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We briefly review an important shortcoming—unearthed in previous works—of the standard version of

the inflationary model for the emergence of the seeds of cosmic structure. We consider here some

consequences emerging from a proposal inspired on ideas of Penrose and Diósi [R. Penrose, The

Emperor’s New Mind. Concerning Computers, Minds and Laws of Physics (1989).][R. Penrose, in

Physics meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, edited by

C. Callendar and N. Huggett (2001), pp. 290–+.][L. Diósi, Phys. Lett. A 120, 377 (1987).][L. Diósi, Phys.

Rev. A 40, 1165 (1989).] about a quantum-gravity induced reduction of the wave function, which has been

put forward to address the shortcomings, arguing that its effect on the inflaton field is what can lead to the

emergence of the seeds of cosmic structure [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum

Gravity 23, 2317 (2006).]. The proposal leads to a deviation of the primordial spectrum from the scale-

invariant Harrison-Zel’dovich one, and consequently, to a different CMB power spectrum. We perform

statistical analyses to test two quantum collapse schemes with recent data from the CMB, including the

7-yr release of WMAP and the matter power spectrum measured using LRGs by the Sloan Digital Sky

Survey. Results from the statistical analyses indicate that several collapse models are compatible with

CMB and LRG data, and establish constraints on the free parameters of the models. The data put no

restriction on the timescale for the collapse of the scalar field modes.
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I. INTRODUCTION

The great advances made in physical cosmology over the
past few years open a window for the consideration of issues
long dismissed as philosophical speculations. The agreement
between theory andobservationsof the spectrumof the cosmic
microwave background (CMB) anisotropies has strengthened
the theoretical status of inflationary scenarios among cosmol-
ogists. The inflationary paradigm is said to account for the
origin of all cosmic structure: the fluctuations around homo-
geneity and isotropy that have a fundamentally quantum
nature are, according to these ideas, the seeds of galaxies,
stars, life and humans. Hence, all structures in our universe
emerge from a featureless stage described by a background
Friedmann-Robertson-Walker (FRW) cosmology with a
nearly exponential expansion driven by the potential of a
single scalar field,1 and from its quantum fluctuations charac-
terized by a simple vacuum state. In particular, the quantum
fluctuations transmute into the classical statistical fluctuations
that imprint their signature in the CMB photons, and even-
tually grow into the structures we find in our universe today.

However, when this picture is considered thoroughly, an
unavoidable issue arises. According to these ideas, a com-
pletely homogeneous and isotropic stage, somehow evolves,
after some time, into an inhomogeneous and anisotropic
situation. Obviously, this is not simply the result of quantum
unitary evolution, since, in this case, the dynamics does not
break the initial symmetries of the system. As discussed in
Ref. [1], and despite multiple claims to the contrary, there is
no satisfactory solution to this problem within the standard
physical paradigms. While much of the focus of the research
in inflationary cosmology has been directed towards eluci-
dation of the details of the inflationary model, very little
attention has been given by the community to an issue of
fundamental principles such as the aforementioned one.
One proposal to handle this shortcoming has been devel-

oped in Refs. [2–4]. That approach attempts to deal with the
problem by introducing a new ingredient into the inflationary
account of the origin of the seeds of cosmic structure: the self
induced collapse hypothesis, i.e. a scheme in which an
internally induced collapse of the wave function of the
inflaton field2 is the mechanism by which inhomogeneities

*Member of the Carrera del Investigador Cientı́fica y
Tecnológica - CONICET

1In the simplest models of inflation: �, the inflaton.

2As shown in [5], one can implement the collapse hypothesis
at the level of the Mukhanov Sasaki variable.
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and anisotropies arise at each particular length scale. That
work was inspired in early ideas by R. Penrose and L. Diósi
[6–9] which regarded the collapse of thewave function as an
actual physical process (instead of just an artifact of the
description of Physics) and it is assumed to be caused by
quantum aspects of gravitation. We will not recapitulate the
motivations and discussion of the original proposal but in-
stead refer the reader to the above mentioned papers.

The way we treat this process is by assuming that at a
certain stage in cosmic evolution there is an induced jump
in a state describing a particular mode of the quantum field,
in a manner that is similar to the quantum mechanical
reduction of the wave function associated with a measure-
ment, but with the difference that in our scheme no external
measuring device or observer is called upon as triggering
such collapse (as there is nothing in the situation we are
considering that could be called upon to play such a role).
The issue that then arises concerns the characteristics of the
state into which such jump occurs. In particular, what
determines the expectation values of the field and momen-
tum conjugate variables for the after-collapse state.
Previous works by people in our group have extensively
discussed both the conceptual and formal aspects of that
problem, and the present manuscript will not dwell further
into those aspects, except for a very short review.

In Ref. [2] two schemes were considered; one in which,
after the collapse, both expectation values are randomly
distributed within their respective ranges of uncertainties
in the precollapsed state, and another one in which it is
only the conjugate momentum that changes its expectation
value from zero to a value in its corresponding range, as a
result of the collapse. We will discuss the motivations and
detailed characterizations of the two processes in the fol-
lowing sections. As reported in Ref. [2], the different
collapse schemes give rise to different characteristic de-
partures from the conventional Harrison-Zel’dovich (HZ)
flat primordial spectrum.

These aspects have been preliminarily analyzed in
Ref. [10] using a simple approach which ignores the late-
time physics effects and simply considers what can be a
reasonable expectation for the allowed deviation from the
conventional flat spectrum. The main objective of this
article is to consider in detail the shape of the primordial
spectrum emerging from such a scheme, and, in particular,
to explore with precision the deviations that should be
expected once one takes into account the physics associ-
ated with plasma dynamics, which is responsible for the
generation of the acoustic peaks, and other modifications to
the spectrum associated with well established physics. All
of these must be taken into account so that one can com-
pare directly the predictions corresponding to a particular
collapse model to recent data from the CMB fluctuation
spectrum and the matter power spectrum from recent gal-
axy surveys, and thus be able to put bounds on the model’s
parameters.

The paper is organized as follows. In Sec. II, we describe
the theoretical framework in which to study the models to
be tested. Section III gives some specifications about the
proposed collapse schemes together with a brief physical
motivation for them, while Sec. IV is dedicated to general
predictions of these models, and a broad comparison to
observational data. We define a fiducial model which is
determined by the best fit values obtained by the WMAP
collaboration with the same data used in this paper and
without assuming any collapse of the wave function. It
should be noted that the fiducial model has a value of the
spectral scalar index ns different than 1, while calculations
we have carried out here of the primordial fluctuation
spectrum for models including collapse are restricted to
the case ns ¼ 1. In Sec. V, we use data fromWMAP 7-year
release and the power spectrum of the Sloan Digital Sky
Survery DR7 LRG, to put bounds on the free parameters of
the collapse models, allowing also other cosmological
parameters to vary. In Sec. VI, we discuss our results and
show our conclusions.

II. THE FORMALISM/THEORETICAL MODEL

The starting point is the same as for the standard
approaches, and, in particular, we will focus on one of
the simplest inflationary models corresponding to a single
scalar field, minimally coupled to gravity, with an appro-
priate potential. The action for the theory is

S½�; gab� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R½gab�

� 1

2
ra�rb�gab � Vð�Þ

�
: (1)

As it is customary in such studies, we separate the fields
into a ‘‘background’’ part, taken to be homogeneous and
isotropic, FRW universe driven by an equally homogene-
ous and isotropic configuration of the inflaton field, and the
perturbations (or ‘‘fluctuations’’).3 In this way, the metric
and the scalar field are written as: g ¼ g0 þ �g and � ¼
�0 þ ��. This perturbative treatment requires, as usual, to
deal with the gauge freedom, which we do by fixing the
gauge (conformal Newton gauge). In the present work, we
will ignore the vector and tensor parts of the metric per-
turbations. The space-time metric is described as: ds2 ¼
að�Þ2½�ð1þ 2�Þd�2 þ ð1� 2�Þ�ijdx

idxj�, where �

and � are the Newtonian potentials. In this case, as it is
well-known [2] the field equations imply � ¼ �. The
scale factor a is normalized so that today a ¼ 1.

