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We set forth a new type of phase transition that might take place in gravitational theories whenever
higher-curvature corrections are considered. It can be regarded as a sophisticated version of the
Hawking-Page transition, mediated by the nucleation of a bubble in anti-de Sitter space. The
bubble hosts a black hole in its interior, and separates two spacetime regions with different effective
cosmological constants. We compute the free energy of this configuration and compare it with that
of thermal anti-de Sitter space. The result suggests that a phase transition actually occurs above
certain critical temperature, ultimately changing the value of the cosmological constant. We discuss
the consistency of the thermodynamic picture and its possible relevance in the context of AdS/CFT.
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Introduction.— Higher-curvature corrections to the
Einstein-Hilbert action appear in any sensible theory of
quantum gravity as next-to-leading orders in the effec-
tive action. Quadratic terms, for instance, such as the
Lanczos-Gauss-Bonnet (LGB) action [1], are known to
appear in bona fide realizations of string theory [2] and M-
theory [3]. Interesting implications of this kind of terms
within the context of the AdS/CFT correspondence has
been recently the focus of thorough investigation (see,
e.g., [4–9]). They allow for the holographic description
of a broad family of quantum field theories (like 4d su-
perconformal field theories with unequal central charges
[10]), as well as for the study of the fluid/gravity corre-
spondence beyond the Einstein-Hilbert gravitational sec-
tor.

A remarkable example of higher-curvature gravity is
Lovelock theory [11], the natural extension of general
relativity to higher dimensions. It is the most gen-
eral theory of gravity yielding second-order field equa-
tions, thereby it is free of ghosts when expanded about
flat space [12]. Although quantum corrections are not
generally of the Lovelock type, these theories provide a
tractable playground that captures many important fea-
tures that are rather generic. Among them, the existence
of new branches of black hole solutions corresponding to
vacua with different cosmological constants that pop out
as soon as higher-curvature terms are brought into place.

It is a well-known fact that black holes in anti-de Sit-
ter (AdS) spacetime display the so-called Hawking-Page
transition [13]. This has been further interpreted as a
confinement/deconfinement phase transition in the dual
CFT [14]. Then, a natural question arises regarding the
role of the different black hole branches and would be
transitions among them. At first glance it might seem
that such phase transitions are forbidden since distinct
branches exhibit a different asymptotic behavior. In
this letter, however, we will report on a new type of

phase transition taking place in higher-curvature grav-
ities, which can be thought of as a sophisticated ver-
sion of the Hawking-Page transition involving different
branches. We will work out the simplest example given
by LGB gravity –whose ordinary HP transition was stud-
ied in [15]–, since it is enough to realize that these phase
transitions occur in Lovelock theory as well [16].

We will consider the theory at finite temperature and
observe that, above a critical temperature, the higher-
curvature vacuum of the theory decays producing a bub-
ble which hosts a black hole in its interior. It is analo-
gous to the thermalon transition discussed in [17], where
the materialization of an electrically charged bubble in-
duces the decay of a de Sitter vacuum into another with
a smaller cosmological constant, but containing a black
hole. In the present case, however, the bubble is not
made from matter, but from the gravitational field it-
self. It separates two spacetime regions having a different
effective cosmological constant and ultimately changes
its value throughout the whole space, thus changing the
asymptotics.

Higher-curvature gravity theory in AdS spacetime at fi-
nite temperature undergoes then a phase transition. The
preferable static configuration above the critical temper-
ature is a black hole surrounded by a bubble. In the
canonical ensemble, whether or not the transition takes
place can be decided by evaluating the Euclidean action
on two well-defined classical configurations. According
to our free energy computation, the phase transition oc-
curs. Though illustrated in the present letter by the LGB
case, the phenomenon may be shown to generically take
place in Lovelock gravity for arbitrary dimensions [16],
and possibly in a larger class of higher-curvature theo-
ries.

