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Behaviour of smooth catalysts at high reaction rates
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Abstract

In evaluating effective reaction rates in catalysts subject to heat and mass transport limitations, the size of the catalytic body is best defined
by the so-called characteristic length�, the ratio between catalyst volume and its external surface area,�= Vp/Sp. This result follows from the
limiting behaviour at very high reaction rates, when the effective reaction rates are proportional to 1/� (e.g., Aris [R. Aris, The Mathematical
Theory of Diffusion and Reaction in Permeable Catalysts, Oxford University Press, London, 1975.]) or, in dimensionless form, to the inverse
o of (1/
a of such
s

rization for
t
©

K

1

t
a
b
w
c
a

o
n

f
1
b
w

ively
ctive

radi-
m-
ders,
the
, the
the

void
asi-
ults
the

m-
r of
r of
ame

1
d

f the Thiele modulusΦ. It is further known from simple geometrical shapes that a series solution can be written in terms of powersΦ)
nd that the second order term [in(1/Φ)2] depends on the shape of the catalytic body. It is the aim of this paper to develop expressions
econd order term for 2D or 3D catalytic bodies showing arbitrary smooth external surfaces.
In a similar way as the first order term allows to define the proper size of a catalyst, the second order term provides a characte

he catalyst shape. This and other applications of the second order term are discussed.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Except for the case of spheres, diffusive transport of reac-
ants in most kind of commercial catalytic pellets proceeds
long more than one spatial coordinate. The general case will
e a 3D1 problem (e.g., a trilobe pellet), while 2D problems
ill be frequent, mainly due to axisymmetry (e.g., circular
ylinders) and will also apply for monolith reactors with cat-
lytic washcoat on non-circular channels[2].

Numerical codes and computer facilities have been devel-
ped up to such an extent that 2D and 3D problems are
ot computationally challenging problems, provided that a

∗ Corresponding author. Tel.: +54 2214211353; fax: +54 2214254277.
E-mail address:nmariani@quimica.unlp.edu.ar (N.J. Mariani).

1 “3D” means that no suitable coordinate system can be chosen to reduce
rom three the number of coordinate directions taken by the flux of reactants.
D or 2D applies when either one or two suitable coordinate directions can
e found (e.g., axisymmetric problems will be 2D and problems on a sphere
ill be 1D).

few isolate calculations should be made. However, relat
novel catalytic reactors, as reverse-flow reactors and rea
distillation processes, or more sophisticated models for t
tional reactors, including CFD (computational fluid dyna
ics) simulations, can demand thousands, or higher or
of spatial and temporal discretization points, in which
effective reaction rates should be evaluated. In addition
occurrence of multiple reactions will strongly enhance
computational demand.

It will be then highly desirable, or even necessary, to a
the use of 2D or 3D computations. This is actually fe
ble, largely because it is a well-known fact that if the res
from different catalytic bodies are compared in terms of
characteristic length�= Vp/Sp, the effect of the shape is te
pered.Table 1shows deviations between the behaviou
a slab (the simplest 1D geometry) and a circular cylinde
height/radius ratio = 1.7 (a 2D problem) compared at the s
� for different kinetics (precise definition ofr(Y) is given in
the next section).
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Nomenclature

a catalytic activity (dimensionless)
aS local catalytic activity onSp (dimensionless)
Cj molar concentration of speciesj (mol m−3)
hi =|∂x/∂ξi |, scale factor in the coordinate direc-

tion ξi (dimensionless)
I1 parameter defined in Eq.(13b)(dimensionless)
I2 parameter defined in Eq.(19a)(dimensionless)
JA parameter defined in Eq.(1d) (mol m−1 s−1)
kef effective thermal conductivity (W◦C−1 m−2)
kmj local mass transfer coefficient of speciesj

(m s−1)
� =Vp/Sp, characteristic length (m)
L Laplacian operator (m−2)
n normal unit vector onSp (dimensionless)
Nj molar flux of speciesj (mol m−2 s−1)
q heat flux (W m−2)
r(Y) =πA(Y)/πAS, relative reaction rate (dimension-

less)
R = I2/I1 (dimensionless)
Rhigh overall consumption rate in the asymptotic

regime (mol s−1)
Ra, Rb principal radii of curvature (m)
Sp external surface area of the catalytic body

accessible to reactants (m2)
T temperature (K)
Vp volume of the catalytic body (m3)
x =(x1, x2, x3), Cartesian coordinate vector (m)
Y dimensionless concentration defined in Eq.

(1c)

Greek letters
γ geometric parameter (dimensionless)
Γ parameter defined in Eq.(21) (dimensionless)
Υ n,Υ a,Υ b curvatures defined in Eqs.(8), (9d) and (9e)

(m−1)
ΥS sum of local principal curvatures onSp defined

in Eq.(14b)(m−1)
λ global reaction scale, defined in Eq.(2d) (m)
λS = λ/a

1/2
S , local reaction scale atSp (m)

πj specific consumption rate of speciesj
(mol m−3 s−1)

νj stoichiometric coefficient of speciesj (dimen-
sionless)

Φ =�(πAS/JA)1/2, Thiele modulus (dimension-
less)

η effectiveness factor (dimensionless)
κg geodesic curvature (m−1)
κ principal curvature (m−1)
ξi coordinate in the directioni (m)
ζ =ξn/λS, stretched coordinate (dimensionless)

Subscripts
av average overSp
a, b directions of the lines of curvature
e chemical equilibrium
F average in the fluid phase
high asymptotic regime
n normal direction
S external surface

Different readings can be made from the data inTable 1.
Advocating the existence of other sources of uncertainty, as
kinetics itself, the shape effect may be regarded as being
tolerable for rough and fast estimations. However, when sim-
ulating a complex catalytic process, the magnitude of the task
will prompt for eliminating as many sources of uncertainty
and inaccuracies as possible. Within this frame, the foregoing
data indicate that the effect of shape cannot be ignored and
that in order to avoid 2D or 3D calculations it will be neces-
sary to have available criteria to choose a suitable geometrical
simplification.

A suitable geometric characterization of the catalyst shape
can be obtained from the expansion of the effectiveness factor
at high reaction rates. The second term in such an expansion
has been clearly identified for 1D geometries. For the case
of a single reaction and uniform activity (see e.g.[3–5]) the
effectiveness factorη for high values of Thiele modulusΦ
can be expressed as:

η = I1

Φ

(
1 − R

Φ
Γ

)
+ . . . (1a)

Γ = σ

σ + 1
(1b)

whereI1 and R are coefficients depending on the type of
kinetic law (all quantities in Eqs.(1a) and (1b)will be pre-
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isely defined in the next sections) andσ is the geometri
arameter for simple geometries:σ = 0, 1, 2, for a slab,

ong circular cylinder and a sphere, respectively.
This paper is devoted to the development of an exp

ion for evaluating the geometrical parameterΓ for catalytic
odies showing smooth external surfaces of arbitrary sh
uch expression is not available in the open literature, t
est of our knowledge. The effect of a non-uniform field

able 1
aximum relative difference (�) between the effectiveness factor of a s

1D) and a circular cylinder of ratio height/radius = 1.7 (2D), compare
he same�

(Y) � (%)
2 18

19
1/2 22
(if Y> 0) 34
6Y/(1 + 5Y)2 38
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catalytic activity will be included in this task; henceΓ will
account for both, geometrical and activity field effects.

Given the assumption of smooth external surfaces (i.e.,
without edges), it is convenient to consider briefly the rele-
vance of practical catalysts showing this property. Structured
catalysts[6] are probably the most important type of catalysts
presenting smooth surfaces. In many instances, the catalyst
is deposited on a thin and uniform layer and therefore they
can be analysed as a 1D geometry. However, in monolithic
reactors, the catalytic washcoat deposited on the wall of the
channels can show uneven thickness, as for the usual trian-
gular or squared cross-section channels. In these cases, the
thickness at the corners can be an order of magnitude higher
than on the sides of the channels, and a 2D analysis is defi-
nitely required.

Apart from spheres, most existing shapes of commercial
particulate catalysts (pellets or tablets) correspond to cylin-
ders with a variety of cross-section shapes. They do not
show smooth external surfaces, due to the edges around the
bases. Suitable values ofΓ for geometries showing edges
are obtained by adding a correction term to the expression
here obtained. These results will be presented in a separate
contribution.

In the next sections, the expression forΓ will be devel-
oped on the base of assuming that a single reaction takes
place. Nonetheless, it is shown inAppendix Cthat the same
e .
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The above underlined procedure formally allows to choose
CA as the only independent state variable. All others will be
expressed as a function ofCA. Hence, the consumption rate of
A (πA) can also be written as a function ofCA only. Note that
πA(CAe) = 0. We can also write,NA =−D(CA)�CA, whereD
can be also expressed as a function ofCA only. BothπA and
D will further depend on the values of the state variables at
the external surface and on the true transport coefficients,
as defined by the transport model. The following change of
variables (fromCA to Y) will be useful:

Y = 1

JA

∫ CA

CAe

D(CA) dCA (1c)

JA =
∫ CAS

CAe

D(CA) dCA (1d)

Hence,NA =−JA�Y. In turn, we can writeπA =πA(Y) and
definer = r(Y) =πA(Y)/πAS, whereπAS is the value ofπA at
the external surface. As a consequence,Y= 1 andr(1) = 1 on
the external surface. At equilibrium conditions (eventually,
well inside the catalytic body):Y= 0; r(0) = 0.

