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ABSTRACT 
Soil available water capacity (AWC) is an important factor affecting soil 
productivity in semiarid and subhumid environments and is mainly 
determined by the soil textural composition. As the soils of these 
environments usually present fairly uniform textures across depth, we 
hypothesized that it would be possible to accurately estimate the 
whole-profile AWC using surface information. Our objective was to 
test this hypothesis in the Argentine Semiarid Pampas. Information 
was collected from 152 sites where AWC was measured in 20 cm 
layers up to a depth of 140 cm or up to the upper limit of 
the petrocalcic horizon, when present. In each case, whole profile 
AWC was estimated using a one-step and a two-step approach, 
comparing multiple regression and artificial neural networks 
as modeling techniques. Both modeling methods were effective 
(R2 > 0.76, P < 0.05), however the former was chosen as no special 
software is required to run it, thus favoring simplicity. Models showed 
a strong interaction between surface AWC and soil depth and a simple 
nomogram was developed to estimate whole-profile AWC. Sampling 
and laboratory efforts should be significantly reduced using the model 
proposed in this paper. 
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Introduction 

In semiarid and subhumid regions, where rain-fed agriculture is conducted, moisture limits 
crop dry matter production during part of the growing season (FAO 1991). Soils are coarse 
textured (Noy-Meir 1973), the B-horizon is almost absent (USDA 2014), and carbonates 
can be present depending upon root penetration depth and amount of rainfall received 
(FAO 1975). Under these conditions, crop water supply is strongly related to soil available 
water capacity (AWC) (Wong and Asseng 2006). Whole-profile AWC information is 
relevant, as it enables farmers to make knowledgeable management decisions regarding 
crop selection and irrigation that would help maximize profitability (Hanson, Rojas, and 
Shaffer 1999). AWC also allows forecasting yield (Keating et al. 2003) and is a required 
input for simulation models (Williams, Jones, and Dyke 1990). 

AWC determination is laborious, time consuming, and requires access to special 
equipment (Klute 1986). Due to these limitations, many pedotransfer functions were 
developed to establish relationships between routinely measured soil properties and 
hydraulic properties at specific matric potentials (Rawls, Brakensiek, and Saxton 1982; 
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Bouma 1989). Many of these functions are frequently used without any local validation 
(Quiring and Legats 2008; Havrylenko et al. 2016). If these functions are not effective 
locally, it is necessary to measure the AWC or develop new estimation methods. 

Soil textural composition is a strong controlling factor of AWC (Schaap, Leij, and van 
Genuchten 1998). Usually, in sandy soils of semiarid areas, minor textural variations 
related to depth are found. This is the case in the Argentine Semiarid Pampas, where 
extensive sampling performed for National Soil Surveys (INTA 1980; INTA 1989; INTA 
2003) and a recent study (Romano, Alvarez, and Bono 2016) showed a rather uniform soil 
textural composition across depth. Therefore, we hypothesized that surface soil layer AWC 
might be an effective predictor of whole-profile AWC. Although previous attempts have 
been successful at estimating whole profile soil moisture content using surface information 
(Arya, Richter, and Paris 1983; Bono and Alvarez 2012), this procedure has not yet been 
tested for AWC estimates. 

The Argentine Pampas constitutes one of the most important grain producing regions of 
the world (Satorre and Slafer 1999). Approximately 50% of this area (30 Mha) is semiarid– 
subhumid, with coarse textured soils (Hall et al. 1992). A worldwide analysis showed that 
crop root distribution is concentrated in the first 150 cm of the soil profile (Jackson et al. 
1996). Consequently, most of the crop water consumption usually comes from the upper 
140 cm of the soil profile, especially in sandy semiarid environments (Cutforth et al. 2013). 
This has also been determined for some extensive crops in the Semiarid Pampas (Fagioli 
1973, 1983). Although the point of zero water extraction is approximately at a depth of 
2 m (Dardanelli et al. 1997), in this region good predictions of yield have been attained 
when measuring water retention properties in the 0–140 cm soil layer (Bono, De Paepe 
and Alvarez 2011). Currently, there are no locally suitable methods for whole profile 
AWC estimates, and pedotransfer functions taken from the literature are currently being 
used without previous validation (Alvarez 2009). The objective of this research was to 
develop a simple statistical approach to determine whole-profile AWC measuring only 
surface AWC. 