Higher-curvature corrections.— The Lovelock action can
be written in terms of the vierbein, ea = eaµ dx

µ, and the
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curvature 2-form, Rab = dωab + ωac∧ω
cb, ωabµ being the

(torsion-free) spin connection, as follows

I =

K∑
k=0

ck
d− 2k

Ik + I∂ , (1)

with the bulk contributions, Ik, given by

Ik =

∫
M
E

(d)
a1···a2k R

a1a2∧ · · · ∧Ra2k−1a2k ,

where E
(d)
a1···ak = εa1···ad e

ak+1∧ · · · ∧ ead , εa1···ad being the
antisymmetric symbol, while K is a positive integer,
K ≤ [(d− 1)/2], and I∂ refers to boundary terms to
be discussed below. The coefficients ck are coupling con-
stants with length dimensions L2(k−1), L being a scale
ultimately related to the cosmological constant. Greek
letters denote spacetime indices, while Latin indices are
reserved for coordinates in the tangent bundle.

The kth term in the Lagrangian corresponds to the
extension of the Euler characteristic in 2k dimensions.
Actually, the zeroth contribution is the cosmological con-
stant term (we set 2Λ = −(d − 1)(d − 2)/L2, i.e., c0 =
1/L2), the first term is the Einstein-Hilbert action (we
normalize the Newton constant to 16π(d − 3)!GN = 1,
i.e., c1 = 1), and the second term, quadratic in the Rie-
mann curvature, is the so-called Lanczos-Gauss-Bonnet
action (we take c2 = λL2, and call λ the LGB coupling).

Although Lovelock theory yields second order equa-
tions of motion, in the generic case they are non-linear in
the curvature. As a result, the theory admits more than
one maximally symmetric solution; it has up to K dif-
ferent (A)dS vacua with effective cosmological constants
Λi, i = 1, 2, . . . ,K. They are the solutions of the Kth

order polynomial [18]

Υ[Λ] ≡
K∑
k=0

ck Λk = cK

K∏
i=1

(Λ− Λi) = 0 . (2)

The theory exhibits degenerate behavior and possibly
symmetry enhancement whenever two or more of these
effective cosmological constants coincide. We will be in-
terested in the non-degenerate case.

Black holes.— The first ingredient in our discussion is the
black hole solution of the theory. Consider the ansatz

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

d−2 , (3)

where dΩ2
d−2 is the round metric on a (d−2)-dimensional

sphere. The equations of motion reduce to a single first
order differential equation for f , that can be easily solved
in terms of g = (1− f)/r2 as [19, 20]

Υ[g] =

K∑
k=0

ck g
k =

κ

rd−1
, (4)

an implicit polynomial solution with up to K branches
where κ is an integration constant related to the mass of
the black hole geometry [21],

M =
(d− 2)!π

d
2

π Γ(d2 )
κ =

(d− 2)!π
d
2

π Γ(d2 )
rd−1
H Υ

[
1

r2
H

]
, (5)

rH being the radial location of the horizon. We will fo-
cus on the quadratic theory, K = 2, which is enough to
illustrate the phenomenon reported in this letter. The
solutions take the form [18]

g±(r) = − 1

2λL2

(
1±

√
1− 4λ

(
1− κ

rd−1

))
. (6)

Each of the two branches in (6) is associated with a dif-
ferent value of the effective cosmological constant,

Λ± = −1±
√

1− 4λ

2λL2
. (7)

Notice that λ ≤ 1/4 is needed in order to have real values.
The two vacua degenerate at the special point λ = 1/4.

While g− has a well defined horizon, g+ displays a
naked singularity at the origin provided M 6= 0. This
latter branch is also unstable [18]; the graviton propaga-
tor is proportional to Υ′[Λ+] < 0, thus having the wrong
sign with respect to the Einstein-Hilbert case. In the
dual CFT this amounts to non-unitarity [8]. The stable
solution also happens to be the one that is continuously
connected to the general relativity solution, i.e., only g−
tends to the Schwarzschild-Tangherlini solution in the
λ→ 0 limit. These features are also manifest for generic
black holes in Lovelock theory [22].