The previous manipulations allow to transfer the stoi-
chiometry and transport complexities to the evaluation of
the dimensionless rater(Y). This is assumed to be accom-
plished as an initial step, independently of reaction/transport
i
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xpression holds up for a system with multiple reactions

. Problem statement

A single catalytic reaction and the following restrictio
ill be considered in most part of this contribution (the s
ificance of these assumptions will be discussed later o

(a) Uniform composition and temperature at the externa
face of the catalyst.

b) Constitutive equations for the fluxes (transport mo
are isotropic and intrinsically independent of posit
inside the catalyst.

Under these conditions, the stoichiometric relations
uxes inside the catalyst hold up irrespective of cata
eometry and of the transport model employed to describ
uxes inside the catalyst[7,8]. Thus, ifA is the key specie
hat will be assumed to be the limiting reactant,Nj is the flux
f a generic speciesj, andνj its stoichiometric coefficien
j = (νj /νA)NA. One of these relations (sayj ≡ h) can be asso
iated with the heat flux (−νh ≡ reaction heat). Once a tran
ort model (e.g., the dusty gas model) is chosen to ex
achNj in terms of the gradients of all state variables, the
hiometric relations can be integrated subject to pellet su
onditions, but independently of spatial coordinates, to r
he concentration of each species and temperature wi
oncentration ofA,CA. In turn, the chemical equilibrium co
ition will allow to evaluate the equilibrium set of variab
ttainable inside the catalyst, in particular the valueCAe.
nteractions within the domain of the catalyst geometry.
As an elementary example, for the simplest transport m

lsNj =−Dj�Cj , q=−kef�T, with constantDj andkef:

Cj − CjS) = DA

Dj

νj

νA

(CA − CAS);

T − TS) = DA

kef

(−�H)

νA

(CA − CAS);

= CA − CAe

CAS − CAe
; JA = DA(CAS − CAe)

he steady state conservation balance for speciesA can be
ritten,

(Y ) = 1

λ2
a(x)r(Y ), onVp (2a)

= 1, onSp (2b)

Y = 0, onSN (2c)

hereL is the Laplacian,Vp the volume of the catalyt
ody,Sp its external surface (accessible to reactants),SN is a
ealed (inaccessible to reactants) portion of theVp boundary
Remark: symbolVp will stand for both, the spatial doma
orresponding to the catalyst and its volume; similarlySp
tands for the domain of the permeable external surfac
or its area],

2 = JA

πAS
; λ : global reaction scale (2
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and the activitya, a function of the spatial coordinate vector
x= (x1, x2, x3), is assumed to be normalized according to:

1

Vp

∫
Vp

a(x) dV = 1 (2e)

It is assumed that the activity at any point on the external
surface is finite, but not necessarily uniform.

3. Asymptotic behaviour at high reaction rates

The local reaction scale at the surface is defined as
λS =λ/a1/2

S , whereaS is the local value ofa at the exter-
nal pellet surface. WhenλS is small enough, speciesA will
penetrate only a short distance from the external surface
before reaching nearly equilibrium conditions (i.e.,Y≈ 0).
It is well known that the local flux can be approximated by
NAS,0=JAα1/λS (see e.g.[1]), whereα1 just depends on the
form of r(Y). At these conditions, hereinafter called limiting
regime, the order of magnitude of the penetration depth isλS.

The results for geometries with a high degree of symmetry
(e.g., a sphere, a long circular cylinder, and a slab) indicate
that at somewhat larger values ofλS, an expansion of the
following type holds up,
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position of a point inside the catalyst, but sufficiently close
to Sp, can be expressed as:

x = xS(ξ1, ξ2) + ξnn(ξ1, ξ2) (4a)

wherexS(ξ1, ξ2) is the Cartesian vector describing the posi-
tion onSp in terms of coordinates (ξ1, ξ2) andn(ξ1, ξ2) is the
unit vector (|n| = 1) normal toSp at the same position, which
is oriented towards the inside of the pellet. The new set of
curvilinear coordinates (ξn, ξ1, ξ2) is defined by transforma-
tion (4a). The coordinateξn has been completely defined, but
(ξ1, ξ2) still have to be identified in order that the coordinate
system may be orthogonal. We will analyse this feature next,
while the feasibility of transformation(4a)will be considered
after.

The orthogonality condition requires that the internal
product (∂x/∂ξi)·(∂x/∂ξj) = 0, if i �= j. Applied to (i, j) = (1,
n), the product becomes [(∂xS/∂ξ1) + ξn(∂n/∂ξ1)]·n(ξ1, ξ2),
that always will be zero because both vectors (∂xS/∂ξ1) and
(∂n/∂ξ1), lie on the surface (see e.g.[9]) and, hence, they are
normal ton. The same applies for (i, j) = (2,n). The remaining
condition is that for (i, j) = (1, 2),

∂x
∂ξ1

· ∂x
∂ξ2

=
(

∂xS

∂ξ1
+ ξn

∂n
∂ξ1

)
·
(

∂xS

∂ξ2
+ ξn

∂n
∂ξ2

)
= 0 (4b)

Making ξn = 0, we conclude that the directions ofξ1, ξ2
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AS = JA

λS
[α1 + α2λS + o(λS)] (3a)

here, in general,o(x) denotes a truncation term such t
o(x)/x] → 0 if x→ 0, the coefficientα2 depends on the for
f r(Y), but also on the pellet shape and on the activity
ient at the surface[7,8]. Conditions at whicho(λS) can be
eglected in Eq.(3a), but (α2λS) cannot, will be referre

o as asymptotic regime and the corresponding flux den
AS,high. We will present a formulation forα2 and for the

ntegral ofNAS,highoverSp,

high =
∫
Sp

NAS,high dS (3b)

he task of developing Eq.(3b) is restricted in this pape
o catalysts with smooth external surfaces showing con
us curvatures. We will come back to the latter restrictio
ection4.

.1. Expressing the LaplacianL(Y)

To formulate the conservation balances in the asymp
egime, it is convenient to define a system of orthog
urvilinear coordinates in which one of them,ξn, keeps th
irection of the normal at any point onSp, where its origin
ξn = 0) is defined. Furthermore, the sense and scale ofξn are
xed by stating that it grows towards the inside of the pe
hile measuring at each point the distance fromSp. With this
efinition, the Cartesian vectorx= (x1, x2, x3) defining the
on the external surface should be orthogonal in order
(∂xS/∂ξ1)(∂xS/∂ξ2) = 0. It is further needed that forξn > 0

∂xS

∂ξ1
· ∂n
∂ξ2

+ ∂xS

∂ξ2
· ∂n
∂ξ1

= 0 (4c)

Except whenSp is a plane or a sphere, the theory of surf
(see e.g.[9], p. 139) reveals that Eq.(4c) holds if and onl
if both families of curves onSp, defined byξ1 ≡ const. an
ξ2 ≡ const., coincide with the lines of curvature. A line of c
vature is a curve on a surface such that at any point its dire
corresponds to the direction of a principal curvature.2 One se
of curves corresponds to the minimal normal curvature
the other to the maximal one. Both sets are mutually or
onal and unique for a given surface. Then, we are constr
to choose a pair of curvilinear coordinates, denotedξa and
ξb, each one parameterizing each set of lines of curva
Forξa andξb, the relations∂n/∂ξi =−κi∂xS/∂ξi (i = a, b) hold
[9], whereκi is the principal curvature in the direction ofξi .
Then, the set of coordinates (ξn, ξa, ξb) will be orthogonal.

In case of a plane or a spherical surface the conce
lines of curvature looses its meaning (as the value o
normal curvature is independent of direction), but any
of orthogonal coordinates satisfies∂n/∂ξi =−κ∂xS/∂ξi (κ is
the unique value of normal curvature). We will continue

2 For a pointP on a surface, assume the normal unit vectorn is identified
Then, a normal plane atP is any plane containingn (there is a bundle
such planes), a normal section atP is a curve resulting from intersecting
surface and a normal plane, a normal curvature is the curvature of a
section atP, a principal curvature is either the minimum or the maxim
normal curvature, a radius of curvature is the inverse of a normal curv
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present discussion with the general case in mind, but the for-
mulation will remain valid for a plane or a spherical surface
by replacing (ξa, ξb) by any orthogonal pair (ξ1, ξ2).

The scale factorshi = |∂x/∂ξi | of the coordinates are
defined by expressing the elementary arc length in the direc-
tion of eachξi : dsi = |∂x/∂ξi | dξi . From Eq.(4a), with (ξ1,
ξ2) ≡ (ξa, ξb):

hi = hS,i(1 − ξnκi), i = a, b; hn = 1 (5a)

wherehS,i = |∂xS/∂ξi | (i = a, b) are the scale factors onSp,
which depend on the position defined by (ξa, ξb).

Since a sense for the unit vectorn has been chosen, the
sign ofκi (i = a, b) becomes defined as positive if the centre
of curvature is oriented towards the inside of the pellet and
negative in the opposite case.

