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We prove the impossibility of cylindrical thin-shell wormholes supported by matter satis-
fying the energy conditions everywhere, under reasonable assumptions about the asymp-
totic behavior of the –in general different–metrics at each side of the throat. Besides, we
establish necessary conditions for the possibility of non-exotic thin-shell wormholes.

Keywords: Thin-shells; energy conditions; wormholes.

PACS Number(s): 04.20.Gz, 04.20.Jb, 04.40.Nr

A wormhole configuration connects two regions of spacetime by a throat, thus
implying a nontrivial topology, and some consequent interesting features as, for
example, the possibility of closed timelike curves.1–4 In the case of wormholes with
compact throats, this is defined as a minimal area surface,2 where a flare-out condi-
tion is satisfied. The main objection against the actual existence of such wormholes
is that, in the framework of General Relativity, they require the presence of exotic
matter, i.e. matter violating the energy conditions.2 For wormhole geometries with
infinite throats, as cylindrical wormholes are,5–10 the flare-out condition can be
understood in two ways: The areal flare-out condition states that the area per unit
length must increase with the radius9,10; this leads to the impossibility of fulfilling
the energy conditions globally.11 However, in Ref. 11 it was also pointed that for
cylindrical wormholes it may be more appropriate to consider the radial flare-out
condition, which only demands that the length of a circumference increases with
the radius (see also Ref. 12–15). Within this approach, wormhole configurations sat-
isfying the energy conditions11 were found (though negative results were obtained
for flat and conical asymptotics). Besides, within the thin-shell class, for cylindrical
wormholes it was shown that a positive energy density at the throat is possible.15
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However, in Ref. 15 we were not able to find solutions completely satisfying the
energy conditions; their existence was not discarded, but was left as an open ques-
tion. Therefore, here we shall address the construction and matter characterization
of cylindrical wormholes of the thin-shell class, working under the radial definition
of the throat. We shall restrict our analysis to static configurations, and we shall
focus on the normal or exotic character of the matter required. We shall prove the
impossibility of cylindrical thin-shell wormholes supported by matter satisfying the
energy conditions everywhere, under the following assumptions:

(i) The asymptotic behavior of the geometries at each side are either flat, local
cosmic string-like (i.e. conical) or of the generic Levi-Civita form; they are not
necessarily of the same type at both sides.

(ii) Apart from the required continuity of the line element and a weak condition
on the first derivatives of the metric functions (see below), no assumption is
made about the metric at the throat.

(iii) Both metrics have continuous first derivatives outside the wormhole throat
(the only shell is at the throat).

These conditions include a wide class of generally asymmetric wormholes; symmet-
ric ones, which correspond to equal metrics everywhere at both sides of the throat,
are of course included in our analysis as a particular case. As a corollary, we shall
obtain necessary conditions that the throat and asymptotic behavior of the metrics
must satisfy to allow for the existence of non-exotic configurations.

Let us start from two manifolds M1 and M2 with metrics of the most general
static cylindrically symmetric form16

ds2
12 = e2(K12−U12)(dt212 − dr2

12) − e−2U12W 2
12dϕ2

12 − e2U12dz2
12, (1)

where K12, U12 and W12 are functions of the radial coordinates r12. For such metrics
the Einstein equations relating the geometry with the energy–momentum tensor
T̃ ν

µ = 8πe2(K−U)T ν
µ = diag(−ρ̃, p̃r, p̃ϕ, p̃z) take the form
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where primes denote radial derivatives. From these equations we obtain the
quantities
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2
, (6)

1250015-2



March 3, 2012 9:36 WSPC/S0218-2718 142-IJMPD 1250015

Cylindrical Thin-Shell Wormholes and Energy Conditions

ρ̃12 + p̃r12 = −W ′′
12

W12
+ 2K ′

12

W ′
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W12
− 2U ′

12
2
, (7)

ρ̃12 + p̃ϕ12 = −W ′′
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W12
+ K ′
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W ′
12
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12, (8)
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12
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W12
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W ′
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W12
+ K ′′

12 − 2U ′′
12, (9)

which should all be positive or at least zero if no exotic matter exists. Now from
the two manifolds M1 and M2 described by (1) we take the regions r12 ≥ a and
paste them at the surface Σ given by r12 = a to construct a new manifold M. We
assume that the metric functions and the coordinate choice guarantee the required
continuity of the line element across Σ; then the induced metric on Σ is unique. We
also assume that the flare-out condition is satisfied at r12 = a, so that the geometry
at each side opens up there. Then the manifold M constitutes a wormhole with a
matter shell at Σ, that is a thin-shell wormhole.

