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Recently, through the use of one-electron excitation operators,

the set of low-lying excited states of several electronic systems

was obtained within the framework of the Hermitian Operator

method combined with the G-particle-hole Hypervirial equation

method [Valdemoro et al., J. Math. Chem. 2012, 50, 492]. The

main aim of this article is to extend our study by including

higher-order excitations as well as extended ionization and

electron affinity operators. Several examples show the

convenience of this extension to improve the accuracy of the

results in some relevant cases. Through the use of geminal

excitations, the algebra of the formal derivations is considerably

simplified. VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24157

General Introduction

To determine directly 1- and 2-body reduced density matrices

(RDM) without a previous knowledge of the N-electron wave-

function is an old pursuit. Especial mention must be given to

the pioneer works by Husimi,[1] L€owdin,[2] Mayer,[3] McWeeny,[4]

Ayres,[5] and Coulson.[6] Two remarkable papers in the early

sixties—by Coleman[7] about the RDM N-representability con-

ditions and by Garrod and Percus[8] about the G-particle-hole

matrix properties—set a firm foundation for the 2-RDM theory.

The interested reader may find general information about the

rich bibliography on the 2-RDM theory in Davidson’s[9] and

Coleman and Yukalov’s[10] books as well as in the reviews and

proceedings.[11–15] One of the present lines of research, which

is yielding many excellent results, is that of looking for the so-

lution of the matrix representation in the 2-electron space of

the Schrodinger and Liouville (LE) equations. Several accounts

have been given about these contracted/integrated equa-

tions.[16–19] The drawback of these contracted equations is that

they are operationally indeterminate,[20] because, in an aver-

aged form, they involve high-order RDMs terms. To solve these

equations, one must therefore approximate these high-order

RDMs in terms of the lower-order ones.[21] This approach per-

mitted Colmenero and Valdemoro[22] to solve iteratively the

contracted Schr€odinger equation in 1994. This work was fur-

ther developed by the groups lead by Nakatsuji,[23,24] Maz-

ziotti[25] and Valdemoro.[26] A similar line of thoughts is being

now applied to solve the G-particle-hole hypervirial equation

(GHV),[27–33] which results from a contraction of a particular

case of the LE[19,29] and which is one of the equations most

used by our group.

Many authors have studied excited states, electron affinity

and ionization potential energies.[34–47] Our work partly follows

the approaches of Bouten et al.,[39,40] Simons and Smith,[38,47]

and Szekeres et al.[42] Thus, Bouten et al.[39,40] studied in the

early seventies the properties of the particle-hole subspace of

a state and described a so-called Hermitian Operator (HO)

method for calculating excited states. A combination of their

formulation and the GHV method was carried out in Ref. [32],

which yielded excellent results in calculating the low-lying

excited states of a series of molecules.

An extension of the said method for higher-order excitations

is a necessary but not a trivial matter. A similar consideration

applies to the equations of the motion (EOM) method of

Simons and Smith,[38,47] which allows one to calculate electron

affinities and ionization potentials. The aim of this article is

mainly to report the formalism for double-excitations as well as

for the electron affinity and ionization potential involving more

than a single fermion operator. Thus, analytical close-form

expressions for these extended excitations will permit the study

of highly correlated states. The geminal algebra developed by

Valdemoro et al.[48] has been used to reduce the otherwise

excessively large number of algebraic operations and formulae.

The following section deals with the theoretical background

on Bouten et al.[39,40] HO equations as well as on Simons and

Smith’s EOM ones.[38,47] The double excitations formulation to-

gether with the final close-form expressions for the double

excitations is reported in ‘‘Extension of the HO Method: Double
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Excitations’’ section. The geminal algebra rules are also recalled

in this section. A short discussion of the previously obtained

results introduces ‘‘Simple and Extended Electron Affinity and

Ionization Potential Equations’’ section, to show the advantage

of pushing a step further the study of the ionized states and

then follows the extended formulation for the electron affinity

and ionization potential. Finally, some concluding comments

on the structural difficulties of the computational codes are

given in ‘‘Concluding Comments’’ section.

Basic Theoretical Background

The main fermion relation is

1Di;m þ 1Di;m ¼ di;m (1)

where 1D and 1D represent the 1-RDM and 1-hole RDM (1-

HRDM), respectively.