Eqs. (5a) allow to visualize that the chosen coordinate
system will become unfeasible when any of thehi (i = a, b)
becomes nil. As we are interested in positive values ofξn, the
coordinate system will be feasible only up to some distance
from Sp if at least one of theκi (i = a, b) is positive. If both
are positive, the system becomes unfeasible atξn,max:

(for κi ≥ 0, i = a, b), ξn,max = min
a,b

(Ri) (5b)

whereRi = 1/κi (i = a, b) are the principal radii of curvature.
For general orthogonal curvilinear coordinates (ξ , ξ , ξ ),

t
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LSF(Y ) =
∑
i=a,b

[
∂

∂si

(
∂Y

∂si

)
− Υi

∂Y

∂si

]
(7b)

where

Υn = −∂ ln(hahb)

∂ξn
; Υa = −∂ ln(hb)

∂sa
;

Υb = −∂ ln(ha)

∂sb

The quantityΥ n can be directly evaluated by using Eq.(5a)
for ha andhb,

Υn = κa

1 − ξnκa
+ κb

1 − ξnκb
(8)

We again employ Eq.(5a)for expressingΥ a andΥ b. For (i,
j) = (a, b) or (i, j) = (b, a):

Υj = −1

hi

(
∂hS,i

hj∂ξj
(1 − ξnκi) − hS,iξn

∂κi

hj∂ξj

)

= −1

(1 − ξnκj)

(
∂ ln hS,i

hS,j∂ξj
− ξn

(1 − ξnκi)

∂κi

hS,j∂ξj

)
(9a)

which requires the evaluation of∂hS,i /∂ξj and∂κi /∂ξj (i �= j).
To this end, the following formulation is used:

(

E
f iven
p n
o r-
v n
p e
o te
c cal or
p plac-
i s
a

Υ

Υ

W
b es of
S

1 2 3
he Laplacian of a fieldY can be written as:

(Y ) =
3∑

k=1

1

H

∂

∂ξk

(
H

h2
k

∂Y

∂ξk

)
; H = h1h2h3 (6a)

aking now our specific system (ξn, ξa, ξb) and the fact tha
n = 1 (Eq.(5a)),

(Y ) = Ln(Y ) + LSF(Y ) (6b)

here

n(Y ) = 1

hahb

∂

∂ξn

(
hahb

∂Y

∂ξn

)
(6c)

SF(Y ) = 1

hb

∂

∂sa

(
hb

∂Y

∂sa

)
+ 1

ha

∂

∂sb

(
ha

∂Y

∂sb

)
(6d)

he notation∂si = hi∂ξi (i = a, b) is employed in Eq.(6d). The
erivative∂Y/∂si is called physical derivative. It expresses
ariation ofY over an elementary arc of lengthhi∂ξi .
LSF(Y ) is the Laplacian ofY on the internal surface

efined in Eq.(4a)by ξn = const., that are parallel toSp. Eq.
6d), specifically expressesLSF in terms of coordinates (ξa,
b).

The following steps are devoted to removing the exp
ccurrence of the scale factorsha and hb in Eqs. (6c)
nd (6d)and introducing curvature properties ofSp. First,
qs.(6c) and (6d)are re-written as:

n(Y ) = ∂2Y

∂ξ2
n

− Υn

∂Y

∂ξn
(7a)
i �= j) :
∂ ln hS,i

hS,j∂ξj
= −κg,i (9b)

∂κi

hS,j∂ξj
= κg,i(κi − κj) (9c)

q. (9b) arises from the definition of geodesic curvatureκg,i
or any pair of orthogonal coordinates [Remark: at a g
oint on the surface,κg,i is the curvature of the projectio
f the coordinate curveξi on the tangent plane]. If the cu
ature of the own coordinate line isκξ,i , then at the give
oint: κ2

i + κ2
g,i = κ2

ξ,i. Eq. (9c) arises from the formula
f Mainardi–Codazzi[9] and is valid when the coordina
urves are lines of curvature, and in the case of a spheri
lane surface for any pair of orthogonal coordinates. Re

ng Eqs.(9b) and (9c)into Eq.(9a), the following expression
rise:

a = κg,b

1 − ξnκb
(9d)

b = κg,a

1 − ξnκa
(9e)

ith Eqs.(8), (9d) and (9e), the LaplacianL(Y) (Eq. (6b))
ecomes fully expressed in terms of curvature properti
p. In turn, the conservation balance in Eq.(2a)becomes:

∂2Y

∂ξ2
n

− Υn

∂Y

∂ξn
+
∑
i=a,b

[
∂

∂si

(
∂Y

∂si

)
− Υi

∂Y

∂si

]

= 1

λ2
a(ξn, ξa, ξb)r(Y ) (10)
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3.2. Reduction of Eq.(10)at low values ofλ

Let us introduce in Eq.(10):

• a* = a(ξn, ξa, ξb)/aS: relative activity, whereaS = a(0, ξa,
ξb).

• λS =λ/a
1/2
S : local reaction scale onSp,

• ζ = ξn/λS: stretched coordinate.

Then,

∂2Y

∂ζ2
− λSΥn

∂Y

∂ζ
+ λ2

SLSF(Y ) = a∗(ξn, ξa, ξb)r(Y ) (11a)

Assuming thatλS is small enough for the penetration depth
to be shorter than the thickness d of the pellet in the local
normal direction, i.e.

λS � d (11b)

the appropriate boundary conditions on variableζ will be:

ζ = 0 : Y = 1 (11c)

ζ → ∞ : Y → 0,

(
∂Y

∂ζ

)
→ 0 (11d)

Now, consider the following simplified problem,

ζ

ζ

t ed.
T
A

w

I

I

N

I

T

y

(

For Eq.(12a)to approximate Eq.(11a)it is necessary that
|λSΥ n| � 1, |λ2

SLSF(Y )| � 1, anda* ≈ 1. These conditions
will be fulfilled for a sufficiently small value ofλS. In what
follows, practical scales respect to whichλS should be small
in order to guarantee those conditions will be determined.
At the same time, the terms of second order of magnitude
linking Eqs.(12a) and (11a)will be identified. This task will
allow us to write down a conservation balance describing
the asymptotic regime. In the next paragraphs, it should be
borne in mind that the solutionY of the asymptotic regime
will keep the same order of magnitude asY0. Then, points (I)
and (II) stated above will hold up in the asymptotic regime
by exchangingY0 for Y.

3.2.1. Analysis ofλSΥ n

From Eq.(8) a series expansion ofΥ n aboutξn = 0 can be
written (usingξn = ζλS)

Υn = ΥS +
∞∑
j=1

(κj+1
a + κ

j+1
b )(λSζ)j (14a)

whereΥn|ξn=0 = ΥS, is the sum of the local principal curva-
tures

ΥS = κa + κb = 1

Ra
+ 1

Rb
(14b)
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d2Y0

dζ2
= r(Y0) (12a)

= 0 : Y0 = 1 (12b)

→ ∞ : Y0 → 0,

(
dY0

dζ

)
→ 0 (12c)

hat corresponds to the limiting regime previously defin
he solution of Eqs.(12) is well known (see e.g.[1] and also
ppendix B) and can be expressed by:

dY0

dζ
= −I(Y0)1/2 (12d)

here

(Y0) = 2
∫ Y0

0
r(Y ) dY (12e)

n particular, the flux on the external surfaceSp (ζ = 0):

AS,0 = −JA

λS

(
dY0

dζ

)
ζ=0

= JA

λS

I1 (13a)

1 = [I(1)]1/2 (13b)

he following points are worth noting:

(I) ConditionsY0 → 0 (dY0/dζ) → 0 in Eq.(12c)are alread
satisfied, for practical purposes, when� reaches a few
units.

II) Y0, r(Y0) and the derivatives (∂Y0/∂ζ) and (∂2Y0/∂ζ2)
show maximum absolute values around the unity.
Remark: the quantityΥS/2 is known as mean curvature]
We are looking for conditions at which|λSΥ n| � 1. From

he leading term in expansion(14a), it becomes apparent th
necessary condition is that|λSΥS| � 1. If we define

m = min{|Ra|, |Rb|} (14c)

n equivalent constraint is

S � Rm (14d)

n addition, if Eq.(14d) is fulfilled, we can write from Eq
14a)for small values ofζ (i.e., up to a few units),

SΥn = λSΥS + ζO

[(
λS

Rm

)2
]

(14e)

Remark: the symbolO(x) is used throughout this text a
ts appendices to denote a variable that takes values “o
ame order of magnitude asx”].

It is also worth noting at this point that condition(14d)
nsures that Eq.(5b), which restrains the range of feasibil
f our coordinate system, will not be violated for signific
alues ofζ (up to a few units).

.2.2. Analysis of a*

A series expansion ofa* aboutξn = 0 can be written (afte
eplacingξn = ζλS) and dividing byaS

∗ = 1 +
(

a′
S

aS

)
λSζ + 1

2

(
a′′

S

aS

)
(λSζ)2 + . . . (15a)
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where aS = a|ξn=0, a′
S = (∂a/∂ξn)|ξn=0 and generically

a
(i)
S = (∂ia/∂ξin)|ξn=0. From Eq.(15a), a necessary condition

for a* ∼= 1 to be true is that:

λS � aS

|a′
S| (15b)

If the magnitude of higher order derivatives is bounded as
(1/j!)(a(j)

S /aS) = O(|a′
S/aS|j), which will be usually accom-

plished, the inequality(15b)guarantees that the sequence of
terms in Eq.(15a)are of decreasing magnitude for small val-
ues ofζ (up to few units). Then, it will be valid to write:

a∗ = 1 +
(

a′
S

aS

)
λSζ + ζ2O

[(
λSa

′
S

aS

)2
]

(15c)

3.2.3. Analysis ofλ2
SLSF(Y )

Because of boundary condition(2b), the Laplacian
LSF(Y ) = 0 atSp (ξn = 0). Then, by recalling thatLSF applies
in general (ξn > 0) over surfaces parallel toSp, it is difficult
to expect thatλ2

SLSF(Y ) can contribute significantly in Eq.
(11a). Provided that constraints(14d)and(15b)are satisfied
and that variations ofaS and curvature radii onSp are not
extreme, it is shown inAppendix Athat:

λ
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b mag-
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ζ

ζ

3
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o r to
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B. The results is:

NAS,high = −JA

λS

(
dY

dζ

)
ζ=0

= JA

[
I1

λ
a

1/2
S − I2(ΥS + AS)

]
(18)

whereλS =λ/a1/2
S was used, and

I2 = 1

I1

∫ 1

0
[I(Y )]1/2 dY (19a)

AS = − a′
S

2aS
(19b)

Terms of leading order of magnitudeO(λS/Rm),O(λS|a′
S|/aS)

have been neglected in Eq.(18). The termI2(ΥS + AS) is a
second order correction to the limiting regime expression
(13a).

