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Conductance of a quantum dot in the Kondo regime connected to dirty wires
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We study the transport behavior induced by a small bias voltage through a quantum dot connected to one-
channel disordered wires by means of a quantum Monte Carlo method. We model the quantum dot by the
Hubbard-Anderson impurity and the wires by the one-dimensional Anderson model with diagonal disorder
within a length. We present a complete description of the probability distribution function of the conductance
within the Kondo regime.
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I. INTRODUCTION

The Kondo effect is one of the most paradigmatic phe-
nomena of electronic correlations. It was proposed long ago
to explain the peculiar behavior of the resistivity of magnetic
impurities in metals as a function of the temperature.1 Towards
the end of the last century, the interest in this effect was
paramount to the mesoscopic community after it was observed
in transport experiments in quantum dots.2,3

A quantum dot is a confined structure in contact with
metallic wires, where electrons experience a strong Coulomb
repulsion. For temperatures lower than the Kondo temperature
TK , the Coulomb interaction originates an effective coupling
between the spin of a localized electron at the dot and the
spin of the electrons of the wires. The result is the formation
of a resonant singlet state which manifests itself as the
opening of a transport channel, corresponding to a conductance
G = e2/h for each spin component. The electrons of the wires
that intervene in the formation of these singlets define the
so-called screening cloud, which extends over a length ξK =
h̄vF /(kBTK ), where vF is the Fermi velocity. The peculiar
behavior of G for a dot in the Kondo regime when the screening
cloud does not fit into wires of finite size has been analyzed
in Refs. 4 and 5. These studies assume perfect clean wires
where the finite-size effects are solely defined by constrictions
within the wires at a finite distance from the quantum dot, but
do not analyze the effect of disorder, which is an unavoidable
ingredient in most of the realistic experimental settings.

In low-dimensional conductors, backscattering induced by
disorder produces localization. This is one of the most dramatic
consequences of the quantum coherence characterizing the
transport in mesoscopic devices, which enables the interfer-
ence of the electronic wave function. This effect has been
the subject of many investigations, mainly for noninteracting
systems,6–8 while there are also some studies for interacting
ones.9 In the first case, the probability distribution function
(PDF) for the conductance at temperature T = 0, P (G0(T =
0)), is analytically known for one-dimensional (1D) systems
where the disorder is described by the disordered Anderson
model.6,10 That description has been also extended to the case
of finite voltage and finite temperatures.11–14 The function
P (G0(T )) is completely characterized by a single parameter
�/ξmfp = −〈ln G0(0)〉 except for anomalies at the band edges
and the band center,7,8 where ξmfp is the mean free path, which
defines the length beyond which the wave function decays
exponentially and � is the length of the dirty part of the wire.

For an interacting impurity, disorder in the environment is
expected to affect the development of the Kondo resonance.
This problem has been analyzed in the literature under the term
“Kondo box.”15–18

The interplay between the electronic correlations taking
place in the Kondo regime and the localization induced by the
disorder has not been so far considered in the context of the
transport properties. In the present work, we precisely address
this important aspect. We identify a crossover in the behavior
of P (G(T )) as the length of the dirty piece of the wire increases
over the mean free path ξmfp and as the temperature overcomes
TK .

II. THEORETICAL TREATMENT

A. Model

We describe the quantum dot by a Hubbard-Anderson
model connected to left (L) and right (R) wires, which are
dirty within a finite length. The ensuing Hamiltonian is

H = Hd +
∑

α=L,R

Hα + Hcont, (1)

where the Hamiltonian for the dot includes the effect of the
Coulomb repulsion U and the voltage gate Vg . It reads

Hd = Vg

∑
σ=↑,↓

nd,σ + Und,↑nd,↓. (2)

Each wire is modeled as a one-dimensional Anderson Hamil-
tonian with diagonal disorder within a length �/2 = Na,
where N is the number of sites of a tight-binding lattice of
lattice constant a, which we set to be the unit of length. The
Hamiltonian has the form Hα = Hα,w + Hα,c + Hα,r , where
the dirty piece is

Hα,w = −t

N−1∑
j=1

[c†j,α,σ cj+1,α,σ + H.c.] +
N∑

j=1

εj,αc
†
j,α,σ cj,α,σ ,

(3)

and where the local energies εj,α are randomly distributed
within a range [−W, + W ] for 1 � j � N . The disordered
chain is connected through

Hα,c = −t[c†N,σ cN+1,σ + H.c.] (4)
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to a clean semi-infinite chain (the reservoir)