The existence of a second vacuum of effective cosmo-
logical constant Λ+ in the higher-curvature theory was
referred to, in [18], as the theory having “its own cos-
mological constant problem”. Moreover, for small LGB
coupling, the curvature of such vacuum becomes very
large, Λ+ ∼ −1/(L2λ). One may thereby argue that
considering such a background in the square-curvature
theory does not make sense because, under such cir-
cumstances, higher-curvature terms, Rk>2, cannot be ne-
glected. However, as it can be explicitly seen in the ex-
ample of Lovelock theory [16], far from removing this
second vacuum, adding higher-order terms further pro-
duce a plethora of highly-curved vacua. With the pur-
pose of understanding the implications of considering one
such vacuum in the theory, we will consider spaces that
asymptote AdS of typical radius (−Λ+)−1/2.

Boundary action.— Let us now discuss the role of the
boundary terms, I∂ . Their contribution is actually nec-
essary for the variational principle to be well defined.
This is analogous to the Gibbons-Hawking term in gen-
eral relativity [23]. In the first order formalism, the latter
can be written as

IGH =
(−1)d

d− 2

∫
∂M

E
(d)
ab θ

ab , (8)
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where θab is the second fundamental form associated to
the extrinsic curvature. In a similar way, the boundary
term associated to the Lanczos-Gauss-Bonnet quadratic
contribution can be written as [24]

IM =
(−1)d 2

d− 4

∫
∂M

E
(d)
abcd θ

ab∧

(
Rcd − 2

3
θce∧ θ

ed

)
. (9)

In the same way as bulk terms in (1) are the dimensional
extension of the 2k-dimensional Euler characteristic for
closed manifolds, the corresponding boundary terms are
needed in the extension of the Gauss-Bonnet theorem to
manifolds with boundaries. The boundary action is then
given by I∂ = IGH + λL2 IM .

We want to explore configurations consisting of a
spherical bubble dividing the spacetime in two regions,
the outer being taken to asymptote AdS space with ef-
fective cosmological constant Λ+. Solutions consisting of
a spherically symmetric surface separating regions with
different vacua are known to exist [25, 26]. They have
been recently considered to explore instanton transitions,
Λ+ → Λ−, via bubble nucleation [27]. Even though in the
present case we are interested in thermodynamic phase
transitions, we also need to deal with continuity of the
fields across the bubble. For dealing with this problem,
it is convenient to break the action in three pieces,

I = Iin + IΣ + Iout . (10)

The first term is integrated inside the bubble, while the
last term is integrated outside and includes all the bound-
ary terms at infinity necessary to both have a well defined
variational principle and to regularize its infinities. The
term in the middle is integrated on a small region around
the bubble. We will consider the limit when its width
goes to zero. When proceeding in this way, one has to
deal with terms at the boundaries of each region, which
give rise to a finite IΣ in the thick-less limit [28, 29].
The variation of IΣ with respect to the vierbein gives
the junction conditions on the bubble [28, 29]. These
generalize the Israel conditions of general relativity.

The phase transition.— The configuration we will be con-
cerned with is a bubble, whose outer region asymptotes
AdS space with a cosmological constant Λ+, while the
inner region hosts a black hole with mass M−, and an ef-
fective cosmological constant Λ−. The opposite situation
does not possess a smooth Euclidean section. Across the
junction, the vierbein has to be continuous. Sticking to
spherical symmetry, each of the two bulk regions will be
described by a solution of the form (6). Besides, since we
will be concerned with the Euclidean formalism,

ds2 = f±(r)dt2± +
dr2

f±(r)
+ r2dΩ2

d−2 , (11)

where the ± signs denote the outer and inner regions, the
notation being consistent with the respective branches

living there. In principle one shall consider arbitrary
branch solutions with arbitrary mass parameters on each
region. The junction conditions then fully constrain the
allowed possibilities.

The junction is conveniently described by the para-
metric equations r = a(τ), t± = T±(τ), with an induced
metric of the form ds2 = dτ2 +a(τ)2dΩ2

d−2, which has to
be the same from both sides. This yields

f±(a) Ṫ 2
± +

ȧ2

f±(a)
= 1 , (12)

where the dot stands for derivatives with respect to the
proper time τ . The function a(τ) appears explicitly in the
induced metric, so the radius has to be continuous across
the surface. This condition allows us to write all the ex-
pressions in terms of a and its derivatives and eventually
find a dynamical equation for the bubble itself [26].