Materials and methods 

Study area 

The Argentine Pampas, is a vast 50 Mha plain located between 28°S and 40°S and 57°W 
and 68°W (Figure 1). Its natural vegetation is grassland. Mean annual temperature ranges 
from 14°C in the South to 23°C in the North and mean annual rainfall from 500 mm in the 
West to 1200 mm in the East. Soils were formed on Quarternary wind-transported loessoid 
deposits (Teruggi 1957). Superficial water may have played some role in the redistribution 
of this originally eolian sediment but the general phenomenon was a deposition of sandy 
materials in the West and finer particles in the East (Teruggi 1957). This sedimentary 
process determined the soil textural range from sandy in the West to clayey in the East. 
Clay neoformation is not significant in the region (Alvarez and Lavado 1998) and illite 
is the most common clay mineral (Alvarez and Lavado 1998; Berhongaray et al. 2013). 
Mollisols are the predominant soils formed on these loess-like materials (Alvarez and 
Lavado 1998). In many places along the West and the South of the region a petrocalcic 
horizon appears within the soil profile (Teruggi 1957). In areas with annual rainfall greater 
than 500 mm, rain-fed crops are mostly cultivated (Hall et al. 1992). Around 60% of the 
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Pampean area is under cropping with soybean (Glycine max (L.) Merr.), wheat (Triticum 
aestivum L.), corn (Zea mays L.), and sunflower (Helianthus annus L.) as main crops 
(MinAGRO 2017). 

Sampling and determinations 

Soil samples were collected from 152 sites during the 2000–2006 period in the Pampean 
subregion called the Semiarid Pampas (Figure 1a). Annual rainfall ranged from 500 to 
800 mm along the sampled sites, thus comprising semiarid to subhumid climate 
conditions. Soil moisture regimes, in this subregion were classified as aridic, ustic or udic 
depending upon location (SAGyP-INTA 1990; Liu et al. 2012) following the West-East 
climatic gradient. These sites were broadly distributed over an area of approximately 18 
Mha which allowed for regional coverage and were selected because they are subject to 
commonly used agricultural practices. The sampled soils were classified as Entic Haplustoll 
(65%), Typic Hapludoll (18%), Entic Hapludoll (11%), and others (6%) according to Soil 
Taxonomy (USDA 2014). Soil texture showed little variation as depth increased, as 
described before (INTA 1980, 1989, 2003). Six deep soil Hapludoll and Haplustoll profiles 
from sampled sites were randomly chosen from the National Soil Surveys (INTA 1980, 
1989, 2003) to illustrate their sand percentage across depth (Figure 1b and c). Although 
both soil types present a broad range of sand content, varying from 25% to almost 80%, 
a consequence of the loess deposition gradient that follows the wind direction, this 
percentage remains quite constant at different depths. Hapludolls appear to be deeper than 
Haplustolls and on average, the latter seem to have more sand in their profile. 

At each experimental site a pit was dug for soil profile description and bulk density 
determination via the cylinder method (Blake and Hartge 1986). Four samples per site were 