1Di;m ¼ hUj iy m jUi; 1Di;m ¼ hUj m iy jUi (2)

and where the fermion creation/annihilation operator labels

correspond to the spin–orbitals forming a finite basis of 2K

orthonormal elements spanning the one-electron space. This

equation and the positive semidefiniteness of these matrices

summarize the ensemble N-representability conditions for the

1-RDM.[7] The 2-RDM may be expressed as:

2Dij;mt ¼ 1

2!
hUj iy jy t m jUi (3)

There are several ways of decomposing the 2-RDM in terms

that involve just 1-RDM and 1-HRDM elements and pure

2-body terms. Thus,

2! 2Dpq;tv � 1Dp;t
1Dq;v � dq;t

1Dp;v þ 2Cpq;tv (4a)

� 1Dp;t
1Dq;v � 1Dq;t

1Dp;v � 1Dq;t
1Dp;v þ 2Cpq;tv (4b)

� 1Dp;t
1Dq;v � 1Dq;t

1Dp;v þ 2Dpq;tv (4c)

where

2Cpq;tv ¼
X
U0 6¼U

hUj py t jU0i hU0j qy v jUi � hUj Ĉpq;tv jUi (5)

is an element of the 2-order correlation matrix,[48–51] which

does not contribute to the trace of the 2-RDM. The symbol 2D
represents the second-order cumulant[52–56] that groups two

terms, which generate two correlation mechanisms under the

action of the Hamiltonian: an electron–hole polarization and

the pure 2-body correlation effects generated by virtual elec-

tron excitations/de-excitations.[48–50,57,58]

The G-particle-hole matrix,[8] which is defined as:

2Gpt;vq � 2Cpq;tv (6)

can also be considered a correlation matrix, because it is a

pure 2-body matrix.[48,51] Note that, although the two 2G and
2C matrices share the same elements, these elements occupy

different positions in each matrix. Hence, these two matrices

have different properties; in particular, the G-particle-hole ma-

trix is a positive semidefinite matrix whose contraction into

the 1-body space generates the 1-RDM.[57,59,60]

In a similar way, higher-order p-body correlation matrices

are obtained by decomposing the higher-order p-RDMs.[48,51]

The GHV

Let us contract the LE into the 2-body space with a correlation

contracting mapping, in the following way[29]:

X
K;X

h K j ½ Ĥ; j U ih U0 j � j X i h X j 2Ĝim;lj j K i

¼ h U0 j ½ Ĥ; 2Ĝim;lj � j U i (7)

which vanishes for U ¼ U
0
and becomes the compact expres-

sion of the GHV equation. Taking into account that the many-

body Hamiltonian operator may be expressed as

Ĥ ¼ 1

2

X
p;q;m;v

0Hpq;mv py qy v m (8)

where 0H groups the one- and two-electron integrals,[61] and

bringing all the operator strings that are implicit in this com-

pact equation to their normal product form, one obtains the

explicit form of the GHV equation[27]:

2
X
p;r;s

0Hrs;pm
ð3;2;1ÞCipj;rsl þ 2

X
p;q;r

0Hpq;jr
ð3;2;1ÞClrm;pqi

þ 2
X
p;q;r

0Hir;pq
ð3;2;1ÞCpqj;mrl þ 2

X
q;r;s

0Hql;rs
ð3;2;1ÞCrsm;jqi

þ
X
p;q;r;s

0Hrs;pq
ð3;2;1ÞCpqj;rsl

1Di;m �
X
p;q;r;s

0Hpq;rs
ð3;2;1ÞCrsm;pqi

1Dl;j ¼ 0

(9)

where

ð3;2;1ÞCrsm;jqi ¼
X
U0 6¼U

hUj ayr ays aq aj jU0i hU0j aym ai jUi (10)

describes an element of the 3-order correlation matrix. These

equations are iteratively solved following a similar procedure

to those reported in Refs. [62–65]. As a result, an approxi-

mated G-particle-hole matrix corresponding to the eigenstate

being considered is obtained.[27,29]

The Bouten et al. HO method

To calculate excited states, Bouten et al.[39,40] proposed to

solve the equation

Ĥ bS jUi ¼ EW jWi: (11)