By integrating Eq.(18), the total number of moles trans-
ferred per unit time throughSp in the asymptotic regime is:

Rhigh = JASp

[
I1

λ
(a1/2

S )av − I2(ΥS + AS)av

]
where

(a1/2
S ) = S−1

p

∫
a

1/2
S dS (20a)
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SLSF(Y ) = O max

λ2
S

(aS/a
′
S)2

,
λ2

S

Rm|aS/a
′
S| (16a)

t these conditions,λ2
SLSF(Y ) is correctly neglected for th

imiting regime.
For the case of the asymptotic regime,λ2

SLSF(Y ) can also
e neglected because only terms of secondary order of
itudes will be retained in Eq.(11a)

Therefore, taking in Eq. (11a) λSΥ n ≈ λSΥS,
* ≈ 1 +ζλS(a′

S/aS), and λ2
SLSF(Y ) ≈ 0 (from Eqs.(14e),

15c) and (16a)), we obtain the desired conservation balan
efining the asymptotic regime:

d2Y

dζ2
− λSΥS

dY

dζ
=
[
1 + λSζ

(
a′

S

aS

)]
r(Y ) (17a)

ith boundary conditions

= 0; Y = 1 (17b)

→ ∞ : Y → 0,

(
dY

dζ

)
→ 0; (17c)

.3. Expressing the effective reaction rate in the
symptotic regime

A perturbation analysis on Eqs.(17) consideringλS as a
mall parameter can be carried out to obtain the leading te
f the flux at the external surface. The derivation is simila

hat made by Wedel and Luss[3], and is detailed inAppendix
av

Sp

ΥS + AS)av = S−1
p

∫
Sp

(ΥS + AS) dS (20b)

y definingR = I2/I1, the characteristic length of the ca
yst �= Vp/Sp, and

= �(ΥS + AS)av

(a1/2
S )av

(21)

e can alternatively write forRhigh

high = JASp(a1/2
S )avI1

λ

[
1 − R

λ

�
Γ

]
(22)

mploying the usual definition of the effectiveness
or η=R/(πAsVp) and the Thiele modulusΦ2 = (�/λ)2 =
2πAs/JA,

high = I1(a1/2
S )av

Φ

(
1 − R

Φ
Γ

)
(23)

or the case of uniform activity:

a = 1) ηhigh = I1

Φ

(
1 − R

Φ
Γ

)
; Γ = �(ΥS)av (24)

. Discussion

The use of the lines of curvature as coordinates line
mployed for the derivation of Eqs.(22)–(24), strictly implies
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Table 2
Comparison ofη for different shapes showingQ= 0.75;y: radius ratio;γ: defined in the text;�: maximum relative difference

Infinitely long solid cylinder Hollow sphere with accessible center,y= 0.1896 Hollow sphere with inert core,y= 0.6300

� (%) – 0.95 1.2
γ 0.500 0.478 0.470

Table 3
Comparison ofη for different shapes showingQ= 0.50;y: radius ratio;γ: defined in the text,�: maximum relative difference

Infinitely long hollow cylinder,y= 0.5773 Hollow sphere with accessible center,y= 0.3460 Hollow sphere with inert core,y= 0.7937

� (%) – 0.15 0.30
γ 0.412 0.412 0.407

thatSp should exhibit continuous normal curvatures over its
extension. However, this restriction can be relaxed by ask-
ing that the continuity condition holds within a number of
sections in which the external surface can be divided; hence,
admitting curvature jumps between sections.

For example, consider a pellet formed by a circular cylin-
der of heightH and radiusRp and two hemispherical heads
of the same diameter at both ends (Fig. 1). This surface is
smooth, in the usual sense that the normal vector can be
unambiguously defined at each of its points, but across both
circles bounding the cylinder and the hemispheres the nor-
mal curvature in the direction parallel to the axis presents
a jump (between 0 and 1/Rp). Eqs. (22)–(24) can indeed
be straightforwardly applied to this geometry with no fur-
ther constraints than Eqs.(11b), (14d) and (15b). This seems
to contradict the condition for neglectingLSF(Y ) (see also
Appendix A), requiring that curvatures do not undergo large
variations. However, when such variations are confined to
curves onSp (i.e., to a subset of lower dimension), as for the
circles in the example, they do not affect the overall validity
of Eqs.(22)–(24).

For the catalytic body just considered,ΥS = 1/Rp on the
cylindrical portion andΥS = 2/Rp on the spherical caps. Then
Γ (Eq.(24)) becomes:

Γ

(
4 + H

) (
4 + 3H

)

T
s s
f

F pher-
i

4.1. The use ofΓ as a shape factor

Buffham [10] defined a quantity called compactness to
characterize the shape of particles and discussed about its
potential use for a variety of technological and scientific
applications. In that paper, the use of compactness (here
denoted byQ) for the evaluation of effectiveness factor
in catalytic pellets with uniform activity was quantitatively
assessed. The relation betweenQ and the parameterΓ at
uniform activity (Eq.(24)) is:

Q = 1.5Γ = 3
2�(ΥS)av (26)

The factor 3/2 rendersQ= 1 for a sphere. Buffham[10]
pointed out different reasons whyQ can be suitable to repre-
sent the shape of particulate materials in several applications.

In particular, when considering different geometries rep-
resenting smooth catalytic pellets with the same value ofQ,
a remarkable similarity was found for the effectiveness fac-
tor η of a first order reaction,3 compared on the basis of the
same value ofΦ. The two series of results in his paper, for
Q= 0.75 and 0.5, are summarized inTables 2 and 3, where
γ is a geometric parameter that allows approximatingη at
low values ofΦ [1,5]. In particular, for a first order reaction,
η≈ 1− γΦ2.

As pointed out by Buffham[10], the hollow sphere with
pellet,
lts in
nt
ples,
nt
g the
arate

ering

ls are
rcu-
t the

-

= Rp Rp

6
(
2 + H

Rp

)2
(25)

aking H = 0 in Eq.(25), we obtain the resultΓ = 2/3 for a
phere, whileH → ∞ leads to the valueΓ = 1/2 that hold
or an infinitely long circular cylinder.

ig. 1. Sketch of the pellet formed by a circular cylinder and two hemis
cal heads.
accessible center cannot be related to a real catalyst
but it provides a simple geometric alternative. The resu
Tables 2 and 3suggest thatQ (hence,Γ ) can be an excelle
correlator for the shape of catalyst pellets. Other exam
including cylindrical pellets of finite length and differe
cross sections can be included, but this requires addin
effect of edges. These results will be presented in a sep
contribution.

Nonetheless, counter-examples arise when consid
washcoats in monolithic reactors. InTable 4, monoliths with
circular cross-section and square cross-section channe
considered. The washcoat will be naturally circular in ci
lar channels, but the washcoat tends to grow thicker a
corners of square channels. The case considered inTable 4

3 When invoking “first order reaction”, it is assumed thatrA = kCA, isother
mal system and thatNA =−DA�CA, with constantDA; hence,Y=CA/CAS,
r(Y) = Y.
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Table 4
Comparison ofη for different shapes showingQ= 0.285 (Γ =−0.19);y= a/b;γ: defined in the text;�: maximum relative difference

Catalyst Cross-section Dimensions � � (%)

Monolith channel square cross-section (SCS) y= 0.96 0.779 –

Four-hole-cylinder accessible from inner and outer surfaces y= 0.306,c1 = 0.634 a,c2 = 0.634 a 0.419 16.5 (Φ= 1.42)

Monolith channel circular cross-section (CCS) y= 0.851 0.306 23.8 (Φ= 1.42)

is one of the four examples analised by Papadias et al.[2].
The third geometry is that of a four-hole-cylinder (accessible
from the outer and inner perimeters), and it closely corre-
sponds to the shape of a commercial pellet, although it is
here assumed as being infinitely long. The three geometries
presentQ=−0.285 (Γ =−0.19). The negative compactness
is a feature of washcoat geometries. Now, the effectiveness
factors of a first order reaction show large discrepancies
among the three shapes. The reason for this behaviour is
that the three geometries show considerable different val-
ues of the parameterγ. In particular, a very high value
of γ arises for the washcoat in the square cross-section
channel.

These results indicate thatQ, or Γ , does not always suf-
fice to characterize quantitatively the behaviour of a catalytic
body. As parametersΓ andγ control the behaviour at high
and low reaction rates respectively, it seems to be necessary
that both should match (at least in an approximate sense) for
different shapes to show the same behaviour. This happens
in the examples ofTables 2 and 3, but it does not hold in
Table 4.

We should emphasize at this point that the importance
of being capable of characterizing geometrically a catalytic
body is that simple geometries can be employed to predict
the behaviour of geometrically complex catalytic bodies. For
example, both the infinitely long four-hole-cylinder and the
w odies
s lent
s e, the
h esult

shows that it can only provides a rough approximation for the
four-hole-cylinder.