Hα,r = −t

∞∑
j=N+1

[c†j,α,σ cj+1,α,σ + H.c.]. (5)

The Hamiltonian describing the contact between the dot and
the wires reads

Hcont = −t
∑

α=L,R

[c†1,α,σ dσ + H.c.]. (6)

B. Conductance

As shown in the Appendix, the probability distribution for
the “zero-bias” conductance through the dot per spin channel,
P (G(T )), in units where e = h = kB = 1 is evaluated from

G =
∫ +∞

−∞
dω�(ω)ρσ (ω,T )

∂f (ω)

∂ω
, (7)

where f (ω) = [1 + eβ(ω−μ)]−1 is the Fermi function, with
�(ω) defined in Eq. (A6) while ρσ (ω,T ) = −2Im[GR

0,σ (ω)]
is the local density of states (LDS) at the quantum dot.
While the noninteracting Green’s functions can be rather
straightforwardly evaluated from a recursive procedure, the
retarded Green’s function GR

0,σ (ω) depends on the interactions
and, thus, on the temperature.

Quantum Monte Carlo methods are powerful techniques to
study the effect of interactions in quantum transport.20,21 For a
given disorder realization, we evaluate the Matsubara Green’s
function by means of the quantum Monte Carlo method of
Ref. 21 and we then use a polynomial fit to compute this
function for real ω. This procedure is very precise within the
low-energy range, |ω| < U . We evaluate the LDS ρσ (ω,T ) and
use this function to compute G(T ). We repeat this procedure
for up to 5000 realizations of disorder.

In the limit of vanishing diagonal disorder εl,α = 0, the
model reduces to the Kondo impurity with an effective
exchange constant1

J = 2t2[1/(U + Vg) − 1/Vg], (8)

which displays a resonance at the Fermi level below the Kondo
temperature defined from

2

J
=

∫ +∞

−∞

dω

ω
tanh

(
ω

2TK

)
ρw(ω), (9)

where ρw(ω) = −Im[
∑

α gR
α (ω)] is the density of states of

the wires. In a clean system, the solution of this equation is
T 0

K and the conductance per spin is exactly the conductance
quantum for T < T 0

K . The effect of a mismatching in the
contact between the wires and the reservoirs introduces
finite-size features in ρw(ω), thus affecting the behavior of
the conductance. These effects become relevant within a
temperature range of the order of the mean level spacing of the
wires when this scale is larger than T 0

K . This corresponds to
short enough wires for which ξK does not fit within the wire,
while for longer wires no particular features are observed.4,5

III. RESULTS AND DISCUSSION

For dirty wires, a given disorder realization εl,α �= 0
defines the behavior of ρw(ω), which in turn determines the

corresponding value of TK . For an ensemble of disorder real-
izations, there is a distribution of Kondo temperatures, which
in 1D has a crossover from a log-normal distribution centered
at T 0

K to a distribution with a long tail at low temperatures as
the disorder amplitude W increases, while keeping constant
the size of the dirty piece.17,18 We have verified that the same
behavior is obtained when W is kept fixed and the length
of the dirty wires increases. In this case, the crossover takes
place as the length of the wires overcomes the mean free
path ξmfp. The mean of the distribution, however, remains
approximately T 0

K . Consequently, the Kondo screening length
is expected to have a probability distribution which does not fit
in average within the dirty part of the wires for � < ξK , and the
conductance is expected to present a Kondo behavior distorted
by finite-size features as a function of temperature. For longer
wires, the Kondo cloud fits inside �, but the disorder becomes
more relevant and induces localization. In what follows, we
analyze the consequence of that crossover in the behavior
of the conductance of this system. For simplicity, we fix
μ = 0. We also focus on Vg = U/2, which corresponds to
the particle-hole symmetric point of the model, at which the
Kondo effect is maximum.

The most interesting features introduced by the Kondo
effect are expected to emerge at finite temperature. In Fig. 1, we
show the mean value of the PDF of the conductance 〈G(T )〉
as a function of T for disordered wires of different lengths
connected to an interacting dot, along with the corresponding
variance σ2(T ) = 〈[G(T ) − 〈G(T )〉]2〉. The most dramatic
feature noticed in this figure is the exponential drop of the
mean conductance 〈G(T )〉 as the temperature grows above
the Kondo temperature of the clean system T 0