3In fact, the proposal has been developed to fit within a
semiclassical treatment where gravitation is treated at the clas-
sical level but the scalar fields are completely described using
quantum field theory on curved space-time in a self-consistent
approach adapted to incorporate the collapse hypothesis. For a
detailed description of this approach see [11].
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In order to further specify the setting of the problem, let
us recall the standard inflationary version of cosmology.
The universe is thought to go through the following
epochs: 1) A quantum gravity regime which leads to
2) a preinflationary classical space-time which in turns
enters 3) an inflationary regime with a ¼ aBI (BI stands
for ‘‘beginning of inflation’’) and that ends when a ¼ aEI
(EI stands for ‘‘end of inflation’’), passing through a rapid
4) reheating period, taken in our approximation to occur
instantaneously. The next epoch is 5) a radiation-
dominated era starting at a ¼ aEI, with the radiation char-
acterized by a temperature T ¼ TGUT, and ending at the
transition aeq where 6) the matter (and later also the dark

energy) era begins. Particularly interesting for us will be
the recombination time occurring during the radiation-
dominated regime, with a ¼ aD and whose intersection
with our past light-cone defines the surface of last scatter-
ing that is observed today in the CMB.

We will use a different conformal time coordinate for
each of the eras. Thus, we will use � as the conformal time
during inflation, ~� the conformal time during radiation
epoch and �� the conformal time during the matter and
dark energy epochs, and therefore the values of these
coordinates at the transition points will generally differ.

We choose the origin of � so that during inflation we
have a ¼ �1

HI�
, thus inflation will end at � ¼ �EI ¼ �1

HIaEI
<

0. On the other hand, we choose the radiation-dominated
era to start at ~� ¼ 0 so that during the radiation epoch a ¼
C~�þ B, with C ¼ ½8�G3 ð�Rada

4Þ�1=2 and B ¼ aEI, where

�Rad is the radiation energy density so that�Rada
4 is constant

during the era of radiation domination. Note that we are
considering the reheating to occur instantaneously and hence
the end of inflation (at � ¼ �EI) and the start of radiation
dominated era (at ~� ¼ 0) coincide, so that B ¼ aEI.

The study will rely on Einstein Field Equations (EFE) to
zeroth and first order. The zeroth order gives rise to the
standard solutions in the inflationary stage, where að�Þ ¼
� 1

HI�
, with H2

I ’ ð8�=3Þ GV with the scalar field �0 in

slow-roll regime, so that �0
0 ’ � 1

3HI

dV
d� ; and the first order

EFE leads to an equation relating the gravitational pertur-
bation and the perturbation of the field:

r2� ¼ 4�G�0
0��

0 � s��0; (2)

where s � 4�G�0
0. Next, we must consider the quantiza-

tion of the inflaton perturbation field. It is convenient to
work with the rescaled field y ¼ a��. In order to avoid
infrared problems, we consider the system restricted to a
box of side L, where we impose, as usual, periodic bound-
ary conditions. We thus write the fields as

ŷð�; ~xÞ ¼ 1

L3

X
k

ei
~k� ~xŷkð�Þ;

�̂ð�; ~xÞ ¼ 1

L3

X
k

ei
~k� ~x�̂kð�Þ;

(3)

where �̂k is the canonical momentum of the scaled field.
The wave vectors satisfy kiL ¼ 2�ni, with i ¼ 1, 2, 3.
Also, as usual, we write the field operators in terms of
the time-independent creation and annihilation operators,

ŷkð�Þ � ykð�Þâk þ �ykð�Þâyk , and �̂kð�Þ � gkð�Þâk þ
�gkð�Þâyk . The functions ykð�Þ; gkð�Þ reflect the selection

of the vacuum state, and here we again proceed as in the
standard approaches and choose the so called Bunch-
Davies vacuum:

ykð�Þ ¼ 1ffiffiffiffiffi
2k

p
�
1� i

�k

�
e�ik�; gkð�Þ ¼ �i

ffiffiffi
k

2

s
e�ik�:

(4)

The vacuum state, defined by âkj0i ¼ 0 for all k, is
exactly homogeneous and isotropic. We assume that at a
certain time�c

k the part of the state characterizing the mode
~k (we must of course be aware that the state of the field is a
collective state of all modes but taking here in this loose
sense will do no harm) jumps to a new state, which is no
longer homogeneous and isotropic. The detailed descrip-
tion of this process is as follows.
We decompose the fields into their hermitian part as:

ŷk ¼ ŷRk ð�Þ þ iŷIkð�Þ, and �̂k ¼ �̂R
k ð�Þ þ i�̂I

kð�Þ. We

note that the vacuum state j0i is characterized in part

by the following: its expectation values are hŷR;Ik ð�Þi ¼
h�̂R;I

k ð�Þi ¼ 0, and its uncertainties are �ŷR;Ik ¼
1=2jykj2ðℏL3Þ and ��̂R;I

k ¼ 1=2jgkj2ðℏL3Þ.
According to the collapse hypothesis, at some appropri-

ate time �c
~k
, the state undergoes an instantaneous jump to a

different state so that the mode ~k is not longer in its vacuum
state.
For any state of the field j�i, we introduce the quantity

dk � h�jâR;Ik j�i � jdR;Ik jei�k so that, for that state, we

have

hŷR;Ik i ¼ ffiffiffi
2

p <ðykdR;Ik Þ; h�̂R;I
k i ¼ ffiffiffi

2
p <ðgkdR;Ik Þ; (5)

indicating that it specifies the main quantity of interest in
characterizing the state of the field.
The analysis proceeds with the specification of the

scheme of collapse determining the state of the field after
the collapse.4 The detailed characterization of the schemes
under consideration is the main purpose of the next section.
With such a collapse scheme at hand, one then proceeds to
evaluate the perturbed metric using a semiclassical de-
scription of gravitation in interaction with quantum fields
as reflected in the semiclassical EFEs: Gab ¼ 8�GhTabi
(see Eq. (2) for the classical first order version). To lowest
order, and for the quantity of interest, this set of equations
reduces to

4At this point, in fact, all we require is the specification of the
expectation values of certain operators in this new quantum state.
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r2�k ¼ sh��̂0
ki�; (6)

where h��̂0
ki� is the expectation value of the momentum

field ��̂0
k ¼ �̂k=að�Þ on the state j�i characterizing the

quantum part of the inflaton field. It is worthwhile empha-
sizing that before the collapse has occurred there are no
metric perturbations, i.e. the r.h.s. of the last equation
evaluated on the vacuum state is zero, so, it is only after
the collapse that the gravitational perturbations appear, i.e.
the collapse of each mode represents the onset of the
inhomogeneity and anisotropy at the scale represented by
the mode. Another point we must stress is that, according
to our views, at all times, the Universe would be defined by
a single state and not by an ensemble of states. The precise
state at any time, could be written if we knew the modes
that have collapsed up to that time, and the post-collapse
states for each of these modes. The statistical aspects arise
once we note that we do not measure directly and sepa-

rately each of the modes with specific values of ~k, but
rather the aggregate contribution of all such modes to the
spherical harmonic decomposition of the temperature fluc-
tuations of the celestial sphere (see below).

In order to be able to compare to observations we note
that the quantity that is experimentally measured (for in-
stance by WMAP satellite) is the anisotropy in the tem-
perature, �Tð�;’Þ=T, which is expressed in terms of its
spherical harmonic decomposition as

P
lmalmYlmð�;’Þ.