Figure 1. Location of the Pampas in the center of Argentina showing Udic, Ustic and Aridic soil 
moisture regimes according to National Soil Surveys (SAGyP-INTA, 1990). Gray dots indicate the 152 
sampled sites. (b) and (c) show sand percentages with depth of Hapludoll and Haplustoll soil profiles 
chosen at random from a previous extensive soil sampling performed for National Soil Surveys. This 
information is published in the National Soil Surveys of the provinces that correspond to the location 
of the sampled sites (INTA 1980, 1989, 2003).  
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taken from the pit walls every 20 cm down to a depth of 140 cm. When soils presented a 
petrocalcic horizon, samples were taken to its upper limit. Samples were manually 
homogenized and air dried in the laboratory. Texture (Gee and Bauder 1996) and organic 
matter (Nelson and Sommers 1996) were determined in the soil surface layer (0–20 cm). 
Hydraulic properties were determined at each site with the suction cell method as 
described by Klute (1986). For determination of hydraulic properties, soil samples were 
repacked in 5 cm in diameter � 1 cm high cylinders. Approximately 25 g of soil were 
packed in the cylinders to attain a bulk density of 1.25 g cm−3. This bulk density value 
was close to the mean bulk density of 1.29 g cm−3 for soils of this area (Alvarez et al. 
2014). Cylinders were placed on a porous ceramic plate and wetted by capillarity until a 
sheet of water was observed on the sample surface. The soil was weighted approximately 
48 h after that natural soil saturation was reached, when water dripping stopped. The plate 
was placed in a pressure pot (Soil Moisture equipment corporation, San Barbara California – 
USA) that applied a pressure of 33 kPa to determine field capacity and a pressure of 1500 kPa 
for wilting point determination. Eight artificially packed replicates per site and depth layer 
were measured using different samples for the determination of field capacity (FC) and 
wilting point (WP). When the coefficient of variation of these replicates was larger than 
10%, the hydraulic properties were measured again. Finally, samples were oven-dried at 
105°C during approximately 48 h and weighed. Weight difference between water stabilized 
and dried samples determined the soil water content at both mentioned matric potentials. 

AWC was calculated as the difference between FC and WP, and gravimetric water 
capacity was transformed into volumetric water capacity (mm) using bulk density. Surface 
soil layer AWC (AWC0–20 cm) was calculated as the difference between FC and WP of the 
upper 20 cm soil layer. The sum of AWC of all soil layers to the sampling depth of 140 cm 
or to the upper limit of the petrocalcic horizon represented the whole-profile AWC 
(AWC0–140 cm). Whole-profile AWC excluding the surface layer was also calculated 
(AWC20–140 cm). 

One-step and two-step soil AWC0–140 cm estimation 

Two modeling methods were contrasted: multiple regression vs. artificial neural networks. 
For both statistical methods, a one-step and a two-step approach were tested. In the one- 
step approach AWC0–140 cm was estimated using AWC0–20 cm, surface texture and organic 
carbon contents and sampling depth as predictors. In the two-step approach, AWC20–140 cm 
was estimated in the first step using all previously mentioned predictors and in the second 
step AWC0–140 cm was calculated as the sum of measured AWC0–20 cm and estimated 
AWC20–140 cm. 

Polynomial regressions that included linear, quadratic, and interaction effects were used 
(Shen et al. 2003). Multicollinearity among variables was checked based on the variance 
inflation factor (VIF) value (Neter, Wasserman and Kutnet 1990). Variables were con-
sidered as uncorrelated when the VIF value was 1, moderately correlated when the VIF 
value ranged from 1 to 5 and highly correlated when it was larger than 5. Stepwise 
regression adjustments were tested to select the simplest model with the highest R2 (Schaap 
and Bouten 1996). The significance of the model was determined at the P < 0.05 level 
through the F test, and terms were included in the regression only when they were 
statistically significant at the P < 0.05 level. A visual inspection of the relationship of 
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residuals vs. fitted values was conducted to verify homogeneity (Zuur et al. 2009). Neural 
networks are simpler than process based models and have become a common method for 
determining complex input–output relationships (Silveira et al. 2013). A common neural 
network structure that includes input, hidden, and output layers was used. Feed-forward 
networks were adjusted, using the back-propagation algorithm for weight fitting (Kaul, 
Hill, and Walthall 2005). Linear transfer functions connected the input layer to the hidden 
neuron layer and the output neuron layer to the network output while a sigmoidal transfer 
function connected the hidden layer to the output layer (Lee et al. 2003). The procedure 
described by Alvarez (2009) was followed for network architecture simplification, scaling 
methods, learning rates, and epoch size. The weight of the independent variables on the 
dependent variable was assessed based on the sensitivity ratio. Only inputs with a ratio 
larger than 1 were selected (Miao, Mulla, and Robert 2006). Neural networks were fitted 
using Statistica Neural Networks (version 2011 StaSoft). 