K . Although the
absolute drop is more pronounced for short chains with � <

ξmfp, the relative mean values 〈G(T )〉/〈G(T = 0)〉 coincide
with the conductance for the clean system shown in full
lines for comparison (see inset in Fig. 1). This is in striking
contrast with the behavior of the mean conductance for U = 0,
〈G0(T )〉, also shown in Fig. 1 (dashed lines), which remains
approximately constant within a range of temperatures of the
order of the bandwidth of the reservoirs.14 In the clean system,
it is known that the process of singlet formation with one spin
at the dot and one spin at the wires producing the Kondo
resonance is effective only at low temperatures, T < T 0

K .
Above the Kondo temperature, the dominating process is the
Coulomb blockade, which is a consequence of the high energy
cost to introduce an additional electron in the dot once it has
been previously occupied by another one. In this regime, the
Kondo peak at the Fermi energy of the LDS at the dot melts
into a valley which lies between two peaks separated by U ,1

and the consequence is a dramatic drop in the conductance.
For dirty wires, in which case we have a distribution of Kondo
temperatures, we can also identify such processes in the drop
of the conductance as a temperature-driven transition from the
Kondo to the Coulomb blockade regimes. For short wires with
� < ξK , the finite-size features typically observed at T ∼ 8t/�

(Refs. 4 and 5) depend on the particular realization of disorder
and are not appreciated in the average.

A more subtle feature to analyze is the difference between
the interacting and noninteracting PDF, which takes place
for short wires and T < T 0

K . Although small, this difference
can be appreciated in Fig. 1 in the mean value and in the
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FIG. 1. (Color online) Top panel: Mean value of the conductance
〈G(T )〉 as a function of the temperature T for wires of different
lengths � = 14, 40, 100, 200, and 400. For comparison, we present
in dashed lines the corresponding values for a noninteracting dot and
in full line we present the conductance for a dot connected to perfect
clean wires. Bottom panel: Variance σ2(T ) for the same distribution
as in the top panel. Inset: Relative conductance 〈G(T )〉/〈G(T =
0)〉. The Coulomb interaction is U = 8t , which in the clean system
corresponds to T 0

K = 0.015t . The disorder strength is W = t/2, the
gate voltage is Vg = U/2, and the chemical potential is μ = 0. The
mean free path of these wires in the noninteracting limit is ξmfp = 144.

variance σ2(T ) relative to the corresponding noninteracting
value σ 0

2 (T ). Remarkably, for short wires, 〈G(T )〉 > 〈G0(T )〉,
while σ2(T ) is a decreasing function of T , as the noninteracting
one, although systematically smaller.

In Fig. 2, we focus on the behavior of the variance of both
an interacting and a noninteracting dot at a fixed temperature
T < T 0

K as a function of the length �. It is important to mention
that the temperature is low enough to allow us to express
the conductance by G(T ) = �(0)ρσ (0,T ), i.e., to disregard
the corrections of approximating the function ∂f/∂ω ∼ δ(ω).
It is clear that the low temperature difference between the
interacting and noninteracting variance of the PDF persists up
to the mean free path ξmfp. Actually, it can be seen that for
� > ξmfp, the full conductance distribution function exactly
coincides with the noninteracting log-normal distribution,
P (G(T )) = P (G0(T )). This is shown in Fig. 3 for several
temperatures, from low T = T 0

K/3 where the differences are
small up to T ≈ 4.5T 0

K where the difference between both
PDF’s is evident.

FIG. 2. (Color online) Variance for the interacting [σ2(T )] and
noninteracting [σ 0

2 (T )] system as a function of the length � for wires
at low temperature T ≈ T 0

K/3 and 2T 0
K/3. Other parameters are the

same as in Fig. 1.

In order to gain insight on the low T < T 0
K behavior of

P (G(T )) as a function of �, we analyze the behavior of the
PDF for the LDS at the Fermi energy of the dot, P (ρσ (0,T )).
To this end, we resort to the Fermi-liquid description, expected
to be valid within this regime. This implies that for low ω and
T , the self-energy representing the many-body interactions
at the dot, σ (ω,T ) = ′

σ (ω,T ) + i′′
σ (ω,T ), behaves as

′′
σ (ω,T ) ∝ ω2 + π2T 2.22 In that limit, the Green’s function

for the impurity can be approximated by

GR
d,σ (ω) = z(T )

ω − z(T )Vg − iz(T )[′′
0 (ω) + ′′

σ (ω,T )]
, (10)

where z is the quasiparticle weight, z−1(T ) = 1 − ∂ω′
σ (0,T ),

and Vg = Vg − ′
0(0) − ′

σ (0,T ), where 0(ω) =
t2 ∑

α gR
α (ω). Since we focus on Vg = U/2, then Vg ≈ ′

0(0).
From this expression, it can be verified that up to O(T 2), the
Fermi-liquid LDS at the quantum dot can be written as

ρFl
σ (0,T ) = ρ0(0)

[
1 + ′2

0 (0) − ′′2
0 (0)

′2
0 (0) + ′′2

0 (0)

′′
σ (0,T )

′′
0 (0)

]
, (11)

where ρ0(ω) is the noninteracting LDS, while ′′
σ (0,T )

represents the inelastic scattering effects introduced by the
Coulomb interaction that take place at finite T .