The link to theoretical calculations is made through the
theoretical estimation of the value of the alm’s, which are
expressed in terms of the Newtonian potential on the 2-
sphere corresponding to the intersection of our past light
cone with the last scattering surface (LSS): �ð�D; ~xDÞ,
alm ¼ R

�ð�D; ~xDÞY�
lmd

2�. We must then consider the

expression for the Newtonian potential (Eq. (6)) at those
points:

�ð�; ~xÞ ¼ X
k

sT ðkÞ
k2L3

h��̂0
kiei ~k� ~x; (7)

where we have introduced the factor T ðkÞ to represent the
physical effects of the period between reheating and
decoupling.

Writing the coordinates of the points of interest on the
surface of last scattering as ~x ¼ RDðsin� sin�; sin� cos�;
cos�Þ, where RD is the comoving radius to that surface, and
(�;�) are the standard spherical coordinates on the sphere,
and using standard results connecting Fourier and spherical
expansions, we obtain

alm ¼ X
k

sT ðkÞ
k2L3

Z
h��̂0

kiei ~k� ~xYlmð�;�Þd2�: (8)

As indicated above, statistical considerations arise when
noting that Eq. (8) indicates that the quantity of interest is
in fact the result of a large number (actually infinite) of
harmonic oscillators, each one contributing with a complex

number to the sum, leading to what is in effect a two
dimensional random walk whose total displacement corre-
sponds to the quantity of observational interest. Note that
this part of the analysis is substantially different from the
corresponding one in the standard approach. In order to
obtain a prediction, we need to find the magnitude of such
total displacement, i.e. jalmj2, and given that by assumption
there are multiple random processes involved, the best that
can be obtained is the ‘‘most likely’’ value for this quantity
(just as in a random walk one can not expect to predict the
actual value but at best its most likely value). We do this
with the help of the imaginary ensemble of universes5 and
the identification of the most likely value with the en-
semble mean value. We should emphasize however that
if we knew the specific values taken by the random num-
bers x we will specify below, we would be able to compute
explicitly the value of each alm including the phase.
As we will see, the ensemble mean value of the product

h��̂kih��̂k0 i�, evaluated in the post-collapse states,6 re-
sults in a form �CðkÞ�~k ~k0 , where � ¼ ℏL3k=ð4a2Þ and

CðkÞ is an adimensional function of k which encodes the
relevant information of detailed aspects of the collapse
scheme. Then, using the expression for jalmj2, writing
the sum as an integral, and doing a change of integration
variable x ¼ kRD, we arrive to the following expression for
the most likely (ML) value of the quantity of interest:

jalmj2ML ¼ s2ℏ
2�a2

Z Cðx=RDÞ
x

T ðx=RDÞ2j2l ðxÞdx: (9)

With this expression at hand, we can compare the expec-
tations from each of the schemes of collapse against the
observations. We note, in considering the last equation,
that the standard form of the spectrum corresponds to
replacing the function C by a constant. In fact if one
replaces C by 1 and, furthermore, one takes the function
T which encodes the late-time physics including the
plasma oscillations which are responsible for the famous
acoustic peaks, and substitutes it by a constant, one obtains
the characteristic signature of a scale invariant spectrum:
jalmj2ML / 1

lðlþ1Þ . Maintaining the appropriate function T
leads of course to the well-known spectral shape that fits
the data quite well once some basic cosmological parame-
ters have been appropriately adjusted.
In the remainder of the paper, we will focus on the

effects that a nontrivial form of the function C has on the
predicted form of the observational spectrum, and on using
data to constrain aspects of the collapse models.

5This is just a mathematical evaluation device and no assump-
tion regarding the existence of such ensemble of universes is
made or needed. These aspects of our discussion can be regarded
as related to the so called cosmic variance problem.

6Note here again the difference with the standard treatment of
this part of the calculation, which calls for the evaluation of the
expectation value h��̂k��̂k0 i� on the vacuum state which as
already emphasized is completely homogeneous and isotropic.
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III. DESCRIPTION OF THE PROPOSED
COLLAPSE SCHEMES

A collapse scheme is a recipe to characterize and select

the state into which each of the modes ~k of the scalar field
jumps at the corresponding time of collapse �c

~k
.

As we have clearly stated, we do not know exactly what
kind of physical mechanism would lie behind what, at the
semiclassical level we are working, looks like a sponta-
neous collapse of the wave function. Thus, specifying the
collapse scheme should be taken as being at this point
purely guesswork, which we hope to address with as
much physical intuition as possible. The aspect that makes
such efforts worthwhile is the fact that, as we shall see, the
various specific collapse schemes lead generically to differ-
ent generic patterns of deviations of the form of the primor-
dial spectrum from the standard HZ scale-free shape.

The differences in the form of the primordial spectrum
lead in turn to characteristic deformations for the predic-
tions of the observational spectrum which is the result of
late-time and well understood physical effects on the
primordial spectrum. Thus, observations can help us to
determine which one of the naively guessed collapse
schemes is favored by the data.

In this paper, we focus on two schemes which we
characterize simply in terms of the expectation values of
the fundamental field operators (field and momentum con-
jugated) for the various modes in the state just after the
corresponding collapse. It turns out that this limited char-
acterization of the state (together with the times of the
collapses) is all one needs to compute the shape of the
expected spectrum. The higher level characterization of
the states, such as the uncertainties and field-momentum
correlations, turns out to be relevant only when one consid-
ers the possibility of multiple collapses per mode (see [12])
something that lies outside the scope of the present work.

Scheme I: It is the scheme where both the expectation
value of the field and the expectation value of the conju-
gated momentum change as a result of the collapse in a
random uncorrelated manner dictated by the uncertainties
of the precollapse state, so that, immediately after the
collapse time �c

k, the expectation values are determined by

hŷðR;IÞk ð�c
kÞi� ¼ xðR;IÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�yðR;IÞk Þ20

q
;

h�̂ðR;IÞ
k ð�c

kÞi� ¼ xðR;IÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��ðR;IÞ

k Þ20
q

; (10)

where xðR;IÞ1;2 are random variables, characterized by a

Gaussian distribution centered at zero with dispersion

equal to 1, �yðR;IÞk and ��ðR;IÞ
k are the uncertainties of

yðR;IÞk and �ðR;IÞ
k respectively in the precollapse state. This

is, in a sense, a very simple scheme and one could argue
that it represents a natural prescription that treats the field
and conjugate momenta on an equal footing. However, a
close examination (specifically, a close look at Eq. (2))

indicates that field and momentum conjugate play rather
different roles in determining the gravitational perturbation
that results after the collapse. There we see that the
momentum conjugate is the quantity that determines the
Newtonian potential.
This leads us to consider a collapse scheme in which it is

only the expectation value of the conjugate momentum the
one that changes as a result of the collapse (we would be
taking here a view according to which, heuristically speak-
ing, the uncertainty of the source of the metric perturba-
tion, the Newtonian potential, is somehow connected to the
triggering of the collapse of the source). See a more
detailed discussion of these ideas in [2] and the motivating
ideas in [6–9]. Thus we define:
Scheme II: It is the scheme where it is only the expec-

tation value of the conjugated momentum the one that
changes as a result of the collapse, and it does so in a
randomway, dictated by the corresponding uncertainties of
the precollapse state, so that, immediately after the col-
lapse time �c

k, the expectation values are determined by

hŷðR;IÞk ð�c
kÞi� ¼ 0; h�̂ðR;IÞ

k ð�c
kÞi� ¼ xðR;IÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��ðR;IÞ

k Þ20
q

;

(11)

where xðR;IÞ1;2 are random variables, characterized by a

Gaussian distribution centered at zero with dispersion of

1, and ��ðR;IÞ
k is the uncertainty of �ðR;IÞ

k in the precollapse

state.
We should note that an additional and crucial piece of

information would be required to determine the primordial
spectra: the exact values of the collapse times for each
mode. Again, having no knowledge of the physics behind
the collapse, all we can do is to assume that whatever that
is, it has no intrinsic preferential directionality and thus

that �c
~k
is only a function of k ¼ jj ~kjj, but otherwise take

that function as unknown. We will then parametrize in
simple ways our ignorance about this function and attempt
to extract constraints from the data.
There are of course many more possibilities of collapse

schemes but we limit our consideration to only those two,
because they seem simple and quite natural. Next, we inves-
tigate these two schemes in detail at a quantitative level.