Regression models were fitted using 75% of randomly selected data (training set), and 
validated against the independent remaining 25% (validation set). Artificial neural net-
work models were fitted using 50% of the data (training set), 25% of the data were used 
for early stopping of weight fitting (test set), and finally the remaining independent 25% 
was used to validate the model (validation set) (Park and Vlek 2002). Cross-validation 
was used to avoid overlearning (Özesmi, Tan, and Özesmi 2006). The generalization 
capacity of the fitted polynomial regressions and network models was assessed by com-
paring the R2 of training and validation datasets, which were statistically contrasted 
(Kleinbaum and Kuper 1979). Ordinates and slopes of regressions between observed 
vs. estimated data were also statistically tested using Integrated Resources for Evaluating 
Numerical Estimates (IRENE) (Fila et al. 2003). A range of statistics for model evalu-
ation was used (Willmott 1981), as it is better to perform model comparisons based 
on a combination of statistics (Lin et al. 2002). To quantify the deviation of the regres-
sions and neural networks estimated results from the observed data, the root mean 
squared error (RMSE) (Kobayashi and Salam 2000) (Eq. 1), the mean difference (MD) 
(Kobayashi and Salam 2000) (Eq. 2) and the modeling efficiency (ME) (Tedeschi 
2006) (Eq. 3) were calculated: 

RMSE ¼
ffiffiffi
1
n

r
Xn

i¼1
ðyi � xiÞ

2
ð1Þ

MD ¼
1
n

Xn

i¼1
ðyi � xiÞ ð2Þ

ME ¼ 1 �

Pn

i¼1
ðxi � x̂Þ2 �

Pn

i¼1
ðyi � xiÞ

2

Pn

i¼1
ðxi � x̂Þ

ð3Þ

where n is the number of measurements and i is the ith observation, xi and yi the mea-
sured and estimated, by the regression and neural network models, values respectively. x̂ 
the mean of the measured values. When estimated values are closer to measured values, 
RMSE and MD, which had the same units as the studied variable, decrease. Conversely, 
better estimates are achieved when, on a relative scale, ME increases from 0 to 1. 
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A sensitivity analysis was performed to estimate the relative impact of the independent 
variables on AWC0–140 cm discarding the 10 and 90 percentiles to avoid extreme values as 
described by Alvarez and Grigera (2005). Results were represented graphically by a 
regression surface plot and by a nomogram. Simple regression and correlation analysis 
were used for inspecting the relationships between variables, assessing their significance 
by the F test (P < 0.05). 

Results 

Measured soil variables 

The sampled sites covered a broad soil variation range along the Semiarid Pampas 
(Table 1). In the first 20 cm soil layer, about 40% of the sites had more than 2% organic 
matter content. Most soils presented limited clay content as only 10% of them had more 
than 20% clay particles. High levels of sand were generally measured, as more than 90% 
of the soils had more than 40% of sand particles. Extremely high sand contents of 88% were 
reached in some cases. Almost 75% of the sampled soils were deep and could be sampled 
up to a 140-cm depth. Only one site was very shallow and could only be sampled up to 
40 cm because of the presence of a petrocalcic horizon. Soil bulk density was low and varied 
on average between 1.22 g cm−3 in the superficial soil layer and 1.29 g cm−3 in the deepest 
sampled layer. 

The average FC was almost twice as large as the WP in the upper soil layer with both 
hydraulic properties varying greatly among sites. Average AWC0–20 cm was variable and 
represented 18% of AWC0–140 cm. The AWC of the shallowest soil was 26 mm while the 
highest AWC value of 235 mm corresponded to a deep soil profile. AWC measurements 
taken every 20 cm from the surface to a depth of 140 cm exhibited limited variability 
with depth (Figure 2). AWC of all sampled soil layers contributed proportionally to the 
AWC0–140 cm. For example, soils with 70% sand had an AWC of 10 mm per 20 cm soil layer 
while soils with 40% sand had an AWC of 20 mm. Variability among soils was high with 
coefficients of variation ranging from 20 to 50% depending on the variable. The soil 
textural composition had a 15-fold range of variation (clay content) and AWC0–140 cm 
had a ninefold range. Soil organic matter was highly and significantly related to clay 
content but no significant relation was detected with AWC0–20 cm (Figure 3). Deeper soils 
had larger AWC, but this association was not strong. AWC0–20 cm was highly correlated 
with AWC0–140 cm and AWC20–140 cm (Table 2). 