The Monte Carlo procedure we follow allows us to evaluate,
for a given disorder realization, ρσ (ω,T ), while ρ0(0) can
be obtained independently by a numerically exact recursive
procedure. In Fig. 4, we show the histograms corresponding to
these two LDSs and it is clear that these two distributions
are different for short wires with � < ξmfp, which justifies
the difference in the first two moments of P (G(T )). The
quantum Monte Carlo data also provides the distribution for
σ (0,T ). The imaginary part of this self-energy is peaked
around its mean value, which we consider along with the data
for ρ0(0) and 0 to evaluate the Fermi-liquid density of states
given by Eq. (11). The corresponding histograms, presented in
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FIG. 3. (Color online) PDF for the full P (G) (full line) and noninteracting P (G0) (dash-dotted line) conductance. Left, middle, and
right panels correspond to T = T 0

K/3, T = 1.33T 0
K , and T ≈ 4.5T 0

K , respectively. On each panel, three different lengths of the dirty wires
� = 14, 40, and 100 are shown. Other parameters are the same as in Figs. 1 and 2.

Fig. 4, show that P (ρFl
σ (0,T )) reproduces very well the exact

P (ρσ (0,T )) within the whole range of lengths. The fact that for
sufficiently long chains the distribution function P (ρσ (0,T ))
along with the Fermi-liquid approximation exactly coincides
with the corresponding distribution for the noninteracting case
can be understood within the Fermi-liquid description. Indeed,
an analysis of the mean value of ′′

σ (0,T ) as a function of
the length indicates that this quantity decreases linearly as �

increases and falls to zero at � ∼ ξmfp. This is consistent with a
picture where the inelastic scattering processes accounted by

′′ are determined by the square of the available phase space,
which is ∝T 2 in a clean system and reduces as the system
becomes dominated by the disorder and localizes.

Substituting the Fermi-liquid density of states (11) in
(7) defines a probability distribution which reproduces the
corresponding function for the conductance P (G(T )) for
T < TK . The particular case of T = 0 is rather straightforward
after noticing that ρFl

σ (0,0) ≡ ρ0(0), which means that the
conductance distribution for the interacting dot with dirty wires
in the Kondo regime exactly coincides in this limit with that

FIG. 4. (Color online) PDF for the LDS, P (ρσ (0)) at T = T 0
K/3 (left panel) and T ≈ 4.5T 0

K (right panel), of an interacting quantum dot in
the Kondo regime, corresponding to three different lengths of the dirty wires � = 14, 40, and 100. For comparison, we also show in dash-dotted
lines the function P (ρ0(0)) corresponding to the noninteracting system. For the lower temperature, we also show in dashed lines the PDF
corresponding to the Fermi-liquid description. Other parameters are the same as in Figs. 1 and 2.
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corresponding to the noninteracting case, which is analytically
known.6–8,10

For completeness and for comparison, we present in the
right panels of Fig. 4 the histograms corresponding to the LDS
at the chemical potential for a high temperature that is larger
than T 0

K . In this case, the interacting PDF differs significantly
from the corresponding one for the noninteracting system,
mainly for short wires with lengths below ξmfp. In addition, we
failed to reproduce these histograms with a Fermi-liquid model
like the one defined by Eq. (11). That is rather expected, since
this temperature falls within the Coulomb blockade regime of
the clean system, where the Fermi-liquid description breaks
down.

IV. CONCLUSION

To conclude, the finite size of the wires has been identified
as a source of anomalous behavior in the transport properties
of quantum dots, particularly within the Kondo regime.4,5

In the present contribution, we have added the ingredient
of disorder to that scenario. We were able to propose a full
description for the PDF of the conductance of a quantum dot
connected to disordered wires within the Kondo regime. For
T = 0, this function coincides with the one for noninteracting
systems. For 0 < T < T 0

K and � < ξmfp, it can be described
by a Fermi-liquid density of states corresponding to Eq. (11),
while for � > ξmfp, there is a crossover to a regime where
the localization dominates over the inelastic scattering effects
originated in the interactions and the PDF corresponds to
the same log-normal function of the noninteracting system.
For increasing temperatures T > T 0

K , the exponential drop of
the conductance that characterizes the Kondo regime is also
observed in these systems. The drop is milder as the length of
the dirty wires increases, since the corresponding values for
the low-temperature regime are significantly smaller than the
conductance quantum.
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APPENDIX: DERIVATION OF THE EXPRESSION
FOR THE CONDUCTANCE

We briefly present the main steps leading to the expression
for the conductance of Eq. (7). These are basically the same as
presented in Ref. 19. We also focus on the so-called zero-bias
regime, where the potential difference V is assumed to be
infinitesimally small.