The parameterΓ is just a geometric parameter when
the activity is uniform, Eq.(24), and it is composed of a
geometric term plus an activity dependent coefficient when
the activity is not uniform (Eq.(21)). Thus, in general, a
given catalytic body should have to be characterized, as
far as the high reaction rate behaviour is concerned, by
the combined effects expressed in the definition ofΓ in
Eq.(21).

It is important to stress that the parameterΓ occurs in the
second order correction term of Eq.(23) as a factor separa-
ble from the factorR that depends on kinetic parameters.
Actually, this property allows the chance of characteriz-
ing a catalytic body by its value ofΓ , independently of
kinetics. It is also worth recalling thatR = I2/I1 not only
depends on kinetic parameters, but on transport coefficients
and on the state variables atSp (except in some elementary
cases).

4.2. The use of Eq.(23) to complement numerical
calculations

Irrespective of the use ofΓ as a shape parameter, Eq.
(23) can be directly employed to evaluateη provided that
the appropriate conditions for its use have been reached. In
p n
o med
w
h ost
ashcoat in the square cross-section channel are 2D b
o it would be desirable to find a 1D body with an equiva
hape and use it as a geometric model. For this cas
ollow cylinder could have been such a model, but the r
; articular, for a precise evaluation ofη, a numerical solutio
f the 2D or 3D conservation equations can be perfor
henΦ is relatively low and Eq.(23)can be used whenΦ is
igh, a strategy that will avoid the very high numerical c
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demanded at high values ofΦ. For this application, it is impor-
tant to recall the main constraints for Eq.(23)(as expressed in
Eqs.(11b), (14d) and (15b)) that, in principle, should be sat-
isfied at each point onSp. Becauseλ= �/Φ, these constraints
impose a lower limit on the values ofΦ. The minimum value
Φm at which Eq.(23) can be employed varies, mainly with
the geometry. For a first order reaction and uniform activ-
ity, Φm ≈ 1 for a sphere andΦm ≈ 6 for the washcoat on the
square channel considered inTable 4. According to our cal-
culations still in progress, these examples provide extreme
values ofΦm; more typical and frequent values areΦm ∈ [2,
2.5]. In any case, the magnitude of the second order correc-
tion (RΓ /Φ) in Eq. (23) can reach in practice up to about
30%.

4.3. The effect of external transport limitations

It is important to consider the influence that external trans-
port limitations can exert on the assumption about uniform
state variables onSp (assumption (a) in Section2). We first
note that Eq.(18) for the local fluxNAS,highwill be still valid
if the state variables are not uniform (except for extreme
gradients overSp). Hence, the local composition can be
evaluated from local conservation balances for each generic
speciesj:( )

ase
:
lter
pres-
e].

s

e
d
e-

o-
e
will

pose

e

whereKj = ∫
Sp

kmj dS, andRhigh is expressed by Eq.(22).
Then

[{CjS} : uniform onSp]

(
νj

νA

)
JA(a1/2

S )avI1

λ

×
[
1 − R

λ

�
Γ

]
=
(

Kj

Sp

)
(CjF − CjS) (28b)

Eq. (28b) involves an overall set{CjS} that represents uni-
form state variables overSp.

In general, differences between values ofRhigh using
either local values of{CjS}(i.e., from of Eq.(27b)) or an
overall set{CjS}from (28b) will depend on the extend of
variations of the quantities{aS, AS, ΥS, kmj} over Sp, but
also on the average impact of the external limitations. For
example, if we tolerate differences less than 2%, calculations
for a first order reaction show that if the net effect of external
limitations onRhigh is not higher than around 10%, values
of km (uniformly distributed overSp) can vary up to six-fold.
On the other hand, ifkm varies in less than around 2.5-fold,
the net external transport effect can be of any strength and
Eq.(28b)will still be accurate.

In practice,km can effectively undergo strong changes over
Sp (a brief discussion in this regard is given below) that will
directly influence the results from Eq.(27b), but variables
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t
t e,
w
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NAS,high = kmj(CjF − CjS) (27a)

whereCjF is the average concentration in the fluid ph
andkmj is the local mass transfer coefficient forj [Remark
more general expressions for the external flux will not a
the significance of the present discussion; also, an ex
sion analogous to Eq.(27a) can be used for temperatur
Expressing in Eq.(27a)NAS,high from Eq.(18)

[{CjS} : variable onSp]

(
νj

νA

)
JA

×
[
a

1/2
S

I1

λ
− I2(ΥS + AS)

]
= kmj(CjF − CjS) (27b)

If at least one quantity of the set{aS, AS, ΥS, kmj} change
over Sp, the local composition{CjS} will vary over Sp. In
any case, after solving Eq.(27b) for {CjS} (considering th
dependence ofJA, I1, I2 andλ), NAS,high can be integrate
overSp to obtainRhigh. If this is our final purpose, the us
fulness of Eq.(18) for NAS,high is evident.

However, if{CjS} turns out to be non-uniform, this pr
cedure preventsRhigh from being written in terms of th
parameterΓ , and its meaning as a relevant shape factor
become obscure without further analysis. With this pur
in mind, let us assume that uniform values{CjS} apply on an
approximate basis. Then, instead of Eq.(27a)we can use th
overall expression:(

νj

νA

)
Rhigh = Kj(CjF − CjS) (28a)
f the catalyst side,aS, AS, ΥS, are not likely to cause
imilar influence. In fact, expressions(14d) and (15b)restrain
he effect ofAS andΥS in the left-hand side of Eq.(27b)
o 20–30%, andaS will be usually almost uniform. Henc
e can conclude that the left-hand side of Eq.(27b) will
e not a significant source for non-uniform values of{CjS}.
herefore, instead of taking local values ofaS, AS andΥS

n Eq. (27b), it will be still accurate to take their averag
verSp. Thus, the approximate, but accurate, local cond
uggested to replace Eq.(27b)is:

{CjS} : variable onSp]

(
νj

νA

)
JAI1(a1/2

S )av

λ

×
[
1 − R

λ

�
Γ

]
= kmj(CjF − CjS) (29)

hich shows that the meaning ofΓ will be preserved, eve
hen{CjS} varies onSp.
It seems appropriate at this point to consider briefly

ctual magnitude of external transport limitations, at l
n the case of one-phase flow. In monolithic reactors,
sual laminar regime and large ratios of channel to cata
ross-section areas increase the relative impact of ex
imitations, i.e., the asymptotic regime will be reached al
ith significant external effects. This can be checked by

ng realistic values of geometric and transport propertie
oth, the channels and the washcoat. For the non-cir
hannels studied by Hayes et al.[11], km evidenced signif
cant intrinsic variations around the perimeter. Nonethe
xcept in some instances of very strong external lim
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tions (i.e., very low values ofCAS/CAF) changes ofCAS
around the perimeter were not larger than±30% of the
average.

On the other hand, the impact of external limitations is
expected to be weaker in packed beds, since inertial or turbu-
lent flow regimes prevail and ratios of catalyst to interstitial
volumes are large. Hence, it will be usual to find practi-
cal cases combining the asymptotic regime and negligible
external limitations, although counterexamples cannot be
ruled out. Local variations ofkm around the particle take
place primarily due to boundary layer effects that in turn
depend on the influence of neighbouring particles (contact
points) and on the shape of the particle. For example, Gille-
spie et al.[12], measured heat transfer coefficients that var-
ied by a factor of 2–4 around a test sphere in a randomly
packed bed. As expected, the distribution ofkm notoriously
changed with the specific location of the test sphere in the
bed.

We can conclude that the effect of external transport limi-
tations cannot be ignored for fast reaction conditions as those
leading to the asymptotic regime, but instances of significant
local effects will be scarce. In any case, it is most probable
that the role ofΓ as a significant shape parameter will hold
up.

4.4. Extension to multiple reactions
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already possible, due to the local dependence of transport
parameters.

5. Conclusions

The main results of this paper are Eqs.(21)–(24)express-
ing the effective reaction rate in terms of (1/Φ) and (1/Φ)2

for smooth 2D or 3D catalyst shapes. Conditions at which
these expressions apply are termed asymptotic regime. Eqs.
(21)–(24)have been developed from the choice of a proper
curvilinear coordinate system that facilitates introducing the
condition of small penetration depth to approximate the con-
servation equation by a unidirectional form (Eqs.(17)).

Significant restrictions for such approximation can be
expressed in terms of activity gradients at the external surface
Sp (Eq.(15b)), curvature properties ofSp (Eq.(14d)) and the
depth of the catalyst measured fromSp (Eq.(11b)).

ParameterΓ (Eq. (21)) defines the magnitude of the sec-
ond order correction and depends on the integral overSp of
the average curvature and of the activity gradient. Based on
qualitative arguments and for uniform activity, Buffham[10]
proposed a quantity proportional toΓ as a general shape fac-
tor for granular materials and provided a number of examples
showing that the effectiveness factor for different geome-
tries with the same value ofΓ were very much the same at
a ime
c least
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t by a
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So far, we have dealt with a single reaction. If a simple
odel is desirable for avoiding 2D or 3D calculations w
single reaction takes place, much more significant wi

he possibility of such approximation for multiple react
ystems. In principle, we should ask ifΓ , just as define
n Eq. (21), is also useful for characterizing such type
ystems.