The geometry at both sides of this surface and the matter on it are related by
the Lanczos equations17–22

−[Kj
i ] + [K]δj

i = 8πSj
i , (10)

where Kj
i is the extrinsic curvature tensor defined by

Kij = −nγ

(
∂2Xγ

∂ξi∂ξj
+ Γγ

αβ

∂Xα

∂ξi

∂Xβ

∂ξj

)∣∣∣∣
Σ

, (11)

with nγ the unit normal (nγnγ = 1) to Σ in M. The coordinates of the
4-dimensional manifolds are labeled as Xµ = (t, r, ϕ, z), while the coordinates on
the surface are ξi = (τ, ϕ, z); as usual, τ stands for the proper time measured by
an observer at rest on Σ. The bracket [Kj

i ] denotes the jump Kj
i 2 −Kj

i 1 across the
surface Σ, [K] = δi

j [K
j
i ] is the trace of [Kj

i ] and Sj
i = diag(−σ, pϕ, pz) is the sur-

face stress–energy tensor, with σ the surface energy density and pϕ, pz the surface
pressures. For the metrics (1) these equations give the following expressions for the
energy density and pressures on the shell:

σ = −eU2−K2
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, (12)
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8π
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2 +
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8π
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pz =
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8π

(
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2
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+
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8π
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1

W1
− 2U ′

1

)
. (14)

From this we obtain the following relations

σ = −eU2−K2

8π

W ′
2

W2
− eU1−K1

8π

W ′
1

W1
, (15)
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σ + pϕ =
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8π
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σ + pz =
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8π
(K ′
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8π
(K ′
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1). (17)

In fact, the continuity of the metric across the throat would slightly simplify these
expressions, but this is not relevant in the subsequent analysis.

As pointed above, the existence of a wormhole requires that the geometry opens
up (“flare-out condition”) at the throat, that is at r = a. The areal flare-out con-
dition would impose

W2W
′
2 > 0 W1W

′
1 > 0 (18)

at r = a. This requirement automatically implies that the energy density is negative
at the shell, and the energy conditions would be violated (see Ref. 11 for the same
result without recalling singular sources). But the radial flare-out condition only
implies

W ′
2W2e

−2U2 − U ′
2W

2
2 e−2U2 > 0 W ′

1W1e
−2U1 − U ′

1W
2
1 e−2U1 > 0, (19)

which is less restrictive. These conditions give

U ′
1 <

W ′
1

W1
and U ′

2 <
W ′

2

W2
. (20)

The condition σ > 0 (σ = 0 fulfils the energy conditions, but there would be no
shell) requires that at least

W ′
1

W1
< 0 or

W ′
2

W2
< 0. (21)

On the other hand, the conditions σ + pi ≥ 0 on the shell impose that at least

K ′
1 ≥ W ′

1

W1
or K ′

2 ≥ W ′
2

W2
(22)

and simultaneously

K ′
1 ≥ 2U ′

1 or K ′
2 ≥ 2U ′

2. (23)

From these results, for a class of metrics with reasonably desirable asymptotics, we
shall prove the impossibility of fulfilling the energy conditions everywhere outside
the shell if W ′

1/W1 < 0 and K ′
1 ≥ W ′

1/W1, or if W ′
2/W2 < 0 and K ′

2 ≥ W ′
2/W2.

This includes the case in which at both sides at the throat we have W ′/W < 0,
and also the case such that K ′ − W ′/W ≥ 0 at both sides. Of course, symmetric
wormholes are included in this class too, as long as wormholes which are symmetric
at the throat.

(i) Asymptotically flat geometries: In the case of an asymptotically flat behavior,
we must have that when the radial coordinate goes to infinity it is e2U ∼ 1,
e−2U ∼ 1, e2K ∼ 1 and W 2 ∼ r2. Then very far from the shell we should have
W ∼ r, which implies W ′ ∼ 1.
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(ii) Asymptotically cosmic string behavior: This is the far behavior associated to
a gauge or local cosmic string, and corresponds to a locally flat geometry with
a deficit angle. This is given by e2U ∼ 1, e−2U ∼ 1, e2K ∼ 1 and W 2 ∼ α2r2

with α2 < 1 (α2 > 1 would describe what is called a surplus angle). As in the
preceding case, at infinity we have W ′ ∼ 1.

(iii) Asymptotically Levi-Civita metrics: In this quite interesting case we have that
when we are very far from the shell the metric behaves as e2U ∼ r2d, e−2U ∼
r−2d, e2(K−U) ∼ r2d(d−1) and W 2 ∼ r2. Very far from the shell we have
K ′ − 2U ′ ∼ d(d− 2)/r and K ′′ − 2U ′′ ∼ −d(d− 2)/r2. The Levi-Civita metric
becomes invariant under boosts along the z-axis for d = 0 (which gives the
flat or conical cases considered above) and d = 2. The length of a centered
circumference increases with the radius only for d < 1; for d < 0 the length
per unit of z coordinate decreases with r and vanishes for r → ∞. Thus a
reasonable assumption would be 0 < d < 1. Under this condition, the far
behavior corresponds to K ′ − 2U ′ < 0 and K ′′ − 2U ′′ > 0. This will be of
interest in the analysis presented in the Appendix; however, the hypothesis
0 < d < 1 is not central, because in any case the asymptotic behavior of W is
such that W ′ > 0, and this constitutes the crucial point in our proof.