We are interested in static configurations, ȧ = ä = 0,
which, in view of (12), translates into τ =

√
f−(a)T− =√

f+(a)T+. This means that the physical length of the
Euclidean time circle is the same as seen from both sides
of the junction. This matching condition will in turn
allow us to determine the temperature. In fact, once the
periodicity of the inner solution is fixed by demanding
regularity at the black hole horizon, that of the outer
solution gets fully determined,√

f−(a)β− =
√
f+(a)β+ , (13)

in such a way that there is a unique free parameter, the
temperature. In (13), β− is the inverse of the Hawking
temperature of the inner black hole solution, while β+ is
the inverse of the temperature as seen by an observer at
infinity. The latter will in general be different from the
Hawking temperature corresponding to the black hole of
the given mass M±.

By resorting to the usual Euclidean time formalism,
we can compute the free energy associated to the bubble
configuration that hosts a black hole in its interior, and
then compare it with that of thermal AdS at the same
temperature –with the same periodicity in the Euclidean
time at infinity. As we show in what follows, the compu-
tation indicates that the phase transition actually occurs
above a critical temperature, Tc(λ).

The canonical ensemble at temperature 1/β is defined
by the path integral over all metrics which asymptote
AdS identified in Euclidean time with period β,

Z =

∫
Dg e−Î[g] , (14)

where Î = −iI is nothing but the Euclidean action. The
dominant contributions come from the saddle points. We
have then to evaluate the Euclidean action on a classical
solution, Îcl ' − logZ = βF , which therefore gives the
free energy, F . In the present case, this basically amounts
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to computing the difference between the Euclidean action
of the bubble configuration and that of AdS space iden-
tified with the same period in imaginary time.

The Euclidean action is in general divergent due to the
infinite volume of AdS; nevertheless, it can be suitably
regularized by background subtraction, meaning that the
free energy is actually measured with respect to the max-
imally symmetric solution with the same periodicity in
Euclidean time. The periodicity at infinity is fixed by
demanding regularity of the black hole solution at the
horizon, r = rH < a, supplemented by the gluing condi-
tion (13), that determines in turn the outer periodicity.
In order to simplify the discussion, we calculate the on-
shell action in terms of two parameters, the position of
the bubble, a, and the temperature, β. It is important
to keep in mind that these two variables are not indepen-
dent from each other.

Unlike the computation of the Hawking-Page effect in
general relativity, where the fields are continuous, here
we have to consider the contribution to the action ÎΣ

arising on the bubble, when writing the Euclidean action
in the form (10). The boundary term in Îout regularizes
its divergence by subtracting the background M+ = 0
with the same periodicity at infinity. The term Îin, in
turn, is integrated from the horizon to the location of the
bubble. Finally, ÎΣ is given by

ÎΣ = −Î∂−(a, β0) + Î∂+(a, β0) , (15)

where the periodicity in Euclidean time is inherited from
the bulk regions β0 =

√
f±(a)β±. Then, we can collect

all the contributions that depend upon the location of
the bubble, Îbubble, the rest can be consequently called
Îblack hole = Î − Îbubble = β−M− − S.

Remarkably enough, a neat result comes out after a
quite lengthy calculation –that nicely carries on to the
generic Lovelock theory [16]–, once the junction condi-
tions are imposed,

Îbubble = β+M+ − β−M− , (16)

which is the exact value needed to correct the on-shell
bulk action in such a way that the thermodynamic in-
terpretation is safely preserved. In fact, because of this
contribution, the total action takes the form

Î = β+M+ − S . (17)

That is, the bubble contributes as mass –it carries the
mass difference between the two solutions– but does not
contribute to the entropy. From the Hamiltonian point of
view this is naturally understood as follows. The canon-
ical action vanishes in this case, the only possible con-
tributions coming from boundary terms both at infinity
and at the horizon, yielding respectively β+M+ and the
entropy, which are nothing but the total charges of the
solution. The junction conditions simply imply the con-
tinuity of canonical momenta of the theory [30].