Fortunately, the answer is affirmative, as shown
ppendix C. It is shown there that when the whole rea

ng system is in the asymptotic regime, the second o
orrection for all the effective reaction rates will depe
n the same parameterΓ (see Eq. C17). The coefficien

hat play the role ofI1 and I2 will be no longer avail
ble in a close way, but the rateRhigh can be calculate

rom a single 1D numerical evaluation, as explained
ppendix C.
The above discussion on the effect of external trans

imitations remains valid for multiple reactions, and exp
ions similar to Eqs.(27)–(29)can be written from the fo
ulation given inAppendix C.
Assumption (b) in Section2, concerning the transpo

odel inside the catalyst, deserves a final commen
s shown in Appendix C for the general case of mu
iple reactions that 1D conservation equations and
ux expressions for the asymptotic regime (i.e., E
17a) and (18)for a single reaction and Eqs.(C9) and
C16) of Appendix C for the general case) can be w
en without the need of imposing assumption (b). Inst

closed equation forRhigh (e.g., as in Eq.(22)) is not
ny value ofΦ. The expressions for the asymptotic reg
onfirm that such parity among different geometries at
equires thatΓ be nearly the same, but it has been shown
hat the behaviour at low reaction rates, characterized
ifferent shape factor (γ) should also match. The importan
f defining suitable shape factors stems in the possibili
nding 1D geometric simplifications for complex catal
hapes. The parameterΓ will be crucial to that end, and
ystematic study is being presently carried out. The cu

nvestigation includes extending the analysis of the asy
otic regime for catalyst shapes showing edges. In ess
his involves introducing an additional term to the express
ere developed.

Another important use of the expressions for the asy
otic regime is for complementing a numerical evalua
f the conservation equation: a numerical method ca
mployed for the relatively smooth concentration fields at
alues ofΦ, while the asymptotic expression can be use
argeΦ, when steep (and difficult to evaluate) solutions t
lace.

Although most of the material in this paper is discusse
he basis of a single reaction, it has been shown inAppendix

that the main conclusions hold for multiple reactions, i
f them have reached the asymptotic regime: the signific
f parameterΓ is maintained and an equivalent formulat
pplies. A general form of conservation equations (1D

erential equations holding on a local basis overSp) for the
symptotic regime, without assuming uniform state varia
nSp and for an arbitrary transport model inside the cata

s also presented inAppendix C.
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Appendix A

A.1. Order of magnitude estimate ofλ2
SLSF(Y )

In this appendix, we will undertake the evaluation of the
magnitude ofλ2

SLSF(Y ) in Eq. (11a)at low values ofλ. To
this end, the concept of scale of variation will be useful.
The scale of variation of a quantityQ in the direction of
coordinatei, ∆Q,i (≥0), is such that it allows an order of
magnitude estimate of the physical derivative, according to
O(∂Q/∂si) = Q/�Q,i .

Consider first equation(9c) for estimating the order of
magnitude of the geodesic curvaturesκg,i . We can rewrite the
left-hand side of Eq.(9c)as:

∂κi −1 ∂Ri
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u
A er,
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a fic
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w lue
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s e
a

one
a as a
p any
p
t
a
r

depend on the particular choice of (ξ1, ξ2). If we take stan-
dard spherical coordinates with the equator passing through
the umbilic point, it can be shown thatκg,i = 0 at the umbilic
point for both, i = 1, 2. Thus, the only relevant geometric
quantity inLSF will be the radiusRp.

With these considerations in mind, we will continue work-
ing with the general caseκa �= κb and keeping the estimate
|κg,i | =O(1/Rm), as the existence of umbilic points does not
introduce any essential singularity.

The magnitude ofλ2
SLSF(Y ) can be estimated by assum-

ing in a first step that it is negligible and solving the resulting
equation (i.e., Eqs.(17) in the main text). From the solu-
tion obtained, we should check in a second step if neglecting
λ2

SLSF(Y ) was sound.
The type of solutions from Eqs.(17) is analyzed in

Appendix B. Eq.(B13)can be written as:

Y ≈ Y0(ζ) + (λSΥS)YΥ (ζ) +
(

λSa
′
S

aS

)
Ya(ζ) (A1)

where maximum absolute values of the functionsY0(ζ),
YΥ (ζ) andYa(ζ) and of their derivatives respect toζ can be
regarded as being around the unity. Recalling thatζ = ξn/λS

andλS =λ/a1/2
S , it can be visualized from Eq.(A1) that the

dependency ofY on the coordinatesξa and ξb will arise
throughout the dependency ofΥ anda on them. We can
e
e

T
r
m is
t s for
o dged
a
(
b
i
E of
E

h varia-
t e
s ction,
�

hS,j∂ξj
=

R2
i
hS,j∂ξj

e will assume that the scale of variation of the radiu
urvatureRi will not be shorter than|Ri |. Cases not satisfyin
his condition will be hard to find in catalytic bodies.

Taking�Ri,j ∼ |Ri | (i = a, b;j = a, b), we obtain an (usuall
pper estimate of|κg,i | from Eq.(9c): |κg,i | =O[κ2

i /(κa− κb)].
ssuming thatκa andκb are not very close to each oth
e can simplify this estimation by writing|κg,i | =O(1/Rm),
hereRm = min{|Ra|, |Rb|} (Eq.(14c)of the main text).
The estimate|κg,i | =O(1/Rm), for i = a, b, will not longe

old around an umbilic point of the surface. An umbilic po
s an isolate point on the surface at whichκa =κb (equiv-
lently, Ra = Rb), and it is a singular point for the speci
oordinates (ξa, ξb): along any direction on the surface le
ng to an umbilic point,κa→ κb and for the coordinate curve
S,i → 0,κg,i → ∞ (i = a or b). As a result, some of the ter
n LSF (Eq. (7b)) become individually undetermined, b
henLSF is properly handled as a whole, a regular va
rises for it. This is so because the LaplacianLSF is an invari-
nt (zero order tensor), and as such can be evaluated fro
uitable pair of coordinates (ξ1,ξ2), a condition that holds tru
nywhere, but in particular around the umbilic point.

This can be illustrated by acknowledging that the z
round an umbilic point may be closely represented
ortion of a spherical surface. Employing for this zone
air of orthogonal coordinates (ξ1, ξ2) substituting (ξa, ξb) in

he coordinate system, we will be able to replace Eqs.(9d)
nd (9e)with Υ i = Rpκg,i /(Rp − ξn), (i = 1, 2), whereRp is the
adius of curvature of the spherical surface. Now,κg,i will just
S S
xpress (∂Y/∂si) and∂(∂Y/∂si)/∂si (i = a, b) from Eq.(A1). For
xample, the first derivates are

∂Y

hi∂ξi
= ∂Y

∂si

= 1

2
ζ

[
Y ′

0(ζ) + (λSΥS)Y ′
Υ (ζ) +

(
λS

(
a′

S

aS

))
Y ′
a(ζ)

]

×
(

∂aS

aS∂si

)
+ λSYΥ (ζ)

(
∂ΥS

∂si

)
+ λSYa(ζ)

×
(

∂a′
S

aS∂si
−
(

a′
S

aS

)
∂aS

aS∂si

)
, i = a,b

hese expressions and those for∂(∂Y/∂si)/∂si (i = a, b) are
eplaced in the definition ofLSF(Y ) (i.e., in Eq.(7b)) to esti-
ate the magnitude ofλ2

SLSF(Y ). The resulting expression
oo long; therefore, we only highlight its essential feature
ur purpose: in addition to the terms already acknowle
s being∼1, there appearκg,i (i = a, b),ΥS, aS/|a′

S| and the
first and second) physical derivatives ofa′

S, aS andRi (i = a,
). All these quantities appear along with factorsλ2

S andλ3
S

n dimensionless terms. The terms inλ2
S arise fromY0(ζ) in

q. (A1), while those inλ3
S arise from the remaining part

q. (A1).
The activity a will usually not vary too much overSp;

ence, we conservatively can assume that the scales of
ion of aS, a′

S, ∂aS/∂si , ∂a′
S/∂si (i = a, b) can be at most of th

ame order of magnitude as the scale in the normal dire
a = aS/|a′

S|.
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We have assumed before that the scale of variation ofRi

in the directionsξa andξb is O(Rm). This estimate can be
extended to the scale of variations of the derivatives∂Ri /∂sj

(i = a, b;j = a, b).
We finally recall that|κg,i | =O(1/Rm) has been previously

assumed.
All these considerations along withλS� Rm and

λS� aS/|a′
S| (Eqs.(14d) and (15b)in the main text) allow

neglecting the terms inλ3
S and write

λ2
SLSF(Y ) = O

(
max

{
λ2

S

(aS/a
′
S)2

,
λ2

S

Rm|aS/a
′
S|

})
(A2)

Appendix B

B.1. Evaluation of (dY/dζ)ζ=0 from Eqs.(17a)–(17c)of
the main text

Considering small values ofλS, the solution of Eqs.(17)
can be expressed by a perturbation series of the form

Y = Y0(ζ) + λSY1(ζ) + o(λS) (B1)

where neitherY0 norY1 depends onλS. Accordingly,r(Y) is
expanded as

r

w
a

Z

ζ

ζ

F

ζ(

T r
d ctice
t
v

k nd
t

andζ, can be alternatively taken as the independent variable.
By definingp= dY0/dζ, Eq.(B3a)is re-written as:

p

(
dp

dY0

)
= r(Y0) (B5)

By separation of variables and considering Eq.(B3b), we
obtain the solution

p = −I(Y0)1/2 (B6a)

I(Y0) = 2
∫ Y0

0
r(Y ) dY (B6b)

Then

p(0) =
(

dY0

dζ

)
ζ=0

= −I1 (B7a)

I1 = [I(1)]1/2 (B7b)