Suppose that at one side of the throat it is W ′/W < 0 at r = a; then according
to (20) to fulfill the radial flare-out condition we have U ′ < 0 and |U ′| > |W ′/W |.
Then if K ′ − W ′/W ≥ 0 we have K ′W ′/W ≤ |W ′/W |2 < |U ′|2 = U ′2; hence it
must be

K ′W
′

W
− U ′2 < 0. (24)

Now, outside the shell the metrics and their derivatives are continuous. This means
that the last inequality must be fulfilled by W and K ′, U ′, W ′ at r = a+, that is in a
region immediately beyond the wormhole throat, in the bulk where the energy and
pressures are given by Eqs. (6)–(9). So let us assume that the energy conditions are
fulfilled at r = a+. From (6) this can be possible only if together with W ′/W < 0
the relation

− W ′′

W
> 0 (25)

is satisfied at r = a+. But for all the metrics considered, we have the asymptotic
behavior W ′/W > 0. Therefore at some radius a < r∗ < ∞ we necessarily must
have W ′ = 0 together with W ′′ > 0. Then, as U ′2 ≥ 0, the energy density is
ρ̃12 = −W ′′/W − U ′2 < 0 at r = r∗ and the energy conditions are violated there.
Note that this analysis does not require equal metrics at both sides of the throat,
nor even that the metrics are of the same kind at infinity. One could have, for
example, a cosmic string far behavior at one side, and a Levi-Civita far behavior at
the other side; the steps followed to show that when at the throat there is a shell of
normal matter then the energy conditions must be violated beyond it, still apply for
different far behaviors. Though cylindrical wormholes supported by normal matter
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are possible,11 any static cylindrical thin-shell wormhole geometry with the throat
and asymptotic behaviors considered here requires exotic matter at some finite value
of the radial coordinate. On the other hand, the negative results stated in Ref. 11
are then recovered for singular sources, and besides, for such matter distributions,
are extended to more general asymptotic behaviors.

Now let us briefly discuss the complementary point of view. Because σ > 0
requires at least W ′

1/W1 < 0 or W ′
2/W2 < 0 at the throat, let us assume, without

losing generality, that at r = a we have W ′
1/W1 < 0. Then, if we keep the restriction

that W ′
1 must be positive at infinity, to avoid exotic matter we should require

at least that at the throat radius the metric also satisfies K ′
1 ≤ W ′

1/W1. Now,
the condition σ + pϕ ≥ 0 leads to the requirement K ′

2 ≥ W ′
2/W2 at the other

side of the throat. But if we also keep the condition that asymptotically W ′
2 > 0

the analysis above implies that we must admit W ′
2/W2 > 0 at r = a, and then

σ > 0 forces there the relation eU2−K2 |W ′
2/W2| ≤ eU1−K1 |W ′

1/W1|. Finally, the
continuity of the metric (i.e. eU2/|W2| = eU1/|W1| at r = a) simplifies the relation
to e−K2 |W ′

2| ≤ e−K1 |W ′
1| at the throat. Of course, we have reached this point

from the asymptotic behavior W ′ > 0, which is common to flat, cosmic string-like
and Levi-Civita metrics. However, we could relax this condition, and this could
be done keeping the desirable property of an ever increasing circumference length,
by demanding that U ′ < W ′/W < 0 asymptotically. Thus, an alternative starting
point in the search of non-exotic configurations is to assume the latter form for
the asymptotic behavior of the metric. In this sense, our analysis has left us with,
at least, necessary relations that should hold between the asymptotic behaviors of
the metrics at each side and their first derivatives at the throat so that non-exotic
matter could support cylindrical thin-shell wormholes. In summary, in relation with
the question posed in Ref. 15, here we have a no go result excluding a wide class
of metrics as candidates, and we have obtained a guess of the kind of conditions
which narrow the search for a positive answer.

Appendix

In the case of a Levi-Civita metric with 0 < d < 1 we can also carry out the
following analysis: If in order to fulfill the energy conditions at the shell we assume
that at the same side of the throat it is W ′/W < 0 and K ′ − 2U ′ > 0 at r = a,
then at this radius we have

K ′W
′

W
− 2U ′W

′

W
< 0. (A.1)

Besides, the continuity of the first derivatives of the metric implying K ′ − 2U ′ > 0
at r = a+, plus the requirement of ρ̃ + p̃z ≥ 0 there, yields

K ′′ − 2U ′′ > 0 (A.2)

immediately beyond the throat. But as we have the asymptotic behavior
K ′ − 2U ′ < 0, this means that at some radius r∗ > a it must be K ′ − 2U ′ = 0
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together with K ′′ − 2U ′′ < 0, which gives ρ̃ + p̃z < 0; that is, at r∗ the energy
conditions are violated.
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