To this aim, these authors start with the equation

hUj ½ bS; ½ Ĥ; bS0 � � jUi ¼ ðEW � EUÞ hUj bS bS0 þ bS0 bS jUi; (12)

which is formally equivalent to Eq. (11) for bS ¼ |WihU| þ
|UihW| and valid when both U and W are eigenstates of Ĥ and
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the bS0 operators form a complete set. Then Bouten et al. pro-

pose the following approximated excitation HO for acting on

the ground state wavefunction U

bS ¼
X
t;v

c
ðþÞ
t;v ð ty v � 1Dt;v þ vy t � 1Dv;tÞ

n

þ i c
ð�Þ
t;v ð ty v � 1Dt;v � vy t þ 1Dv;tÞ

o
ð13Þ

where the c symbols represent real coefficients, the fermion oper-

ators represent spin–orbitals, and i is the imaginary unit. Note

that the terms |U|bSbS0 þ bS0bS|Ui involve elements of the G-parti-

cle-hole matrix, due to the tyv � 1Dt;v type of operator structure

in the definition of the bS operator. Bouten et al. showed that by

substituting the bS 1-body excitation operator into Eq. (12) one

obtains the following system of decoupled equations:

HðþþÞ cðþÞ ¼ 2 ð EW � EU Þ GðþþÞ cðþÞ (14a)

Hð��Þ cð�Þ ¼ 2 ð EW � EU Þ Gð��Þ cð�Þ (14b)

where GðþþÞ and Gð��Þ are functionals of the G-particle-hole

matrix corresponding to the reference eigenstate U. Defining
H̃ir;ps ¼ 0Hir;ps � 0Hri;ps :

0Hir;ps � 0Hir;sp one obtains

H
ðþþÞ
ij;pq ¼ þ 4 eHjr;ps

2Dir;qs þ eHir;ps
2Djr;qs

n

þ eHjr;qs
2Dir;ps þ eHir;qs

2Djr;ps

o

� 2 dq;i ðeH 2DÞpr;jr þ dq;j ðeH 2DÞpr;ir
n

þ dp;i ðeH 2DÞqr;jr þ dp;j ðeH 2DÞqr;ir
o

þ 2 ðeH 2DÞpi;jq þ ðeH 2DÞpj;iq þ ðeH 2DÞqi;jp þ ðeH 2DÞqj;ip
n o

(15a)

H
ð��Þ
ij;pq ¼ þ 4 eHjr;ps

2Dir;qs � eHir;ps
2Djr;qs

n

� eHjr;qs
2Dir;ps þ eHir;qs

2Djr;ps

o

� 2 dq;i ðeH 2DÞpr;jr � dq;j ðeH 2DÞpr;ir
n

� dp;i ðeH 2DÞqr;jr þ dp;j ðeH 2DÞqr;ir
o

þ 2 ðeH 2DÞpi;jq � ðeH 2DÞpj;iq � ðeH 2DÞqi;jp þ ðeH 2DÞqj;ip
n o

(15b)

where only 2-order matrices are involved. Hence, since

HðþþÞ cðþÞ ¼ 2 ð EW � EU Þ GðþþÞ cðþÞ (16a)

Hð��Þ cð�Þ ¼ 2 ð EW � EU Þ Gð��Þ cð�Þ; (16b)

the matrices HðþþÞ and Hð��Þ can be cast into functionals of

the G-particle-hole matrix corresponding to the reference

eigenstate U, and

GðþþÞ ¼ FðþÞð2GÞ (17a)

Gð��Þ ¼ Fð�Þ ð2GÞ (17b)

one may set and solve the HO equations; thus determining

part of the system spectrum provided that one knows the

G-particle-hole matrix of U.