Table 1. Mean values and range of soil variables measured in the sampled sites (n ¼ 152). Field 
capacity and wilting point correspond to gravimetric moisture contents. AWC0–20 cm ¼ available 
water capacity in the 0–20 cm layer; AWC0–140 cm ¼ available water capacity in the 0–140 cm layer. 
CV ¼ Coefficient of variation.  

Organic  
matter 

(%) 
Clay  
(%) 

Sand  
(%) 

Sampling  
(cm) 

Bulk  
density  

(g cm−3) 

Bulk  
density  

(g cm−3) 

Field  
capacity  

(%) 

Wilting  
point  
(%) 

AWC0–20 cm  
(mm) 

AWC0–140 cm  
(mm) 0–20 cm 0–20 cm 0–20 cm depth 0–20 cm 

120– 
140 cm 0–20 cm 0–20 cm  

Minimum  0.43  2.01  20.2  40  0.91  1.04  5.37  2.48  5.68  25.9 
Mean  1.97  11.7  57.9  127  1.22  1.29  14.5  7.22  17.6  99.9 
Maximum  5.69  30.8  87.5  140  1.46  1.49  23.6  14.7  38.8  234.7 
CV  41.1  50.2  26.2  19  10.7  8.17  30.8  38.6  35.1  46   
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One-step approach for soil AWC0–140 cm estimation 

The best fitted regression model for AWC0–140 cm estimates used two soil variables as 
predictors, AWC0–20 cm and soil depth: 

AWC0� 140 cm mmð Þ ¼ � 3:29þ 0:0464 � AWC0� 20 cm mmð Þ � soil depth cmð Þ ð4Þ

The structure of this model is logical as it is very similar to the result obtained when 
dividing AWC0–20 cm by 20 which implies having an AWC value per soil centimeter, 
and multiplying the result by the soil depth. When the model of Eq. (4) and the latter 
calculation were compared, very similar R2, ME, and RMSE values were attained but the 
MD was lower using Eq. (4). The regression model accounted for 78% of AWC0–140 cm 
variation, a performance that could not be significantly improved by the best artificial 
neural network fitted (Figure 4 and Table 3). The inputs of the neural network were the 
same as the predictors used in the regression model and network architecture included 
two neurons in the hidden layer. 

The different modeling techniques showed a strong interaction between AWC0–20 cm 
and soil depth. The linear regression of observed vs. estimated values of the regression 
and the neural network models had an intercept and a slope that were not significantly 
different from 0 and 1, respectively (P < 0.05). Differences between R2 of training and 
validation data sets were not significantly different (P < 0.05) and RMSE, MD, and ME 
were also similar (Table 3). 

Figure 2. Measured soil available water capacity across the sampled sand gradient of the Semiarid 
Pampas. Each curve represents the average soil available water capacity per soil layer of five randomly 
chosen sampled soils. The sand gradient was chosen to represent the 10, 50 and 90 percentiles of the 
data set and correspond to the content of the upper 0–20 cm soil layer. Horizontal bars represent 
standard deviations.  
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Figure 3. Scatter plots of the relationships among measured soil properties. Only significant linear 
regressions were drawn (P < 0.05). Available water content (AWC) of the 0–140 cm depth is the AWC 
to the maximum sampling depth that in most cases was 140 cm but in soils with petrocalcic horizon 
was to the upper limit of that horizon.  

Table 2. Linear relationship between available water capacity of the 0–20 cm soil layer (AWC0–20 cm) 
and the available water capacity of the 0–140 cm (AWC0–140 cm) or 20–140 cm (AWC20–140 cm) layers. 
Both the intercepts and slopes are significantly different from 0 and 1, respectively (P < 0.05). 

Dependent variable Intercept Slope Independent variable R2  

AWC0–140 cm  −2.94  5.83 AWC0–20 cm  0.62 
AWC20–140 cm  −3.03  4.84 AWC0–20 cm  0.53   

8 J. L. DE PAEPE ET AL. 
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Figure 4. Performance of regression and artificial neural network (ANN) models corresponding to the 
one step approach developed to estimate AWC0–140 cm (soil available water capacity of the 0–140 cm 
layer or to the upper limit of a petrocalcic horizon). The 1:1 relationships (dashed lines) and the fitted 
functions (solid lines) are shown. Intercept and slope values of the regressions were not different from 
0 and 1, respectively and are not shown in the figure.  

