two-Centers (<Ŝ2>A and
<Ŝ2>AB) Arising from the Spin-Free Treatment (eqs 13 and
14) for Doublet Systems at Experimental Equilibrium
Distances

system

atom/

bond spin-free

basis set/

method

<Ŝ2>A <Ŝ2>AB

OH O 0.874 6-31G/CISD

H 0.063

OH �0.094

NO N 0.670 6-31G/CISD

O 0.319

NO �0.119

CN C 1.141 6-31G/CISD

N 0.452

CN �0.421

NH2 N 1.060 6-31G/CISD

H 0.069

NH �0.117

HH 0.009

CH C 0.912 6-31G/CISD

H 0.081

CH �0.122

CH3 C 1.368 6-31G/CISD

H 0.069

CH �0.151

HH 0.013

C(1)H3�C(2)H2 C(1) 0.368 6-31G/CISD

C(2) 1.226

H(CH3) 0.076

H(CH2) 0.063

CC �0.194

CH(CH3) �0.097

CH(CH2) �0.128

HH(CH3) 0.013

HH(CH2) 0.010

C(1)H2dC(2)H C(1) 0.503 6-31G/CISD

C(2) 1.251

H(CH2) 0.068

H(CH) 0.067

CC �0.469

CH(CH2) �0.104

CH(CH) �0.100

HH 0.011

C(1)HtC(2) C(1) 0.639 6-31G/CISD

C(2) 1.425

H 0.054

CC �0.646

CH �0.090

C(1)H2dC(2)H�C(3)H2 C(1) 0.753 6-31G/CISD

C(2) 0.392

C(3) 0.753

H(CH2) 0.051

H(CH) 0.051

C(1)C(2) �0.296

Table 2. Continued

system

atom/

bond spin-free

basis set/

method

<Ŝ2>A <Ŝ2>AB

C(2)C(3) �0.296

C(1)C(3) 0.247

CH(CH2) �0.094

CH(CH) �0.083

HH 0.008

Table 3. Local Spins of One- And Two-Centers (<Ŝ2>A and
<Ŝ2>AB) Arising from the Spin-Free Treatment (eqs 13 and
14) for Triplet Systems at Experimental Equilibrium Dis-
tances (a near Dissociation Limits)

system

atom/

bond spin-free

basis set/

method

<Ŝ2>A <Ŝ2>AB

H2
a H 0.750 6-31G/FCI

HH 0.250

Li2
a Li 0.750 STO-3G/FCI

LiLi 0.250

O2 O 0.760 6-31G/CISD

OO 0.240

NF N 1.879 6-31G/CISD

F 0.141

NF �0.010

NH N 2.277 6-31G/CISD

H 0.082

NH �0.180

C2 C 0.761 6-31G/CISD

CC 0.239

B2H2 B 0.979 6-31G/CISD

H 0.082

BB 0.245

BH �0.123

B 3 3 3H �0.030

HH �0.001

CH2 C 2.604 6-31G/CISD

H 0.083

CH �0.196

HH 0.007

C2H4 C 1.352 6-31G/CISD

(triplet) H 0.064

CC 0.072

CH �0.146

C 3 3 3H 0.005

HH 0.012

H 3 3 3H �0.002

H 3 3 3H �0.003
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a suitable chemical requirement.11,13 However, as can be ob-
served in Table 4, the presence of correlation increases the
absolute values of local spins in both procedures, although this
effect turns out to be slightly less marked in the results arising
from the spin-free treatment.

5. CONCLUSION

In this work, we have described a simple and direct partition-
ing of the expectation value <Ŝ2> corresponding to anN-electron
system into one- and two-center terms, according to a Mulliken
scheme. Our treatment, which utilizes spin-free quantities, can be
applied to states of any spin symmetry S and is valid for both
independent and correlated particle models of wave functions.
This procedure constitutes an improvement on the previously
reported treatments since it is independent of the Sz substate,
fulfilling the physical requirement of uniqueness for the compo-
nents of the spin multiplet. Another achievement of our ap-
proach, from a computational point of view, is that it avoids the
use of the spin blocks of the second-order reduced densitymatrix,
which are not usually available in most standard codes. The
results arising from several singlet state systems show lower local
spin values compared with those from other reported methods
(with spin) at the used correlation levels, although these differ-
ences are not too large. We have applied our treatment to
selected closed- and open-shell systems and the obtained results
are chemically meaningful in all studied cases. They show a

correct behavior in limit situations; adequate atomic spin values
at the dissociation limits, in agreement with those of the
respective free atoms, and zero values for all one-center and
two-center local spins for closed-shell RHF wave functions. Our
results and those of other treatments show dependence on the
electronic correlation level, although that dependence is slightly
lower in our proposal than in the Sz-dependent methods.
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