IV. COMPARING WITH OBSERVATIONAL DATA

Given the schemes proposed, and after some lengthy
algebraic manipulations, one can determine (see Ref. [10])
the functions CðkÞ’s and then use them to compare the
resulting predictions for the shape of the spectrum to
observations. It was shown in Refs. [2,10] that we can
recover the power spectrum of initial fluctuations of the
standard cosmological model if CðkÞ ¼ 1. Therefore, the
power spectrum of the collapse models can be written as:

PðkÞ ¼ AskCðkÞ (12)

where As is the amplitude of the scalar fluctuations.
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The function CðkÞ resulting from Eq. (10) for scheme I
has the following form:

CIðkÞ ¼ 1þ 2

z2k
sin2�k þ 1

zk
sinð2�kÞ; (13)

whereas the one corresponding to the scheme II is:

CIIðkÞ ¼ 1þ
�
1� 1

z2k

�
sin2�k � 1

zk
sinð2�kÞ; (14)

where zk � k�c
k, �k ¼ kð�EI � �c

kÞ and �EI refers to

the conformal time at the end of the inflationary period.7

We refer to them hereafter as Model I and Model II,
respectively.

In Ref. [10] a preliminary study of these two schemes
and one additional scheme was performed. That was a
relatively simple analysis concentrating on the main fea-
tures of the resulting spectrum, but ignoring the late-time
physics corresponding to the effects of reheating and
acoustic oscillations (represented by T ðkÞ). Thus, the
actual comparison with empirical data was not possible
except for obtaining order-of-magnitude estimates. A de-
tailed comparison with the very precise data available,
requires a much more complex analysis, such as the one
we will conduct in this work.

We recall that the standard form of the predicted spec-
trum is recovered if one replaces CðkÞ by a constant. We
will explore the sensitivity for small deviations of the ‘‘zk
independent of k pattern’’ by considering a linear departure
from the situation in which zk is independent of k. That will
be characterized by zk as zk ¼ Aþ Bk. This will allow us
to examine the robustness of the collapse scheme in as far
as predicting the standard spectrum. In such way, the times
of collapse for each mode k can also be written in terms of
A and B as follows: �c

k ¼ A=kþ B. We can use this

formula to compute the collapse time for the relevant
modes we observe in the CMB, namely, those that cover
the range of the multipoles of interest, 1 � l � 2600. We
can made use of the approximate relation8 l� �kRD,
where RD is the comoving radius of the last scattering
surface, in order to interpret heuristically the result of the
analysis and to set reasonable viability constraints on the
parameters of the model. In standard cosmology9 it is given
by RD ¼ 2

H0
ð1� ffiffiffiffiffiffi

aD
p Þ, where we have normalized the

scale factor to be a0 ¼ 1 today, so aD � að�DÞ ’ 10�3,
and H0 is the Hubble constant today. Its numerical value is
RD ¼ 5816:31h�1 Mpc. Thus, the relevant modes for the
CMB are those in the range 4� 10�5 Mpc�1 � k �
0:11 Mpc�1. The collapse times for these modes can be
regarded as the times in which inhomogeneities and
anisotropies first emerged at the corresponding scales.

A. Physical meaning of the obtained results

The analysis carried out in previous works on this
approach [2,10] does not take into account the evolution
of the perturbation beyond the end of inflation and thus
their results, even though they provide certain general
qualitative and quantitative information about the modifi-
cations the general approach leads to, cannot be considered
as leading to actual bounds on the parameters extracted
from data. In this work we want to extract actual bounds
that could, in the future, be taken as clues on the nature of
the physics that might lie behind what we represent at the
phenomenological level by the collapse mechanism. In
particular, we need to ensure that when considering the
collapse as being described within the inflationary regime,
the times where the relevant collapses occur do indeed fall
within that regime. Hence, we will impose a priori limits
on the values of A and B, so that the collapse of the wave
function can occur only at a time between the beginning
(tBI) and the end (tEI) of the inflationary epoch. In terms of
conformal times:

�BI <�< �EI: (15)

The period of inflationary expansion prior to the radia-
tion dominated era, corresponds to negative conformal
time. The initial singularity (or more precisely, the quan-
tum gravity regime) is pushed back into large and negative
values of the conformal time and can be pushed arbitrary
far depending on the duration of inflation [13].
Now, we estimate the time scales for the beginning and

the end of the inflationary epoch. The value of the confor-
mal time at the end of inflation, is determined from the
‘‘temperature’’ of the radiation era viewed as a function of
the scale factor: aðt0ÞTðt0Þ ¼ aðtEIÞTðtEIÞ where t0 is the
present time, aðt0Þ ¼ 1, tEI is the time at the end of
inflation, and T0 ¼ 2:728 K. Taking the usual values for
inflationary models, TðtEIÞ ’ 1015 GeV, and consequently
aðtEIÞ ¼ 2:35� 10�28. We then use the relation between
conformal time and scale factor during the inflationary era,
að�Þ ¼ � 1

HI�
, where HI is the value of the Hubble con-

stant during this epoch. In most inflationary models,HI can
be estimated as: H2

I ¼ 8�G
3 VI where VI is the inflationary

potential. Let us assume that VI ’ 1060 GeV4, then we
obtain HI ¼ 2:37� 1011 GeV and thus

�EI ¼ �1:8� 1016 GeV�1 ¼ �7:2� 10�22 Mpc: (16)

We express the results in Mpc because these are the com-
mon units for time and length used in Boltzmann codes that

7This expression is different from the one in previous papers
[2,10], because in those, the work relied on an approximation in
which the effects of the plasma physics relevant to the era
between the end of inflation and decoupling are ignored.

8The relation between the angular scale � and the multipole l
is �� �=l. The comoving angular distance, dA, from us to an
object of physical linear size L, is dA ¼ L=ða�Þ. L=a� 1=k,
dA ¼ RD if the object is in the LSS, and using the first expression
in this footnote, we get l� �kRD.

9In the present work we will be ignoring the effects of the late
time acceleration associated with the so called ‘‘Dark Energy’’
as this complication is thought not to impact on the results in any
substantial way.
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solves the recombination equations, such as CAMB [14].
In order to solve the ‘‘horizon’’ and ‘‘flatness’’ problem,
inflationary models require 80 e-folds of inflation:

log

�
aðtEIÞ
aðtBIÞ

�
¼ HIðtEI � tBIÞ ¼ 80: (17)

Thus, we obtain: aðtBIÞ ¼ 4:24� 10�63, and using the
relation between the scale factor and conformal time dur-
ing inflation, we get:

�BI ¼ �9:9� 1050 GeV�1 ¼ �1:6� 1014 Mpc: (18)

Let us recall now that in the models that are being
studied, each mode is thought to collapse at a different
time given by

�c
k ¼

A

k
þ B; (19)

where A and B are constants. Therefore, for the collapse of
the wave function to occur during the inflationary period,
the values of A and B should satisfy the following relation
for all values of k:

�BI � A

k
< B< �EI � A

k
: (20)

Demanding that these inequalities hold for all the relevant
modes, leads to the desired a priori bounds on the model
parameters.