Equation (17) already shows that the junction condi-
tions are important to guarantee the consistency of the
thermodynamic picture. They also imply

β+dM+ = β−dM− = dS , (18)

so that the first law of thermodynamics holds both for
the whole configuration (β+ and M+) as well as for the
black hole (β− and M−).

Bubble nucleation.— Having proven the consistency of
the thermodynamic picture in the case of the bubble
configuration by deriving (17) and (18), we are ready to
address the question of global thermodynamic stability.
This amounts to analyzing the sign of the free energy as-
sociated to the bubble configuration. As shown in Fig.1,
the free energy as a function of the temperature 1/β+

displays a critical temperature above which it becomes
negative and, thus, the phase transition occurs. The de-
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FIG. 1: Free energy versus temperature in d = 5 for λ =
0.04, 0.06, 0.09 (positivity bound), 0.219 (maximal F (T = 0)),
and λ → 1/4 (from right to left). L = 1. The λ dependence
of the critical temperature, Tc, is displayed in a separate box.

pendence of the critical temperature on λ is monotoni-
cally decreasing. This means that the phase transition
becomes increasingly unlikely the more we come closer
to the Einstein-Hilbert – classical – limit. In this sense,
it is a quantum mechanical phenomenon.

These high temperature configurations, or thermalons,
correspond to a black hole and a bubble in equilibrium,
connecting inner and outer solutions of different branches
g− and g+. Such solutions exist just for positive values
of λ. The infinite temperature limit corresponds to pla-
nar black holes –a case of particular importance in the
context of holography–, in which the junction conditions
lead to a remarkably simple relation that is valid also for
general Lovelock gravity [16],

β+M+ = β−M− . (19)
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The corresponding free energy is always negative,

F = − (d− 3)!π
d
2

π Γ(d2 )

rd−1
H

L2

β−
β+

= − M+

(d− 2)
, (20)

this implying that the preferable classical solution is al-
ways the thermalon and thus the transition always occurs
for high enough temperature.

The junction conditions considered above determine
not only the equilibrium configuration but also the effec-
tive potential felt by the bubble and, consequently, its
subsequent dynamics. The scalar field a(τ) specifying
the location of the bubble sits at the top of a potential
barrier. It will therefore eventually expand in such a way
that it engulfs the whole spacetime in finite proper time,
thus changing its asymptotic behavior [16].

Discussion.— We presented a novel mechanism for phase
transitions that is a distinctive feature of higher cur-
vature theories of gravity. These theories have several
branches of asymptotically (A)dS solutions that might
admit an interpretation as different phases of the dual
field theory. Phase transitions among these are driven
by the mechanism described in this letter for the sim-
plest case of Lanczos-Gauss-Bonnet gravity. Mimicking
the thermalon configuration [17], a bubble separating
two regions of different cosmological constants pops out,
generically hosting a black hole in the interior.

This configuration is thermodynamically preferred
above some critical temperature and the correspond-
ing phase transition can be interpreted as a gener-
alized Hawking-Page transition for the high-curvature
branches. From the holographic point of view this looks
like a confinement-deconfinement phase transition in a
dual CFT, involving an effective change in the ’t Hooft
coupling, both phases being strongly coupled. Whether
a phenomenon like this takes place in a 4d CFT, par-
ticularly within the framework of the fluid/gravity cor-
respondence –where both phases might be characterized
by different transport coefficients–, or it is overtaken by
higher curvature corrections, is an open question at this
point.

The bubble configuration being unstable [16] can in
general dynamically change the asymptotic cosmological
constant from the initial one to the inner one, thus tran-
sitioning always to the stable horizonful branch of solu-
tions, the only one usually considered as relevant. This
is then a natural mechanism for the system to select the
general relativistic vacuum among all the possible ones.
We are aware of the fact that the vacuum Λ+ in the
LGB theory exhibits ghosts. The phenomenon presented
in this letter, however, takes place in the Lovelock the-
ory, where there are further healthy vacua than the one
connected to the Einstein-Hilbert action [16]. We think
that this mechanism is quite general and deserves further
investigation.
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