The Simons et al. EOM method

In the early seventies, Simons and Smith[38] proposed a

method for the calculation of electron affinities and ionization

potentials. These quantities link two states of a system with

different number of electrons. The method is based on the

relations:

Ĥ bS jUðNÞi ¼ EW jWðN� 1Þi (18a)

Ĥ bSy jUðNÞi ¼ EW jWðNþ 1Þi; (18b)

which implies that the following equations

h U j bS ½ Ĥ ; bS0 y �j U i ¼ DEþ h U j bS bS0 y j U i (19)

and

h U j ½ Ĥ ; bS0 y � bSj U i ¼ DE� h U j bS0 y bS j U i (20)

have to be solved. DEþ and DE� denote electron affinity and

ionization potential energies, respectively. By expanding the bS
operator in the basis spanned by the set of bS0 operators, these
two equations become linear and can be combined as fol-

lows[42,47]:

h U j ½ bS; ½ Ĥ ; bS0 y ��þ jU i ¼ DE h U j bS bS0 y þ bS0 y bS j U i;
(21)

where DE denotes either electron affinity or ionization poten-

tial energies. The latter equation permits to approximately

evaluate the energy differences of Eqs. (19) and (20) and to

reduce the computational cost, because the anticommutation

implies a cancellation of the higher-order matrices. In what fol-

lows, we will consider this equation in the study of electron af-

finity and ionization potential.

Extension of the HO Method: Double
Excitations

To solve Bouten et al. equations (14), the G-particle-hole

matrix of the reference state was needed as input data. It

is, therefore, evident that the GHV and the HO methods are

particularly well suited to be combined. Recently, we

showed that the combination of these two methods could

indeed be very effective.[32] Thus, the low-lying states of a

set of molecules were determined and, what is still more

stricking, we showed that by starting from the lowest triplet

(Ms ¼ 1) state of LiH—which even at a far from equilibrium

geometry can be considered monoconfigurational—a correct

energy value for the singlet ground state could be obtained.

It should be emphasized that no particular spin-flip operator

such as Krylov’s one[66] is involved here. The HO method

generates a spectrum of states with various spin symme-

tries, because the operators involve spin–orbitals without

restrictions. These excellent results are however limited

given that the method proposed by Bouten et al. considers

only monoexcitations. The formalism must, therefore, be
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extended so as to study those highly correlated excited

states of interest, which cannot be reached with single exci-

tations from a state that can be accurately treated with the

GHV method, that is, states having a single dominant Slater

determinant. The first singlet excited state of the BeH2, of

the same symmetry as the ground state, is one of these

states—as the corresponding function of this state is a

clearly multideterminantal one.[30] In this section, we

describe the main lines of these extended derivations and

their final close-form analytical expressions.

Extended form of the bS excitation operators

To reduce the rather large number of terms and be, therefore,

capable of obtaining close-form analytic expressions for the

equations, we have had recourse to geminal algebra.[48] In

what follows, the Greek letters represent geminal creator/anni-

hilator operators, whereas the Latin letters represent single fer-

mion operators participating in the geminals.

As an extension of the single excitation operators given in

Eq. (13), the double excitation operator takes the form:

bS ¼
X
k;c

f c
ðþÞ
k;c ðky c � 2Dk;c þ cy k � 2Dc;kÞ

þ i c
ð�Þ
k;c ð ky c � 2Dk;c � cy k þ 2Dc;kÞ g ð22Þ

where

ky � ky1k
y
2 ðky1 \ ky2Þ and c � c2c1 ðc1 \ c2Þ (23)

is a nonredundant definition of geminals.

The geminal algebra rules The geminal algebra rules are

c ky ¼ dk;c þ ky c �
X
i;j

1Dkc
i;j i

y j (24a)

i ky ¼
X
t

h t i j k i ty þ ky i (24b)

c iy ¼
X
t

h c j i t i t þ iy c (24c)

where

1Dkc
i;j � h k j iy j j c i

h t i j k i ¼ dk1 ;i dk2;t � dk1;t dk2;i

Hamiltonian in the geminal basis The Hamiltonian operator in

the geminal notation takes the form:

Ĥ ¼
X
s;l

0Hs;l sy l (25)

where

0Hs;l ¼ 0Hs1 s2; l1 l2 � 0Hs1 s2 ; l2 l1 : (26)

The Hamiltonian thus expressed in the geminal basis is the

same as that given in Eq. (8).

Explicit form of the double excitation HO equation

The inclusion of the above-mentioned Hamiltonian operator in

the expression

h U j ½ ky c; ½ Ĥ ; gy v �� jU i (27)

gives way to the following set of terms gathered according to

the order of the RDM they involve. In what follows, k, c, g and v
are fixed indices, and a sum is implied over all the other indices.