B. Characteristic signatures of the models on the CMB
fluctuation spectrum

In order to analyze the effects on the CMB fluctuations
power spectrum, let us first define the fiducial model,
which will be taken just as a reference to discuss the results
we obtain for the collapse models. The fiducial model is a
�CDM model with the following cosmological parame-
ters: baryon density in units of the critical density,

�Bh
2 ¼ 0:02247; dark matter density in units of the criti-

cal density,�CDMh
2 ¼ 0:1161; Hubble constant in units of

Mpc�1 km s�1,H0 ¼ 68:7; reionization optical depth, 	 ¼
0:088; and the scalar spectral index, ns ¼ 0:959. These are
the best-fit values presented by the WMAP collaboration
using the final 7-year release data [15] and the power
spectrum from Sloan Digital Sky Survery DR7 LRG [16].
Figures 1, 2, 5, and 6, show the prediction for the

temperature fluctuation spectrum for Models I and II for
various values of the parameters A and B. The value of 
2

in the figures is calculated using both temperature and
temperature-polarization fluctuation data from WMAP 7-
year release. We can see that the different collapse models
have distinct effects on the CMB temperature fluctuation
spectrum, and furthermore, that these effects depend rather
strongly on the values of the parameters A and B which
determine the collapse times of the various modes.
Let us first analyze the case of Model I: When fixing

A ¼ �10 or A ¼ �10�4, we find that there is no change
within the range of B studied here (with respect to the
fiducial model) in the position of the Doppler peaks or in
the height of the first peak. On the other hand, we note an
increase in the height of the secondary peaks, with the
amplitude depending on the value of the free parameter B.
Next, we set A ¼ �108 (see Fig. 1, right panel); in this
case there is no change in the first peak (with respect to the
fiducial model), while there is a extremely small increase
in the height of the second peak and a a similar decrease in
the height of the third peak. In fact one does not observe
any important change in the spectrum for different values
of B (other values of B in the explored range give the same
spectrum). The small difference between the spectrum of
the collapse models and the fiducial model is due to the fact
that the former uses the canonical value for the spectral
index (ns ¼ 1) while the latter is the best fit value to the
data found by the WMAP collaboration assuming the
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FIG. 1 (color online). The temperature autocorrelation (TT) power spectrum for Model I (Left: A ¼ �10, Right: A ¼ �108). All
models are normalized to the maximum of the first peak of the fiducial model. The value of 
2 is calculated using only WMAP 7-year
release data. The solid line corresponds to the fiducial model.
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standard cosmological model (which differs slightly from
1). We have also studied the results for other various large
negative values of A (not shown here) and found that the
behavior is similar to that of the case A ¼ �108. This is
the result of a simple preliminary analysis; the exact value
of A at which the behavior of the CMB spectrum changes
becomes important, phenomenologically speaking, will be
determined from the statistical analysis (see Section V). As
the most accurate observational data corresponds to the
first peak, it is expected that the collapseModel I with large
values of A will be phenomenologically indistinguishable
from the fiducial model, as seen in Fig. 1 (right panel).

Indeed, the difference in the value of the quality-of-fit
estimator 
2, is found to be not significant within 1�.
Figures 3 and 4 show the prediction for the temperature-

polarization cross-power spectrum for Model I. Here again,
the models with A ¼ �108 differ very little from the
fiducial model and show no relevant dependence of the
results on values of Bwithin the explored range. Regarding
the cases of A ¼ �10 and A ¼ �10�4, we find (in com-
parison with the fiducial model) an increase in the values of
the secondary peaks and a decrease in the amplitude of the
valleys, but the relative change is less relevant than that in
the temperature fluctuation power spectrum.
Let us now focus on Model II (see Fig. 5). Here again,

the effect is different for different values of A: Considering
firstly the case of A ¼ �10, we find that there is a shift in
the position of the peaks, and in one case (B ¼ �103), the
first peak is replaced by two peaks. On the other hand,
when setting A ¼ �108 or A ¼ �10�4, we find generi-
cally a shift in the position of the first peak. In both cases,
there is also a change in the height of the secondary
peaks, with the magnitude of the change depending on
the values of A and B. Figures 7 and 8 show the prediction
for the temperature-polarization cross-power spectrum for
Model II. Here again, we observe (in comparison with the
fiducial model) an increase in the value of the peaks and a
decrease in the values at the valleys for all cases, with the
magnitude of the changes depending on the value of B.
Therefore, in this case, collapse models can be clearly
distinguished from the fiducial model. The difference in
behavior of the two models can be understood by looking
at Eqs. (13) and (14): for sufficiently large values of A and/
or B, C1ðkÞ becomes independent from k, while the second
term of C2ðkÞ does not vanish in the limit of large values
of k�c

k. We would like to emphasize the importance of

this preliminary analysis on the behavior of the collapse
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FIG. 2 (color online). The temperature autocorrelation (TT)
power spectrum for Model I (A ¼ �10�4). All models are
normalized to the maximum of the first peak of the fiducial
model. The value of 
2 is calculated using only WMAP 7-year
release data (both temperature and temperature-polarization
power spectrum are included). The solid line corresponds to
the fiducial model.
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FIG. 3 (color online). The temperature-polarization (TE) cross-power spectrum for Model I (Left: A ¼ �10, Right: A ¼ �108). All
models are normalized to the maximum of the first peak of the fiducial model. The value of 
2 is calculated using only WMAP 7-year
release data (both temperature and temperature-polarization power spectrum are included). The solid line corresponds to the fiducial model.
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schemes, to determine the appropriate method for the
statistical analysis to explore the various relevant regions
of parameter space, as we described in detail in Sec. V.

V. RESULTS

The observational data used for the analysis are the
temperature and temperature-polarization power spectra
obtained from the final WMAP 7-year release [15], and
other CMB experiments such as CBI [17], ACBAR [18],
BOOMERANG [19,20], BICEP [21] and QUAD [22],
together with the matter power spectrum traced by LRGs

as measured in the Sloan Digital Sky Survey DR7 [16]. We
consider a spatially-flat cosmological model with adiabatic
density fluctuations, in which we add the effect of the
collapse models in the power spectrum of the initial fluc-
tuations. The parameters allowed to vary are:

P ¼ ð�Bh
2;�CDMh

2;�; 	; As; A; BÞ; (21)

where � is the ratio of the comoving sound horizon at
decoupling to the angular diameter distance to the surface
of last scattering, 	 is the reionization optical depth, As is
the amplitude of the primordial density fluctuations, and A
and B are the model parameters related to the conformal
time of collapse of each mode (see Eq. (19)). Given that the
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FIG. 4 (color online). The temperature-polarization (TE)
cross-power spectrum for Model I (A ¼ �10�4). All models
are normalized to the maximum of the first peak of the fiducial
model. The value of 
2 is calculated using only WMAP 7-year
release data (both temperature and temperature-polarization
power spectrum are included). The solid line corresponds to
the fiducial model.
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FIG. 5 (color online). The temperature autocorrelation (TT) power spectrum for Model II (Left: A ¼ �10, Right: A ¼ �108). All
models are normalized to the maximum of the first peak of the fiducial model. The value of 
2 is calculated using onlyWMAP 7-year release
data (both temperature and temperature-polarization power spectrum are included). The solid line corresponds to the fiducial model.
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FIG. 6 (color online). The temperature autocorrelation (TT)
power spectrum for Model II (A ¼ �10�4). All models are
normalized to the maximum of the first peak of the fiducial
model. The value of 
2 is calculated using only WMAP 7-year
release data (both temperature and temperature-polarization
power spectrum are included). The solid line corresponds to
the fiducial model.
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primordial power spectrum of density fluctuations for the
collapse models was computed only for the scale invariant
case [2,10], the scalar spectral index of density fluctuations
(ns) is fixed to 1 in this paper. However, we should keep in
mind that the collapse models allow different values for ns
and the corresponding power spectrum will be studied in
future works.