Table 3. Whole profile soil available water content (AWC0–140 cm) was estimated using regression and 
an artificial neural network. Coefficient of determination (R2), root mean squared error in mm (RMSE), 
mean difference (MD), and modeling efficiency (ME) of the observed vs. estimated values. 

AWC0–140 cm estimation—One-step approach   

R2 RMSE MD ME  

Regression model Training set  0.78  21.3  1.06  0.77 
Validation set  0.80  21.1  −1.03  0.80 

Neural model Training set  0.79  22.1  1.24  0.79  
Validation set  0.78  18.2  0.16  0.74 

AWC0–140 cm estimation—Two-step approach 
First step: AWC20–140 cm   

R2 RMSE MD ME  

Regression model Training set  0.72  21.8  1.76  0.72 
Validation set  0.71  22.7  2.07  0.70 

Neural model Training set  0.71  21.6  −1.82  0.71  
Validation set  0.77  21.1  −2.39  0.76 

Second step: measured AWC0–20 cm þ estimated AWC20–140 cm   

R2 RMSE MD ME  

Regression model Training set  0.78  21.8  1.76  0.77 
Validation set  0.76  22.7  2.07  0.75 

Neural model Training set  0.77  21.6  −1.82  0.77 
Validation set  0.82  21.1  −2.39  0.81    
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Figure 5. Performance of regression and artificial neural network (ANN) models corresponding to the 
two step approach developed to estimate AWC20–140 cm (soil available water capacity of the 20–140 cm 
layer) and AWC0–140 cm (soil available water capacity of the 0–140 cm layer). The 1:1 relationships 
(dashed lines) and the fitted functions (solid lines) are shown. Intercepts and slopes of the regressions 
were not different from 0 and 1 respectively, and are not shown in the figure.  
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Two-step approach for AWC20–140 cm estimation 

The best regression model fitted for AWC20–140 cm prediction was: 

AWC20� 140 cm mmð Þ ¼ � 95:3þ 4:85 � AWC0� 20 cm mmð Þ þ 0:741 � soil depth cmð Þ ð5Þ

This regression model accounted for 72% of AWC20–140 cm variability (Figure 5 and 
Table 3). In the second step, when summing measured AWC0–20 cm to this latter estimate, 
it explained 78% of AWC0–140 cm variability (Figure 5 and Table 3). In this case, the 
interaction term was not significant. The performance of the neural network model was 
similar. The selected inputs were the same and the network structure included four 
neurons in the hidden layer. In the second step, 79% of AWC0–140 cm variability could 
be explained (Figure 5 and Table 3). No significant differences (P < 0.05) in R2 between 
training and validation sets were detected for both modeling techniques and both predic-
tion strategies. RMSE, MD, and ME were also similar (Table 3). The regression of observed 
vs. estimated values had a slope that did not differ significantly from 1 and an intercept that 
was not different from 0 (P < 0.05). 

For simplicity, the regression model following the one-step approach was chosen to 
explore the effects of soil factors that significantly affected AWC0–140 cm in these soils. 
Using the results of the sensitivity analysis, a regression surface plot and a nomogram 
were developed. The regression response surface showed that the effect of both soil 
variables on AWC0–140 cm was positive and almost linear (Figure 6a). Shallow soils 
and soils with low AWC0–20 cm never had high AWC0–140 cm and, on the contrary, the 
deepest soils with the highest AWC0–20 cm had the highest AWC0–140 cm (Figure 6b). 
The model showed a positive curvilinear trend when both independent variables 
presented low values that tended to become linear as values became higher. The 
regression surface plot is suitable for showing the interrelationships between soil 

Figure 6. (a) Regression surface plot of AWC0–140 cm (soil available water capacity of the 0–140 cm 
layer) as a function of AWC0–20 cm (soil available water capacity of the 0–20 cm layer) and depth. 
(b) Nomogram representing the same effects. Numbers on the lines are AWC0–140 cm (mm). Soil depth 
corresponds to the maximum sampling depth that in most cases was 140 cm but in soils with petrocalcic 
horizon was to the upper limit of that horizon.  
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variables that impacted AWC0–140 cm while the nomogram is useful to visually 
estimate AWC0–140 cm. 