Two-electron terms

0Hc;g h U j ky v j U i þ 0Hv;k h U j gy c j U i
� 0Hv;l dc;g h U j ky l j U i � 0Hs;g dk;v h U j sy c j U i ð28Þ

Three-electron terms

� 0Hs;g
1Dsc

t;v h U j ty ky v v j U i � 0Hs;k
1Dsv

t;v h U j ty gy c v j U i
� 0Hc;l

1Dlg
t;v h U j ty ky v v j U i � 0Hv;l

1Dkl
t;v h U j ty gy c v j U i

þ 0Hv;l
1Dgc

t;v h U j ty ky l v j U i þ 0Hs;g
1Dkv

t;v h U j ty sy c v j U i
þ 0Hs;l

1Dsv
t;v dc;g h U j ty ky l v j U i þ 0Hs;l

1Dgl
t;v dk;v h U j ty sy c v j U i

þ 0Hs;l
1Dsc

t;s
1Dgl

s;v h U j ty ky v v j U i � 0Hs;l
1Dsv

s;v
1Dgc

t;s h U j ty ky l v j U i
þ 0Hs;l

1Dsv
t;s

1Dkl
s;v h U j ty gy c v j U i � 0Hs;l

1Dgl
t;s

1Dkv
s;v h U j ty sy c v j U i

(29)

Four-electron terms

þ 0Hs;l
1Dgl

s;t
1Dsc

r;v h U j ry sy ky v t v j U i
þ 0Hs;l

1Dkl
s;t

1Dsv
r;v h U j ry sy gy c t v j U i

þ 0Hs;l
1Dsv

r;v
1Dgc

s;t h U j ry sy ky l v t j U i
þ 0Hs;l

1Dkv
t;v

1Dgl
s;r h U j sy sy ty r v c j U i

þ 0Hs;l
1Dgl

r;s h t s j k i h U j sy ry ty c v j U i
þ 0Hs;l

1Dvs
r;s h t s j c i h U j gy ky l t r j U i

þ 0Hs;l
1Dcg

r;s h t s j l i h U j sy ky v r t j U i
þ 0Hs;l

1Dkv
r;s h t s j s i h U j gy ty ry l c j U i ð30Þ

For the sake of simplicity, the contributions to the left-hand

side (LHS) of Eq. (12), which can be easily obtained from these

terms by interchanging k $ c and g $ v have not been ex-

plicitly given. When this interchange is carried out, the sign of

the expression may or may not change, depending on

whether the equation being considered is obtained within the

symmetric or antisymmetric particle-hole subspace.

Simple and Extended Electron Affinity and
Ionization Potential Equations

Simple electron affinity and ionization potential equations

We report in Table 1 a set of calculations on Be, B, Cþ, and
N2þ, carried out with the simple operators bS proposed by

Simons and Smith.[38,47] The simplest ionization operator is:

bS ¼ X
t

ct t (31)
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which in general is a much too simple expression. This choice of

excitation, together with Eqs. (19) and (20), generates the equa-

tions recently discussed in Ref. [67] within the framework of the

extended Koopman’s theorem. The procedure here described is

a different alternative. The one-electron basis set for Be has been

the standard STO-6G. For B, C, and N, double-f s-type Gaussian-

type orbitals (GTOs) by Huzinaga[68] and Dunning[69] were used.

The 1-body matrices corresponding to the correlated state

undergoing the ionization, entering as input data into these cal-

culations, have been obtained by solving the GHV equation. In

addition, and to assess the accuracy of the method, a set of Full

Configuration-Interaction (FCI) calculations for the ionization

potential and electron affinity have been carried out. These refer-

ence values are reported in the last column of Table 1. As can be

seen, while the accuracy of the results is satisfactory for B, Cþ,
and N2þ, the errors in the electron affinity and in the ionization

potential of the Beryllium atom are much too large. These results

clearly indicate that the ionization operator bS must have an

extended form. This is why it was decided to obtain the explicit

form of these extended equations, to be able to compute with

sufficient accuracy these important quantities.

Extended electron affinity and ionization potential equations

The electron affinity and ionization extended operators take the

form:

bS ¼
X
c;p

cc;p p
y c: (32)

The form of the Hamiltonian is:

Ĥ ¼
X
r;s

0hr;s r
y s þ

X
s;l

0Hs;l sy l; (33)

where the 1-body integrals 0h are not included in the 2-body

matrix 0H , as in the double excitation case.