In order to place constraints on the parameters of the
quantum collapse models, we modified the primordial
power spectrum according to the schemes described in
Sec. II. We performed our statistical analysis by exploring
the parameter space with Monte Carlo Markov chains

generated with the publicly available CosmoMC code of
Ref. [23] which uses the Boltzmann code CAMB [14] to
compute the CMB power spectra.
In a first trial, we performed the statistical analysis

without imposing any prior on the baryon density and
found that the confidence interval obtained for �Bh

2

turned out to be very large compared to the one obtained
by the WMAP collaboration (i.e. without considering the
collapse scheme). Therefore, we introduced a gaussian
prior on the baryon density, using an independent data,
namely, the Big Bang Nucleosynthesis (BBN) bound
[24,25].
Initially, we intended to perform the statistical analysis

allowing the two parameters of the model, A and B, to vary
independently. However, after the first runs we realized
that for a very large range of values of A, there was always
a range of values of B providing a good fit to the data.
Furthermore, in order to allow the Markov chains to ex-
plore various orders of magnitude in those parameters, we
used the following reparametrization: a ¼ sinhðAÞ and
b ¼ sinhðBÞ (another possible reparametrization is a ¼
logðAÞ and b ¼ logðBÞ, but we are interested in exploring
both positive and negative values of A and B). We found
that the Markov chains did not converge when both a and b
were allowed to vary independently. The reason for this is
simply the fact that there are several maxima of the proba-
bility function in the parameter space, but the method of
Markov chains does not allow to explore all maxima at the
same time. In contrast, we found that when we fixed values
of A within a rather large range of values, convergence of
the Markov chains is found. Moreover, let us recall that the
primordial power spectrum in collapse models is a function
of zk ¼ Aþ Bk; by taking B ¼ 0, we recover the spectrum
corresponding to the standard �CDM model with spectral
index ns ¼ 1, up to an overall normalization factor. Thus,
the parameter B gives a measure of the departure of the
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FIG. 8 (color online). The temperature-polarization (TE)
cross-power spectrum for Model II (A ¼ �10�4). All models
are normalized to the maximum of the first peak of the fiducial
model. The value of 
2 is calculated using only WMAP 7-year
release data (both temperature and temperature-polarization
power spectrum are included). The solid line corresponds to
the fiducial model.
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FIG. 7 (color online). The temperature-polarization (TE) cross-power spectrum for Model II (Left: A ¼ �10, Right: A ¼ �108). All
models are normalized to the maximum of the first peak of the fiducial model. The value of 
2 is calculated using only WMAP 7-year
release data (both temperature and temperature-polarization power spectrum are included). The solid line corresponds to the fiducial model.
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primordial power spectrum with respect to that of the
standard model, while phenomenologically A behaves as
a normalization factor that is degenerated with As. We
should note, however, that although the effect on the
spectrum of A and As is very closely connected, their
physical interpretation is quite different. The results of
the statistical analysis, for fixed values of A are shown in
Tables I, II, and III for collapse models I and II.

Within Model I, a preliminary analysis of the modifica-
tions of the CMB fluctuation power spectrum associated
with the collapse models indicates that for large values of
the parameter A, there is no dependence on the value of B,
and also that there is a very small difference between those
models and the fiducial one. This last feature is related to
the fact that the fiducial model involves a different value of
the spectral index ns (see discussion in Section IVB).
These results are, indeed, reflected in the statistical analy-
ses by the fact that for jAj< 20, nontrivial bounds on B can

be found, while for larger values of A, any value of B gives
a good fit to the data. Furthermore, the values of the
corresponding cosmological parameters obtained from
the statistical analyses for models with jAj> 20 is within
the 1� bounds established by the standard analysis of
WMAP collaboration made without considering the col-
lapse scheme. In order to confirm the persistence of this
behavior, we have explored a large range of A values, from
�109 to 109, changing this value in each step by one order
of magnitude, and found results consistent with the pre-
vious conclusion. In Table I we show the bounds on B
obtained for fixed values of jAj< 20 for Model I.
A similar analysis performed for Model II, shows that

we should not expect the same behavior as the one obtained
for Model I. Indeed, Fig. 5 shows (for two different values

TABLE I. Model I. Mean values and 1� error for b ¼ sinhB
considering different fixed values of parameter A. The 
2

estimator is computed for the whole data set. For the fiducial
model, 
2

min ¼ 3909. Column 4 refers to the viability of the

model (collapse times happen during inflation), and column 5
shows whether there is any restriction to the viability in the range
shown by column 2.

A Mean value and 1� error 
2
min Viability Restricted

�17:5 2:74þ0:28
�0:29 3910 Y N

�15 �3:11	 0:19 3909 Y N

�12:5 �2:40	 0:36 3910 Y N

�10 �0:87þ0:79
�0:74 3915 Y N

�7:5 1:83þ0:46
�0:38 3911 Y N

�5 1:95þ0:24
�0:22 3909 Y N

�2:5 �1:56þ0:23
�0:14 3907 Y N

�1 1:65	 0:24 3908 Y N

�10�1 0:48þ0:50
�0:51 3915 Y N

�10�2 0:03	 0:55 3916 Y Y

�10�3 0:005	 0:54 3916 Y Y

�10�4 0:02þ0:54
�0:55 3916 Y Y

10�8 �0:006þ0:54
�0:55 3916 Y Y

10�7 0:0005þ0:56
�0:57 3916 Y Y

10�6 �0:016	 0:56 3916 Y Y

10�5 �0:006þ0:54
�0:55 3916 Y Y

10�4 0:72� 10�4 	 0:55 3916 N -

10�3 �0:01þ0:51
�0:56 3916 N -

10�2 �0:05þ0:54
�0:65 3916 N -

10�1 0:48þ0:50
�0:51 3915 N -

1 �1:68	 0:23 3908 N -

10 0:81þ0:74
�0:79 3915 N -

12.5 2:44þ0:34
�0:35 3910 N -

15 �3:20þ0:15
�0:19 3910 N -

17.5 2:72þ0:28
�0:30 3910 N -

TABLE II. Model II. Mean values and 1� error for b ¼ sinhB
considering different fixed negative values of parameter A. 
2 is
calculated for the whole data set. For the fiducial model, 
2

min ¼
3909. Column 4 refers to the viability of the model (collapse
times happen during inflation), and column 5 shows whether
there is any restriction to the viability in the range shown by
column 2.

A Mean value and 1� error 
2
min Viability Restricted

�109 1:55	 0:30 3908 Y N

�7� 108 1:54	 0:21 3908 Y N

�3� 108 �1:56	 0:30 3909 Y N

�108 �1:64þ0:21
�0:22 3908 Y N

�107 �1:55þ0:30
�0:29 3909 Y N

�106 �1:44þ0:31
�0:30 3910 Y N

�5� 105 1:78	 0:21 3911 Y N

�105 �0:17	 0:46 3916 Y N

�5� 104 �1:99	 0:20 3908 Y N

�104 1:36	 0:23 3908 Y N

�103 1:49	 0:23 3908 Y N

�500 1:57	 0:30 3908 Y N

�300 �2:00	 0:20 3911 Y N

�300 1:96	 0:20 3911 Y N

�100 �1:58	 0:28 3908 Y N

�80 �2:08þ0:13
�0:18 3913 Y N

�50 �1:15	 0:34 3913 Y N

�30 �1:79þ0:21
�0:20 3909 Y N

�10 1:47	 0:26 3908 Y N

�5 �1:58	 0:20 3908 Y N

�1 �2:01	 0:21 3909 Y N

�10�1 �2:22þ0:76
�0:65 3915 Y N

�10�1 2:03þ1:05
�0:84 3914 Y Y

�10�2 �2:09þ0:97
�0:76 3914 Y N

�10�2 2:14þ0:73
�0:93 3914 N -

�10�3 �2:12þ0:93
�0:74 3914 Y N

�10�3 2:11þ0:75
�0:97 3914 N -

�10�4 �2:13þ0:92
�0:73 3914 Y N

�10�4 2:14þ0:72
�0:92 3914 N -
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of A) that the prediction of Model II on the C‘’s depends
rather strongly on the value of B. Results from the statistical
analysis for fixed values of A are shown in Table II and III.