To evaluate (dY1/dζ)ζ=0, the left-hand side of Eq.(B4a) is
expressed by:

d2Y1

dζ2
− r′(Y0)Y1 = d

dY0

[
p

(
dY1

dζ
− dp

dY0
Y1

)]
(B8)

Taking into account the definitionp= dY0/dζ and Eq.(B5),
the identity(B8) can be checked by carrying out the differ-
e

.
(

I
a

p

U∫

S
t -
c
z

−

B
a

(

(Y ) = r(Y0) + r′(Y0)(Y − Y0) + · · ·
= r(Y0) + λSr

′(Y0)Y1 + · · · (B2)

herer′ = dr/dY. Replacing Eqs.(B1) and (B2)into Eqs.(17)
nd collecting terms of zero and first order inλS:

ero order :
d2Y0

dζ2
= r(Y0) (B3a)

= 0 : Y0 = 1;

→ ∞ : Y0 → 0,

(
dY0

dζ

)
→ 0 (B3b)

irst order :
d2Y1

dζ2
− r′(Y0)Y1 = ΥS

dY0

dζ
+ a′

S

aS
ζr(Y0)

(B4a)

= 0 : Y1 = 0; ζ → ∞ : Y1 → 0,

dY1

dζ

)
→ 0 (B4b)

erms in (λSa
′
S/aS)2, (λSΥS)2, (λSa

′
S/aS)(λSΥS) and highe

imensionless terms are not being considered, so in pra
he truncated solutionY= Y0 +λSY1 will be valid for small
alues of (λSa

′
S/aS) and (λSΥS).

The evaluation of (dY0/dζ)ζ=0 from Eq. (B3) is well
nown. In what follows, it is convenient to keep in mi
hat Y0 varies monotonically withζ and therefore both,Y0
ntiation of the square brackets.
Replacing Eq.(B8) in (B4a)and usingp= dY0/dζ and Eq

B5) in the right-hand side of it,

d

dY0

[
p

(
dY1

dζ
− dp

dY0
Y1

)]
= ΥSp +

(
a′

S

aS

)
ζp

dp

dY0

ntegrating both sides fromY0 = 0 (ζ → ∞) to Y0 = 1 (ζ = 0)
nd using the boundary conditions(B4b):

(0)

(
dY1

dζ

)
ζ=0

= ΥS

∫ 1

0
pdY0 +

(
a′

S

aS

)∫ p(0)

0
ζpdp

(B9)

sing integration by parts for the last integral:

p(0)

0
ζpdp = 1

2
ζp2

∣∣∣ζ=0

ζ→∞
− 1

2

∫ ζ=0

ζ→∞
p2 dζ (B10)

inceY0 → 0 asζ → ∞ (Eq. (B3b)), its derivativep should
end to zero faster thanζ−1 asζ → ∞. Hence, we can con
lude that the first term in the right-hand side of Eq.(B10) is
ero. In turn, the second term can be written as:

1

2

∫ ζ=0

ζ→∞
p2 dζ = −1

2

∫ 1

0
pdY0

y substituting these results in Eq.(B9)and using Eqs.(B6a)
nd (B7a)for p, y, p(0), we finally obtain:

∂Y1

∂ζ

)
ζ=0

=
[
ΥS − 1

2

(
a′

S

aS

)] ∫ 1
0 [I(Y )]1/2 dY

I1
(B11)
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Taking into account Eqs.(B7a) and (B11),(
∂Y

∂ζ

)
ζ=0

≈
(

∂Y0

∂ζ

)
ζ=0

+ λS

(
∂Y1

∂ζ

)
ζ=0

= −I1 + I2λS

[
ΥS − 1

2

(
a′

S

aS

)]
(B12)

where

I2 = 1

I1

∫ 1

0
[I(Y )]1/2 dY

We note that in order to evaluate (dY1/dζ)ζ=0, Eq.(B11), there
was no need to find out an expression for the actual profile
Y1(ζ). As regards the analysis carried out inAppendix A, it is
however important quoting thatY1 can be formally expressed
asY1 =ΥSYΥ (ζ) + (a′

S/aS)YA(ζ). This arises by considering
that Y0(ζ) is a function ofζ independently determined and
hence, Eqs.(B4a) and (B4b)constitute a linear system forY1
with source terms proportional toΥS and (a′

S/aS). Then, Eq.
(B1) can be written as:

Y = Y0(ζ) + (λSΥS)YΥ (ζ) +
(

λSa
′
S

aS

)
Ya(ζ) + o(λS)

(B13)

Besides, from Eq.(B4) it is possible to conclude that the
functionsY (ζ) and Y (ζ) will have the unity as order of
m
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reaction scheme A→ B → C, both the molar concentration of
B and the rate of the second reaction may be nil at the surface;
therefore they are not suitable as reference values. Also, we
defineFj =Nj /(Dj,refCj,ref); whereDj,ref are reference values
that represent effective diffusivities. Conservation equations
become

−∇ · Fj = a

λ2
j

rj, j = 1, . . . , J (C1)

whereλ2
j = [DjCj /πj ]ref. Employing the same coordinate sys-

tem (ξa, ξb, ξn) as in the main text, the divergence in Eq.(C1)
takes the form:

∇ · Fj =
∑
k

1

H

∂

∂ξk

(
H

hk

Fj, k

)
;

H = hahbhn; k = a, b, n; j = 1, . . . , J (C2)

andFj, k is the physical component ofFj in the directionξk.
Assume now that chemical equilibrium is reached at a

given distance (penetration depth) from the external surface,
short enough to consider the pellet as a semi-infinite medium
and to ignore the divergence over the surfaces parallel toSp
(i.e., the surfaces defined byξn = const.). The latter assump-
tion implies that the physical derivatives of concentrations in
the directionsξa andξb are negligible. The only significant
c
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ppendix C

.1. Analysis of the asymptotic behaviour for multiple
eactions

Conservation balances can be written at steady sta
ach ofJ reacting species−�·Nj = aπj (j = 1, . . ., J), where
j andπj are the flux and net consumption rate of specij,

espectively. Eventually, one of these suffices can repr
he heat flux and the net rate of heat consumption by
hemical reactions.

We will assume that all the species enter the cat
rom the same surfaceSp, the fluxesNj are related (throug
onstitutive equations) to the physical derivatives of the
entrationsCk (k= 1, . . ., J) and the ratesπj depend onCk
k= 1, . . ., J). Eventually, one of theCj may correspond t
emperature.

Assumptions (a) and (b) stated at the beginning of Se
in the main text are not imposed yet. In particular, this me

hat the concentration field may not be uniform onSp. Also,
o stoichiometric condition is imposed on the ratesπj . They
an be related through a single reaction or multiple react

Let us introduce dimensionless variablescj = Cj /Cj,ref,
j =πj /πj,ref, where the reference valuesCj,ref, πj,ref are such
hatcj andrj will reach, and not largely exceed, values aro
he unity within the pellet. Proper reference values may n
hose makingcj = 1 andrj = 1 atSp. For example, for a serie
omponent of the flux will beF j,n (in the directionξn). For
eneral anisotropic mediaF j,n will depend on the physic
erivatives of concentrations in the three spatial direct
ut as those in the directionsξa and ξb are negligible, th
onstitutive expression forF j,n can be in practice reduced

j, n = −
J∑

i=1

ϑji

(
dci
dξn

)
= −ϑj · dc

dξn
(C3)

herec= (c1, . . ., cJ)T andϑj = (ϑj1, . . ., ϑjJ)T is a vector o
imensionless transport coefficients (generically depen
nc and position).

It is assumed that valuesDj,ref have been defined in suc
ay that the order of magnitude of the largest coefficienϑji

or eachj is the unity. Definingλ= max{λj} and, for a loca

alue ofaS, λS =λ/a1/2
S , the penetration depth andλS will be

f the same order of magnitude, if the reference valuesCj,ref,
j,ref, Dj,ref have been properly chosen. For the condit
tated above, Eq.(C2)is reduced to the following 1D proble
ocally defined:

1

(1 − ζλSκa)(1 − ζλSκb)

× d

dζ

(
(1 − ζλSκa)(1 − ζλSκb)ϑj · dc

dζ

)
= a∗υjrj (C4)

here (stretched variable)ζ = ξn/λS, υj = (λ/λj)2 and with the
oundary conditions:

= 0 : c = cS (C5a)
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ζ → ∞ :
dc

dζ
= 0 (C5b)

The dimensionless activitya* is defined in the same way as
in the main text and expressed according to expression(15a),

a∗ = 1 +
(

a′
S

aS

)
ζλS + 1

2

(
a′′

S

aS

)
(ζλS)2 + · · · (C6)

Consider forλS restrictions similar to those introduced in the
main text (Eqs.(14d) and (15b)),

λS � Rm, λS �
∣∣∣∣aS

a′
S

∣∣∣∣ (C7)

As in the case of a single reaction, the condition dc/dζ = 0 in
Eq.(C5b)will be already reached for practical purposes when
ζ reaches a few units, provided that Eq.(C7)are satisfied. In
addition, we can neglect the terms in (ζλS)2 in Eqs.(C4) and
(C6). Then, Eq.(C4)becomes after rearranging

d

dζ

(
ϑj · dc

dζ

)
− λSΥS

1 − ζλSΥS
ϑj · dc

dζ
≈ [1 − 2λSASζ]υjrj

(C8)

whereΥS =κa +κb andAS =−(1/2)a′
S/aS. We should keep

in mind that in Eq.(C8) and in the rest of equations in this
appendix the sign “≈” means that terms of lower order of
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To this end, note that on account of the small values
assumed forλSAS the approximation exp(−2ζASλS) is as
precise as [1− 2ASλSζ] for the activity term. Hence, we can
write alternatively from Eq.(C9)

d

dζ

(
ϑj · dc

dζ

)
− λSΥSϑj · dc

dζ
≈ exp(−2ζλSAS)υjrj

(C10)