For a given disorder realization, the current per spin channel
through the contact between the lead α and the quantum dot
reads

Jα = −2et

h̄

∫
dω

2π
Re[G<

α,0,σ (ω)], (A1)

where G<
α,0,σ (ω) is the Fourier transform of the lesser Green’s

function G<
α,0,σ (t,t ′) = i〈c†1α,σ (t)dσ (t ′)〉. The latter obeys the

following Dyson’s equation:

G<
α,0,σ (ω) = −t

[
g<

α,σ (ω)GA
0,σ (ω) + gR

α,σ (ω)G<
0,σ (ω)

]
, (A2)

where gR
α (ω) is the retarded Green’s function corresponding

to the wire uncoupled from the dot, with the two spatial
coordinates at the first site 1α of the lead α, while g<

α,σ (ω) =
−ifα(ω)2Im[gR

α (ω)], where the Fermi function fα(ω) =
[e(ω−μα )/Tα + 1]−1 is the corresponding lesser Green’s func-
tion. GA

0,σ (ω) = [GR
0,σ (ω)]∗ is the advanced Green’s function

of the dot connected to the wires, with the two spatial
coordinates at the dot, while G<

0,σ (ω) is the corresponding
lesser Green’s function.

Substituting in (A1), the probability distribution function
for this current over the ensemble of disorder realization cast

P [Jα] = e

h̄

∫
dω

2π

{
P (�α(ω)ρσ (ω))fα(ω)

−P
(
Re

[
R

α (ω)G<
0,σ (ω)

])}
, (A3)

with

R
α (ω) = t2gR

α (ω), (A4)

where �α(ω) = −2Im[R
α (ω)] is the spectral function

representing the hybridization to the reservoir α and
ρσ (ω) = −2Im[GR

0,σ (ω)] for a given disorder realization.
The spectral function of the reservoir can be in gen-
eral expressed as �α(ω) = 2πt2 ∑

kα
|v1,kα

|2δ(ω − εkα
), where

cl,α,σ = ∑
kα

vl,kα
ckα,σ defines the change of basis that diago-

nalizes the Hamiltonian Hα = Hα,w + Hα, + Hα,r . However,
the most convenient way to evaluate this function is by first
evaluating gR

α (ω) by recourse to a decimation procedure and
then using (A4). Instead, ρσ (ω) depends on the interacting
Green’s function of the dot, which must be calculated with
quantum Monte Carlo.

For uncorrelated local disorder, the probability dis-
tribution function is symmetric under left-right inver-
sion, thus P (Re[R

L (ω)G<
0,σ (ω)]) = P (Re[R

R (ω)G<
0,σ (ω)])

and P (�L(ω)ρσ (ω)) = P (�R(ω)ρσ (ω)). By taking into ac-
count the conservation of the current JL = −JR = J , using
the assumption of small bias V , and considering that the
two leads are at the same temperature T , we can write the
following expression for the probability distribution function
for the conductance:

P [G] = e

h̄

∫
dω

2π
P (�(ω)ρσ (T ,ω))

∂f (ω)

∂ω
, (A5)

with

�(ω) = �L(ω)�R(ω)

�L(ω) + �R(ω)
, (A6)

while ρσ (T ,ω) is the equilibrium density of states of the dot,
in contact with the reservoirs at the same chemical potential μ

and temperature T . Notice that this procedure is valid only for
small bias voltage V and corresponds to an evaluation of the
current which is exact only up to O(V ). For higher voltages,
the drop along the dot and/or the wires (depending on where
the bias voltage is assumed to be applied) should be taken
into account. In addition, a full nonequilibrium evaluation
of ρσ (ω) is necessary. We have verified that in the limit of
a noninteracting dot, where the density of states ρσ (ω) can
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be exactly evaluated, we recover the probability distribution
function for the conductance of Refs. 6 and 14. The latter

corresponds to the histograms shown by the dashed lines of
Fig. 3.
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