As mentioned previously in this section, we could not
perform a statistical analysis with A and B varying jointly
as free parameters, due to the fact that there are several
maxima of the probability function. Indeed, Tables II and
III show that, for several values of A, we obtain two differ-
ent maxima for which the difference between the value of

2
min does not exceed the value of 1 and thus one cannot

discriminate between them. There is even one case (A ¼
0:1) in Model II (see Table III) in which there are three
maxima. However, we should emphasize an important
difference between the statistical analysis performed for
A ¼ �300 in Model II and the ones corresponding to the
other values mentioned above. In the first case, we have
performed two different statistical analyses with different

initial values of b ¼ sinhðBÞ when running COSMOMC
and obtained convergence of the Markov chains to one
maximum at each time. The values of the errors have been
calculated with the GETDIST program, as is usually done
in this kind of analyses. On the other hand, for values of
jAj< 1, we have performed one statistical analysis for
each value of A and obtained a marginalized likelihood
with two peaks, for the parameter B. We have tried to
change the initial value of b ¼ sinhðBÞ in order to obtain
convergence to a single value at the time, with no success.
As the GETDIST program determines the confidence in-
terval assuming that there is just one maximum of the
likelihood function, we need some alternative method to
calculate those. We have thus computed the confidence
interval for values of jAj< 1 in Model II by estimating
the limits of integration for which the integral of the
marginalized likelihood function yields 68% of the value
of the same integral over that peak. Therefore, it is not
surprising that the 1� errors calculated for A < 1 are 4
times larger than those calculated by the GETDIST
program.
Next, let us recall the discussion of Sec. IVAwhere for a

given value of A, we calculated the corresponding range of
values of B that ensure that the time of collapse for the
mode k occurs during the inflationary period. Then, by
considering the values of A for which the collapse schemes
are tested (see Tables I, II, and III), Eq. (20) implies that
for A > 0 we must have B<� A

kmin
and that for A < 0 the

condition is B<� A
kmax

. Therefore, we have added the

dotted line corresponding to B ¼ � A
kmax

in Figs. 9 and 11

and the dotted line corresponding to B ¼ � A
kmin

in Fig. 10

and 12 above which the solutions found are nonphysical
and thus excluded. It should be noted that there are some
cases where only parts of the solution are physically viable.
In order to facilitate this discussion we have added column
4 in Tables I, II, and III which indicates if the model is
viable or not, and column 5 in the same tables indicates the
cases where there is a further restriction on the range of
values of B for the viability of the solution. In the rest of
this section we will discuss only those results that are
relevant for our model, and exclude those nonviable values
mentioned in the above paragraph. Recall that, unfortu-
nately, and as it has been already mentioned, the present
analysis does not allow us to determine any possible de-
generation, as far as the fit is concerned, between the model
parameters A and B. However, from Fig. 9 we can see that
the allowed values of B—within 1� error- for A >�20
turn out to lie in the range j sinhðBÞj< 3:2 for Model I;
recall that for A <�20, the resulting CMB spectrum is the
same for all values of B and very similar to the fiducial
model and therefore, any value of B among those tested in
this paper (B ¼ �109 � � � 109Þ) provides a good fit to the
data. On the other hand, for Model II, the allowed values of
B—within 1� error- lie in the range j sinhðBÞj< 3 for
Model II for all values of A studied in this paper. This

TABLE III. Model II. Mean values and 1� error for b ¼ sinhB
considering different fixed positive values of parameter A. 
2 is
calculated for the whole data set. For the fiducial model, 
2

min ¼
3909. Column 4 refers to the viability of the model (collapse
times happen during inflation), and column 5 shows whether
there is any restriction to the viability in the range shown by
column 2.

A Mean value and 1� error 
2
min Viability Restricted

10�8 �2:09þ0:96
�0:76 3914 Y N

10�8 2:14þ0:71
�0:90 3914 N -

10�7 �2:06þ0:97
�0:77 3914 Y N

10�7 2:10þ0:96
�0:75 3914 N -

10�6 �2:09þ1:00
�0:77 3914 Y N

10�6 2:12þ0:76
�0:97 3914 N -

10�5 �2:00þ1:05
�0:81 3914 Y N

10�5 2:14þ0:72
�0:90 3914 N -

10�4 �2:14þ0:87
�0:71 3914 N -

10�4 2:11þ0:75
�0:98 3914 N -

10�3 �2:12þ0:93
�0:74 3914 N -

10�3 2:11þ0:95
�0:74 3914 N -

10�2 �2:12þ0:95
�0:75 3914 N -

10�2 2:15þ0:73
�0:95 3914 N -

10�1 �2:43þ0:57
�0:51 3915 N -

10�1 0:00þ0:75
�0:76 3915 N -

10�1 2:42þ0:47
�0:51 3914 N -

10 �1:47	 0:25 3908 N -

100 1:58	 0:27 3908 N -

103 1:50	 0:22 3908 N -

104 �1:33þ0:32
�0:34 3911 N -

105 0:19þ0:44
�0:46 3916 N -

106 1:46þ0:29
�0:30 3910 N -

107 1:53	 0:31 3909 N -

108 1:65	 0:21 3908 N -

109 �1:53þ0:29
�0:30 3908 N -
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allows us to set the bounds B< 1:88 Mpc for A <�20 in
Model I, and B< 1:81 Mpc for Model II. On the other
hand, it is also interesting to note that for all the studied
cases with jAj< 1 in Model I, the confidence interval
includes the case B ¼ 0 with a maximal allowed departure
from that value of 0.6. In contrast, for the cases jAj> 1 in
Model I and for almost all cases considered in Model II, the
valueB ¼ 0 is excluded within 2�, except for the case A ¼
�105 for Model II and A ¼ 10 for Model I.

The results of the statistical analysis for the cosmologi-
cal parameters are shown in Figs. 13–16 for Models I and
II. We can distinguish two behaviors: i) Model I with
�20< A<�1; Model II with A <�1; ii) Models I
with jAj< 1; Model II with jAj< 1. Let us remind that

for jAj> 20 in Model I we recover the scale-invariant HZ
spectrum and therefore the constraints on the cosmological
parameters are those estimated by the WMAP collabora-
tion [15]. For models included in case i), most of the
estimated values for the cosmological parameters within
the collapse models are in agreement with those obtained
by the WMAP collaboration using the 7-year data release
and considering a standard �CDM model. The values
obtained for � are marginally consistent with those
obtained by the WMAP collaboration. However, there is
a better agreement in the results obtained for H0, which is
derived from� and other cosmological parameters. Let us
now discuss some exceptions. For the case A ¼ �10 in
Model I, the values obtained for �bh

2 and H0 are at
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nh
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Value of -A
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sinh(-A/kmax)

FIG. 9 (color online). Results for Model I: Bounds on b ¼
sinhðBÞ obtained for fixed negative values of A. The area below
the dotted line sinhðBÞ< sinhð� A

kmax
Þ indicates the region where

the collapse of all modes happens during the inflationary period.
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FIG. 11 (color online). Results for Model II: Bounds on b ¼
sinhðBÞ obtained for fixed negative values of A. The area below
the dotted line sinhðBÞ< sinhð�A

kmax
Þ indicates the region where the

collapse of all modes happens during the inflationary period.