The following change of variables is now employed:

6
ζ = 1 − exp(−ζλSAS)

λSAS
(C11)

Hence, Eq.(C10)turns into

d(ϑj · (dc/d6
ζ))

d6
ζ

− λS(ΥS + AS)

1 − 6
ζλSAS

ϑj · dc

d6
ζ

≈ υjrj (C12)

Considering restrictions(C7) and the transformation(C11),
variables6ζ andζ will be very similar to each other up to values
of around unity. Then, taking (1− 6

ζλSAS) ≈ 1 in Eq.(C12)
will not change the precision of the results and we finally
obtain:

d(ϑj · dc/d6
ζ)

d6
ζ

− λS(ΥS + AS)ϑj · dc

d6
ζ

≈ υjrj (C13)

From Eq.(C11), whenζ = 0: 6
ζ = 0. Whenζ → ∞: 6

ζ→ “a
l ,
a -
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agnitude have been neglected.
Considering that the second term of the left-hand sid

q.(C8)is already of an order of magnitude less than the
erm, we can approximate (1− ζλSΥS) ∼= 1. Then,

d

dζ

(
ϑj · dc

dζ

)
− λSΥSϑj · dc

dζ
≈ [1 − 2λSASζ]υjrj (C9)

t is interesting to mention that for Eq.(C9) (or (C4)) the
uxes Nj,n =Fj,n(Dj,refCj,ref) keep the same stoichiomet
elationships as the ratesπj do, a condition that holds fro
he unidirectional nature of the problem, along with co
ions (C5). By considering the stoichiometric relationsh
or a single reaction and the fluxes defined as in Eq.(C3), the
rocedure outlined in Section2 of the main text can be ca
ied out to obtain, at the end, the parameterJA (Eq.(1d)) and
he relationships between the concentration of the diffe
pecies and variableY. Then, it will be possible to recogni
hat Eq.(17a)is a special case of Eq.(C9).

It is obvious that in Eq.(C9) the quantitiesΥS andAS do
ot occur in an additive way. The same happened with
quivalent equation(17a)in the main text. However, the pr
edure followed inAppendix Bto obtain the flux atSp from
q.(17a)led to conclude that the main effects of both para

ers take place additively, i.e.,NAS,highdepends on (ΥS + AS),
q.(18)in the main text. Unfortunately, the whole proced

n Appendix Bcannot be followed one-to-one for multip
eactions (because there is more than one independen
ariable). Nonetheless, it is still possible to transform
C9)and confirm that for multiple reactions both parame
lso exert their main effects additively.
e

arge value” [∞ if AS < 0, (λSAS)−1 if AS > 0]. Therefore
ccounting for Eqs.(C5), we can take in practice the follow

ng boundary conditions for Eq.(C13)

= 0 : c = cS (C14a)

→ ∞ :
dc

d6
ζ

= 0 (C14b)

e can also conclude from Eq.(C11) that (ϑj · dc/dζ)�=0 =
ϑj · dc/d6

ζ)6ζ=0. Therefore, the solution of Eqs.(C13) and
C14) will directly allow the evaluation of the fluxes atSp.
q.(C13)is the desired result concerning the sum (AS +ΥS).
A perturbation analysis, similar to that employed

ppendix B for a single reaction, can be formally set
or Eq. (C13), by taking [λS(AS +ΥS)] as the perturbatio
arameter. The solution will show the form:

= c0(6ζ) + c1(6ζ)λS(AS + ΥS) + · · · (C15)

herec0, c1 will also depend on kinetic and transport para
ters and oncS. The value (ϑj · dc/d6

ζ)6ζ=0 follows from Eq.
C15), andNjS,high= Dj,refCj,ref(1/λS)(ϑj · dc/d6

ζ)6ζ=0 can be
valuated and expressed as:

jS,high = Dj,refCj,ref

[
1

λ
I1,ja

1/2
S − I2,j(ΥS + AS)

]
(C16)

here the coefficientsI1,j and I2,j depend on kinetic an
ransport properties and oncS.

We recall at this point that assumptions (a) and (b) st
n Section 2 of the main text are not required for E
C13)–(C16)to hold. Eqs.(C13) and (C14)can be solve
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on a local basis overSp to obtainNjS,high, which can be inte-
grated afterwards.

Instead, to obtain expressions like Eq.(22)in the main text
for Rj,high, we should impose assumptions (a) and (b) that
allow I1,j andI2,j (Eq. (C16)) to be uniform onSp. Then,
by integratingNjS,highoverSp and using definitions(20) and
(21) in the main text

Rj,high = Dj,refCj,refSp(a1/2
S )avI1,j

λ

[
1 − I2,j

I1,j

λ

�
Γ

]
,

j = 1, . . . , J (C17)

Thus, Eq.(C17) clearly shows that the second order cor-
rection inRj,high depends, as regards activity profiles and
geometry, on the same parameterΓ as for the case of a single
reaction (cf. Eq.(22) in the main text).

The coefficientsI1,j andI2,j will no longer available in
a close way and should be evaluated numerically. However,
the following way is better for actual computations ofRj,high.
Dividing Eq.(C17)by Sp and rearranging

Rj,high

Sp
= (NjS,high)av

= Dj,refCj,ref

[
1

λ
I1,j(a

1/2
S )av − I2,j(ΥS + AS)av

]

R
a
c
w

Eq.
(

Eq. (C19) clearly describes 1D diffusion and reaction in a
(hypothetical) catalytic body with cross-section area varying
according toS(6ζ).

References

[1] R. Aris, The Mathematical Theory of Diffusion and Reaction in
Permeable Catalysts, Oxford University Press, London, 1975.

[2] D. Papadias, L. Edsberg, P. Björnbom, Simplified method for effec-
tiveness factor calculations in irregular geometries of washcoats,
Chem. Eng. Sci. 8 (55) (2000) 1447–1459.

[3] S. Wedel, D. Luss, A rational approximation of the effectiveness
factor, Chem. Eng. Commun. 11 (1980) 245–259.

[4] E.E. Gonzo, J.C. Gottifredi, Rational approximation of effectiveness
factor and general diagnostic criteria for heat and mass transport
limitations, Catal. Rev. Sci. Eng. 25 (1) (1983) 119–140.

[5] N.J. Mariani, S.D. Keegan, O.M. Martı́nez, G.F. Barreto, A one-
dimensional equivalent model to evaluate overall reaction rates
in catalytic pellets, Chem. Eng. Res. Des. 81 (Part A) (2003)
1033–1042.

[6] A. Cybulski, J.A. Moulijn, Structured Catalysts and Reactors, Marcel
Dekker, New York, 1998.

[7] W.E. Stewart, Invariant solutions for steady diffusion and reac-
tion in permeable catalysts, Chem. Eng. Sci. 33 (1978) 547–
553.

[8] A. Burghardt, Transport phenomena and chemical reactions in porous
catalysts for multicomponent and multireaction systems, Chem. Eng.
Process 21 (1986) 229–244.

ss,

[ trary
. Sci.

[ coat
ci. 59

[ nter-
heres,
(C18)

ecalling the relation between Eqs.(C13) and (C16), we can
ppreciate from Eq.(C18)that (NjS,high)av (and henceRj,high)
an be computed from the numerical solution of Eq.(C13)
ith λS≡ λ/(a1/2

S )av and (ΥS + AS) ≡ (ΥS + AS)av.
We finally mention that an alternative way to express

C13)is by collecting the terms in the left-hand side:

d[S(6ζ)(ϑj · dc/d6
ζ)]

S(6ζ) d6
ζ

≈ υjrj, S(6ζ) = e−λS(ΥS+AS)
6
ζ (C19)
[9] E. Kreyszig, Differential Geometry, University of Toronto Pre
Toronto, 1959.

10] B.A. Buffham, The size and compactness of particles of arbi
shape: application to catalyst effectiveness factors, Chem. Eng
55 (2000) 5803–5811.

11] R.E. Hayes, B. Liu, R. Moxom, M. Votsmeier, The effect of wash
geometry on mass transfer in monolith reactors, Chem. Eng. S
(2004) 3169–3181.

12] B.M. Gillespie, E.D. Crandall, J.J. Carberry, Local and average i
phase heat transfer coefficients in a randomly packed bed of sp
AIChE J. 14 (3) (1968) 483–490.


	Behaviour of smooth catalysts at high reaction rates
	Introduction
	Problem statement
	Asymptotic behaviour at high reaction rates
	Expressing the Laplacian L(Y)
	Reduction of Eq. (10) at low values of lambda
	Analysis of lambdaSn
	Analysis of a*
	Analysis of lambdaS2LSF(Y)

	Expressing the effective reaction rate in the asymptotic regime

	Discussion
	The use of Gamma as a shape factor
	The use of Eq. (23) to complement numerical calculations
	The effect of external transport limitations
	Extension to multiple reactions

	Conclusions
	Acknowledgements
	Appendix A
	Order of magnitude estimate of lambdaS2LSF(Y)

	Appendix B
	Evaluation of (dY/dzeta)zeta=0 from Eqs. (17a)-(17c) of the main text

	Appendix C
	Analysis of the asymptotic behaviour for multiple reactions

	References