Discussion 

The broad spatial scale covered by our sampling reflected a large variation in soil properties 
which ensures an ample domain for the AWC0–140 cm fitted estimation model. Organic 
matter content was unrelated to AWC0–20 cm. Similarly, a small impact of organic matter 
on hydraulic soil properties was also found in other studies, effects were statistically 
significant (Schaap and Bouten 1996; Schaap, Leij, and van Genuchten 1998; Rab et al. 
2011). The impact of texture on AWC0–20 cm was significant in the Semiarid Pampas, 
something which is consistent with results from other regions (Gupta and Larson 1979; 
Saxton et al. 1986; Ghorbani-Dashtaki and Homaee 2004). Although surface variables 
greatly differed between sites, hydraulic properties remained quite constant along the 
profiles. Our hypothesis was confirmed as we were able to develop an AWC0–140 cm 
estimation model with a good performance using surface information. Even though surface 
AWC0–20 cm and AWC0–140 cm correlated well (R2 ¼ 0.62, P < 0.0.5) the addition of soil 
depth as a predictor in the regression model not only significantly improved the estimate 
by approximately 17% (R2 ¼ 0.78, P < 0.0.5) but also revealed a positive interaction 
between both variables. 

The data set used (n ¼ 152) was large enough to test neural networks as shown in some 
previous studies in the Pampas (Alvarez, Steinbach, and Bono 2011; Alvarez and Steinbach 
2011). The only requisite was to split the data into training and validation sets as we have 
done (Bishop 2006) and to perform an early stop of weight fitting to avoid overlearning 
(Özesmi et al. 2006). Although artificial neural networks are useful when relationships 
between variables are difficult to model due to nonlinear and complex interactions 
(Moosavizadeh-Mojarrad and Sepaskhah 2012), our network models did not improve 
the fit of regression models. Similar results were reported previously for soil water curve 
retention modeling (Schaap and Bouten 1996). Multiple linear regression methods may 
perform better than neural networks when applied to estimates of soil water retention 
curves if relationships between soil properties tend to linearity (Minasny, McBratney, 
and Bristow 1999) as in our case. Because we found no performance differences between 
both modeling methods, we chose regressions to avoid the need of special software for 
simplicity. 

Using surface information to estimate whole-profile soil data, as we propose in the 
one-step approach, is a typical case of a part-whole correlation which should not be 
considered as a spurious regression and is statistically sound (Sokal and Rohlf 1995). 
Graphical information provided by the scatterplots of observed vs. estimated values of 
the fitted models showed that these made reasonable predictions. In order to make model 
comparison more robust, not only the determination coefficients were used but also other 
statistics (Willmott 1981; Comrie 1997) that showed similar results. Most of AWC0–140 cm 
variance could be explained by the regression and by the neural network models following 
the one-step approach and the two-step approach did not improve the fit. The RMSE of 
21 mm for the regression model represented 20% of the mean AWC0–140 cm. Mean differ-
ences were low implying that the estimated values were very close to the observed values 
and the ME was very good (Mayer and Butler 1993). 
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The AWC0–140 cm regression estimate model requires only AWC0–20 cm determination, 
limiting laboratory work. Soil depth information can be available from soil surveys or 
can be generated easily. The coefficients of our model must be considered specific for 
the Semiarid Pampas and it would be risky to extrapolate them to other soils. However, 
the methodology appears suitable for other sandy soils for which adequate coefficients 
should be fitted. Regression models can simply be translated into nomograms avoiding 
the need of calculation for some users. 

Conclusion 

In sandy areas it is possible to estimate soil AWC along the whole soil profile by 
determining only soil water properties at the surface layer. In cases where soil depth 
may be restricted by horizons that limit root growth, the depth to those horizons must also 
be assessed to obtain a sound estimate. 
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