-4

-3

-2

-1

 0

 1

 2

 3

 4

10-810-710-610-510-410-310-210-1 100 101 102 103 104 105 106 107 108 109

si
nh

(B
)

Value of A

sinh(-A/kmin)

FIG. 12 (color online). Results for Model II: Bounds on b ¼
sinhB obtained for fixed positive values of A. The area below the
dotted line sinhðBÞ< sinhð� A

kmin
Þ indicates the region where the

collapse of all modes happens during the inflationary period.
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FIG. 10 (color online). Results for Model I: Bounds on b ¼
sinhðBÞ obtained for fixed positive values of A. The area below
the dotted line sinhðBÞ< sinhð� A

kmin
Þ indicates the region where

the collapse of all modes happens during the inflationary period.
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variance with the values obtained by the WMAP collabo-
ration within 2�, while there is agreement within 3�. For
the case A ¼ �105 in Model II, the values obtained for
�bh

2 and H0 are at variance with the values obtained by
the WMAP collaboration within 1�, while there is an
agreement within 2�. On the other hand, it is important
to discuss consistency of our results with independent data

such as the baryon density inferred from BBN [24,25]10

and the constraint on the Hubble constant presented in
Ref. [26]. It should be noted that the 1� BBN region
for �bh

2 shown in Figs. 13–16 refers to the constraint
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FIG. 13 (color online). Results for Model I: Best-fit parameter values and 1� errors for the cosmological parameters obtained for
fixed negative values of A. Comparison with the values obtained by the WMAP collaboration (and other data sets, where relevant), is
also shown. For convenience, the value of�A is plotted in the x-axis. Values of�20< A<�1 belong to case i) described in the text,
while values of jAj< 1 correspond to case ii).

10Recall that have put a gaussian prior on the baryon density
using constraints inferred from BBN.
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obtained using the observational abundances of deute-
rium, which is the most stringent one. However, one
should keep in mind that by considering the 4He abun-
dance, the constraint on the baryon density softens sub-
stantially, and in fact it leads to a region which is
consistent with the constraint obtained with the CMB

data. Indeed, the values we obtained for �bh
2 are mar-

ginally consistent with the value inferred from deuterium
abundance BBN constraints within 1�, while there is
full consistency with value inferred from the primordial
abundance of 4He. On the other hand, the values of H0

obtained in our study are marginally consistent with the
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FIG. 14 (color online). Results for Model I: Best-fit parameter values and 1� errors for the cosmological parameters obtained for
fixed positive values of A. Comparison with the values obtained by the WMAP collaboration (and other data sets, where relevant), is
also shown. All of these values correspond to case ii) described in the text.
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constraint extracted from Hubble Space Telescope (HST)
data.

Let us now discuss models included in case ii). The
values of �bh

2 obtained are consistent with the values
obtained by the WMAP collaboration in the context of

the standard cosmological model within 2�. On the other
hand, there is disagreement with the deuterium inferred
BBN constraint on �bh

2 within 3�, while there is con-
sistency with the value inferred from the 4He abundance.
The values of H0 obtained are at variance with the ones
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FIG. 15 (color online). Results for Model II: Best-fit parameter values and 1� errors for the cosmological parameters obtained for
fixed negative values of A. Comparison with the values obtained by the WMAP collaboration (and other data sets, where relevant), is
also shown. For convenience, the value of �A is plotted in the x-axis. Values of jAj> 1 belong to case i) described in the text, while
values of jAj< 1 correspond to case ii).
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obtained by the WMAP collaboration within 1�, while
there is agreement within 2� and with the constraints
obtained with the HST data. The values of � also differ
at 1�. Other values of cosmological parameters obtained
do agree with the ones obtained by the WMAP collabora-

tion in the context of the standard inflationary scenario. On
the other hand, for both models, we found that there is no
agreement with the values of As obtained in almost all of
the cases of fixed values of A explored. This can be under-
stood as due to the fact that the effective amplitude of the
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FIG. 16 (color online). Results for Model II: Best-fit parameter values and 1� errors for the cosmological parameters obtained for
fixed positive values of A. Comparison with the values obtained by the WMAP collaboration (and other data sets, where relevant), is
also shown. All of these values correspond to case ii) described in the text.
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power spectrum of density fluctuations depends on A and
As, so the parameters act at a certain level as degenerated
parameters. However, there is agreement between the val-
ues for�8

11 obtained and those of the fiducial model. Note,
however, that this is a derived parameter which depends on
the effective amplitude. It should also be noted that the
models included in case i) are preferred by the data as
compared to the models included in case ii), as can be
inferred from the value of 
2

min of the respective statistical

analyses listed in Tables I, II, and III.
When analyzing the correlations between the cosmo-

logical parameters �bh
2, �ch

2 and �, 	 and B, we find
that for both Models I and II the values of the correlation
coefficient �B�, �B�bh

2 and �BH0
are positive for positive

best-fit values of B, while �B�ch
2 is positive for negative

best-fit values of B. Furthermore, the correlation is strong
for �bh

2, �ch
2 and H0 while for � and 	 the correlation

coefficient is less than 0.3 for all the cases studied in this
paper.

VI. SUMMARYAND CONCLUSIONS

In this paper, we have studied the phenomenological
predictions of the collapse models developed in
Refs. [2,10,27] and incorporated the effect of late-time
plasma physics. We have calculated the prediction for the
CMB fluctuation spectrum in the case where the collapse of
the k modes of the scalar field during the inflationary period
is included. Furthermore, we have performed a statistical
analysis in order to compare the prediction of the collapse
models with recent data from the CMB fluctuation spectrum
and the matter power spectrum obtained by the SDSS
collaboration, setting bounds on the model parameters A
and B that characterize the collapse times of the scalar field
modes. Results from the statistical analyses were discussed
in Sec. V and can be summarized as follows:


 For jAj> 20 in Model I, any value of B provides a
good fit to the data within the range studied in this
paper (B ¼ �109 � � � 109).


 For jAj< 20 in Model I, there is a nontrivial range of
values of B that provide a good fit to the data.
However, values of A lying in the range: 10�4 < A<
20 are not viable since the collapse of the modes
occurs after the inflationary period. Furthermore,
the data indicate that the values in the range �20<
A<�1 are preferred.


 The best fit values of B obtained for jAj< 20 in
Model I lie in the range B< 1:88 Mpc.


 In Model II, there is a nontrivial range of values of B
that provide a good fit to the data for all values of A
tested (A ¼ �109 � � � 109). However, values of A ly-
ing in the range: 10�4 < A< 109 are not viable since
the collapse of the modes occurs after the inflationary

period. Furthermore, the data indicate that the values
in the range jAj> 1 are preferred.


 The best fit values of B obtained for all values of A
studied in this paper for Model II lie in the range B<
1:88 Mpc.


 The value obtained for the cosmological parameters
is consistent within 3� with those obtained by the
WMAP collaboration assuming a standard inflation-
ary scenario and also with bounds established by
BBN and the value of H0 obtained with the HST.

This analysis allows us to compare the value of the scale
factor at the collapse time að�c

kÞ, with the traditional value

of the scale factor at ‘‘horizon crossing’’ which is often set
to mark the quantum to classical transition in the standard
explanation of inflation: aHk . The ‘‘horizon crossing’’ oc-

curs when the length corresponding to the mode k has the
same size that the Hubble radiusH�1

I (in comoving modes,
k ¼ aHI) therefore, a

H
k � að�H

k Þ ¼ k
HI

¼ 3k
8�GV . Thus the

ratio of the value of the scale factor at horizon crossing for
mode k and its value at collapse time is

aHk
ack

¼ k�c
kðkÞ ¼ Aþ Bk: (22)

The results discussed in Sec. V show that two cases are
consistent with the data: the one for which the collapse
time of inflaton field modes is previous to the time of
‘‘horizon crossing’’ of all modes of the inflaton field, and
the opposite case. However, the data seem to favor the case
in which the collapse happens before the modes cross the
horizon.
As we found that there are good fits (for suitable ranges

of B) for all values of the parameter A, we must conclude
that the existing data do not lead to a preferred scale for the
times of collapse of the wave function for the relevant
modes. However, for each value of A, interesting bounds
can be placed on the value of the parameter B which in this
approach characterizes the modifications of the primordial
spectral shape with respect to the HZ conventional flat
scale-free spectrum.
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[8] L. Diósi, Phys. Lett. A 120, 377 (1987).
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