The equation that has to be explicitly evaluated and solved

is, therefore,

X
c;p

h U j ½ py c; ½ Ĥ ; ky i ��þ jU i cc;p

¼ DE
X
c;p

h U j ð py c ky i þ ky i py c Þ j U i cc;p (34)

In what follows, and for the sake of clarity, we present sepa-

rately the one-, two- and three-electron terms arising from the

development of

h U j ½ py c; ½ Ĥ ; ky i ��þ jU i; (35)

which contributes to the LHS of Eq. (34).

One-electron terms

� 0hi;s dk;c h U j py s j U i � 0hr;s
1Dk c

s;r h U j py i j U i
þ 0Hc;k h U j py i j U i (36)

Two-electron terms

� 0hr;s h c j r ti h x s j k i h U j py xy t i j U i
� 0hi;p h U j ky c j U i þ 0hr;s

1Dkc
s;t h U j ry py t i j U i

þ 0hr;s h x s j k i di;p h U j ry xy c j U i þ 0hi;s
1Dk c

t;v h U j py ty v s j U i
þ di;p

0Hs;k h U j sy c j U i � 0Hs;k
1Ds c

t;v h U j py ty v i j U i
� 0Hc;l

1Dk l
t;v h U j py ty v i j U i � 0Hs;l dk;c h t i j s i h U j py ty l j U i

þ 0Hs;l
1Dk c

t;x h x i j s i h U j py ty l j U i
þ 0Hs;l

1Ds c
x;t

1Dk l
t;v h U j py xy v i j U i ð37Þ

Three-electron terms

� 0Hs;l
1Dk l

t;v h c j t x i h U j py sy x v i j U i
þ 0Hs;l

1Ds c
i;t h U j py ky t l j U i

� 0Hs;l
1Dk l

t;v
1Ds c

x;s h U j py xy ty s v i j U i
� 0Hs;l di;p

1Dk l
t;v h sy ty v c j U i

þ 0Hs;l
1Dk l

t;p h U j sy ty i c j U i
� 0Hs;l h x i j s i h s p j l i h U j ky xy s c j U i
� 0Hs;l

1Dk c
t;v h x i j s i h U j py ty xy v l j U i ð38Þ

Concluding Comments

The set of relations given above constitute a complete set of

algorithms that permit to have access to all the relevant ions

and spectrum states of a system, provided that one knows the

3- or 4-body G-particle-hole matrices of one of the states of

this system for Eqs. (36)–(38) and (28)–(30), respectively. Vari-

ous methods have been in the past used to estimate 3- and 4-

body matrices from lower-order ones.[21,23,26,31,50,51,55,56,70,71]

Thus, the information provided by the HO method for single

excitations has now been extended, and double excitations

from a given reference state are now possible. Similarly, the

algorithms that we report here allow us to obtain the ioniza-

tion potential and electron affinities of a system far more accu-

rately than if the excitation operator is formed by just a one-

electron operator, as is the case in the calculations shown in

Table 1.

Although coding the theoretical expressions given above is

not a trivial matter, we expect to soon have the codes, particu-

larly those needed for calculating the electron affinity and the

ionization potential. There are several subtle matters, partly

due to the large number of formulae, which implies a great

debugging effort; and partly due to the need to handle simul-

taneously geminal and single fermion labels, while optimizing

Table 1. Calculated ionization potentials and electron affinities (DE) in
Hartrees.

Transition DE (Eq. (21)) DE (FCI)

B 2S ! 3S þ e� 0.50925 0.50899
2S þ e� ! 1S 0.44508 0.44526

Cþ 2S ! 3S þ e� 1.25260 1.25224
2S þ e� ! 1S 0.22102 0.22117

N2þ 2S ! 3S þ e� 2.25235 2.25193
2S þ e� ! 1S 0.11319 0.11307

Be 1S ! 2S þ e� 0.21668 0.30447
1S þ e� ! 2P 0.21285 0.23757
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the number of operations using fast summation and matrix–

matrix multiplication.

Keywords: G-particle-hole matrix � reduced density matrix �
hypervirial of the G-particle-hole matrix � excited states �
ionization potential
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